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The equations of radiative transfer for an electron-scattering atmosphere, 
as developed by Chandrasekhar, are solved using Case’s method of singular 
eigensolutions. The eigenfunctions of the set of coupled transport equations 
have been found. There are two discrete eigenvectors and two linearly in- 
dependent, degenerate, singular, continuum eigensolutions. These eigen- 
vectors are shown to form a complete basis set for the expansion of arbitrary 
two-component vectors defined on the half-range. In addition, all of the 
necessary adjoint functions have been developed so that all expansion co- 
efficients can be obtained by taking scalar products. As an example of the 
method, the Milne problem is solved and explicit results are obtained for the 
two components of the polarized radiation field at any optical depth in the 
stellar medium. 

I. INTRODUCTION 

In a classic paper on radiative transfer published in 1946 (I), Chandrasekhar 
explicitly formulated the equations of transfer for the two components of the 
polarized radiation field in a free-electron stellar atmosphere. The Thomson 
scattering of radiation by free electrons was recognized to be an important 
mechanism in the transfer of energy in a certain class of stars. This fact made 
necessary a more detailed description of the scattering laws in the formulation 
of the basic equations. In (I), Chandrasekhar provided the new theory and pre- 
sented an approximate solution for the outgoing angular distribution of the 
polarized light. In a following work, (,2), by passing to the infinite limit in a 
Wick-Chandrasekhar discrete-ordinate procedure, he was able to solve exactly 
for the laws of darkening in the Milne problem. 

As a consequence of the method of singular eigensolutions, developed and 
introduced by Case (3) in 1960, a large class of problems in both radiative- 
transfer and neutron-transport theory have become amenable to exact, closed- 
form solution [as for example in Refs. (d)-(S)]. 

In this paper, using the basic techniques of normal mode expansion that were 
initiated by Case, we are able to solve exactly and rigorously the equations of 
transfer formulated in Ref. 1. Thus our solution to the Milne problem is con- 
siderably more general than the ones given earlier (I), (2), in that we are able 
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t,o determine the angular distribution of the t\\o componertt8s of the radiatiott 
irrt,ensit’y at CULT optical distance into the medium. The method of analysis i:: 
given in detail because it is intended to serve as a basis for other problems which 
may be described by the same physical model.’ The completeness and ortho- 
gonality theorems proved here for these eigenvectors are quite general and ma? 
be useful in many similar problems.2 Once these theorems are established, the 
solutions to actual physical problems follow directly and can be formulated in :L 
simple and canonical manner. 

Section II contains a brief review of the physical model considered. ,4 morn 
detailed discussion is given by Chandrasekhar (I), (IO). Section III is devoted to 
the sol&on of the homogeneous vector transfer equation and in Section IV these 
eigensolut8ions are shown to obey a general half-range completeness theorem. 
In Section V we present the adjoint functions and prove that they are, in fact, 
orthogonal to t’he normal basis set on the half-range. Thus, equipped with the 
complet’eness theorem and the adjoint functions, n-e solve, in Section VI, thr 
classical Xilne problem. Although the Milne problem is of primary concern here. 
the method for solving any of the standard half-space problems is indicated. 

We believe that our method has merit because (a) it is simpler than the disc&<>- 
ordinate procedure taken in its infinite limit, (b) it gives the complete solution 
t,hroughout) the entire medium, and (c) it is easily adapted to the other half-spac*rl 
problems. 

II. THE EQUATIONS OF TIZAXJSFEI: 

In this section we formulate the equations that describe the flc~w of radiant 
energy through a semi-infinite half-space that is considered to represent :I strlll:tl 
atmosphere. The source of radiation is assumed to be lorated at an infinite depth 
within the medium so that no extraneous source terms will appear in t,he hnl;rn~~e 
equations. Further, in this model it is assumed that, the only mechanism for inttlr- 
actions bet’ween the radiation field and the stellar medium is that of Thomson 
scattering by free electrons.3 In the scattering medium considered, the radiation 
field is adequately described by two perpendicularly polarized intcnsitics. 
\kl( r, II) and qz( 5, /.J). Here x is the optical distance into the medium measured in 
units of the Thomson scattering coefficient and p is the direction cosine of the 
directed pencil of radiation. We measure p from t’he ~&NUY/ MYUMX/ of the free 

1 The albedo problem and the half-space Green’s flmction are solved ill a forthcomitlg 
paper by 0. J. Smith and C. E. Biewert. 

2 Simmons (9) has recently investigated the full-range complet.eness and orthogonalit? 
theorems. 

a Since the Thomson scattering cross section is independent of ellergy, we need llot 
consider the intensity of the radiation to be frequency dependent. Thus the intensities th:lt 
we use are the integral sums over all frequencies. 
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surface.4 The intensities, \kl(z, P) and \kz(x, K), refer respectively to the states of 
polarization where the electric vector vibrates along and perpendicularly to the 
principal meridian. Thus 27@42, k) clx & represents the total radiant energy of 
polarization state i contained in optical position dx at x and in solid angle 
dO = 27r dg about a. 

Writing the two balance equations for a differential element of phase space, we 
have 

and 

(1%) 

ilr & *2(2(z, P) + *2(x, P> = &1(x, IO + S22(& r>. (lb) 

Here S,j( Z, N) represents the scattering source term from state j into state i. 
Unlike the assumption often made in the theory of neutron transport, the scat- 
tering here cannot be taken to be isotropic, Chandrasekhar, in Ref. I, investi- 
gates these source terms for the Thomson scattering kernel; we do not repeat his 
analysis here but simply state the results: 

&I(x, cl) = 36 i:!Pi(x, ~‘)[2(1 - ~1”) + ~~‘(3p” - 2)j dp’, (2a) 
. 

&2(&P) = F.S P2 s 

1 
%(X,P') G', (2b) 

-1 

and 
1 

S22(x,p) = PQ s *2(x, cl’) &II’. (24 
-1 

Thus the two equations of transfer are 

P g *1(x, P) + \kl(X, II> = ; 1: ~l(X, kc’) 

*[2(1 - L2) + P2(3/J’2 - a>3 d/L’ + ; j? s: f&(x, /.l’> d/L’, 

(3a) 

and 

4 It is customary in astrophysics to measure this direction from the outward normd 
rather than from the inward one. We select the latter here because Case’s method of normal 
modes, which we use, is developed in this notation. We also use the symbols ‘R,(z, P) and 
q2(z, p) rather than the corresponding 12(x, p) and I&, F). 
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We prefer to write Eqs. (3) in matrix notation; defining 

; 

2( 1 - fi’2>( 1 - 

CL’) 

/2) + /P/2 PS 

Kh = 
,2 

P 1 1 ’ 
(1) 

we have 

P;‘%P) + WTCL) = ~I:Kir,~‘~~il,ll’)dp’. ( 5 ) 

Here w( X, p ) is a two-component vector with elements \kl( 2, ~1) and q2( X, p ) $ 
and K( p, 1’) is the transfer matrix; we note E( p’, p j = K( IL, p’). The superscript 
tilde denotes the transpose operation. We now turn to the solution of Eq. ( 5). 

III. EIGENVALUES AND EIGENFUNCTIONS 

JXoting that Eq. (5) possesses translational invariance, we are led to siolut,ions 
of t’he type 

W?(T, PI = ~-5’w9, /JCL), i 6 1 

where the permissible values of q and the functions a( D, cl) are to bc detcrminc~tl. 
Suhst’itutjing the ansak above into Eq. (5)) we obt’ain 

(7) 

If Eq. (7) is multiplied by PB(p), the Legendre polynomial of order @, :trrtl 
integrated over p from - 1 to 1, the following set of equations results: 

+MT) - & [(P + l)M,e+d11) + PM~-I(T)I 
I, s ) 

Here we have made use of the fact that K(,p, cl’) can he written in bilinear form 
(91, i.e., 

K(P, IL’) = AI + &Pz(p) + P&J% + AJ’,(cc)l, (!I) 

where 

Ad3’ 1 [ 1 41 3’ AZ? 2 [ -’ ’ 1 4 2 0’ 

A=; 3 [ -2 2 1 4 0 0’ and A 1 = ! [I 4 ’ 1 40 0’ 

(10) 
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In addition to the orthogonality properties of the Legendre polynomials, we have 
used the relation 

pLpB(p) = (P + lPo+1(cL) + WB--1(P) 
w + 1 

Also, we have defined 

Equation (7) can be written explicitly in terms of the Mp( 7) ; we find 

(II - P)@(v,P) = ; ([AI + M’&)lMo(v) + [A, + AJ=ddIMdd]. (13) 

The vector Mz( v) can be found in terms of Mo( 7) from Eq. (8) and the result can 
. The equation for ~(7, cl) takes a somewhat more be substituted into Eq. (13) 

tractable form: 

(r - P 

where 

r 

)Wv, PL) = (~~)K,(P)~~(~I), (14) 

1 - Pz(cL) 
K,(P) = 

& [l + (2 - 312jPZ(P)ll 

0 3(1 - q2) 
4 - 39 1’ 

(15) 

The vector Mo( q) in the right-hand side of Eq. ( 14) is as yet unknown; it is the 
normalization of the eigenvectors as indicated by Eq. (12). Since the factor 
(7 - P) multiplying a’(~, P) can vanish for values of 7 equal to cc, we must con- 
sider the solution of Eq. (14) for two distinct regions of the eigenvalue 7. 

If we restrict 1 not to lie on the real line [-1, 11, the solution for ~(7, p) can 
be written as 

Q(??,P) = y 2 & Kb)Mo(rl). 

Integrating the above over P from -1 to 1, we find 

MO(V) = (d2WJ4o(rl), (17) 

where 

K, i 1: K,(P) 2!f- , 11 6 i-1, 11. (18) 11-p 
5 The factor (4 - 3~~2)~~ in K,,(r) is to be noted since for 9 e [-1, I] the possibility of a 

singularity appears to be present. It turns out, however, that? = + m are the only discrete 
eigenvalues. 
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Since Eq. (17) is a set of homogeneous equations for the two unknown compo- 
nents of Mo( 7~ ) , we require that 

det[I-zKq]=O. ( I!) ) 

Expanding Eq. ( 19) we obtain the condition, 

31 - m - sU1/11)1 = 1, 11 “, l-1, 11, ( ‘10 ) 

i.e., the discrete eigenvalues are the zeros of the dispersion function 

n(z) b -1 + 3(1 - Z2)[1 - Z1’( l/Z)]. ( 21) 

Here we use the abbreviation T(z) for tanh-’ (.t: j . Also, the symbol I denotes tht: 
unit matrix. It, is obvious that Q(x) has zeros occurring in f and conjuga& 
pairs. In Appendix A, we prove that fi( z) has only two zeros, which are easily sceu 
to be 17 = f x . Taking the limit 77 + m in Eq. ( 16 j, we note that a( TJ, pj is indt:- 
pendent of P. It is, in fact, the constant vector, 

1 
@+(77, cl> = v+(,, II) = 1 . [I ( 0’) ) i- 

Because of the degeneracy of these discrete solutions, the one-climsenional rcprct- 
sent&ion, eKrp. ‘, is no longer adequate. Since we are dealing with a twofold de- 
generacy, the two-dimensional representation is appropriate. It can he generated 
by the basis set (7), 

Yl(s, q) = e-“’ 4 1, ( ml I 

Y2( 2, q) = 5eCr” + x, (23h) 

where the arrows indicate the limit. for 17 + cc. The appropriate linear comhin:t- 
tion which satisfies Eq. (5) is found t’o be 

1 
\Ir-(z, pj = (Z - p> 1 . [I (24) 

The two discrete solutions are thus obtained. It should be noted that’ \~r+( x, ,.L ) 
sat’isfies Eqs. ( 5) and (7), whereas \I’-(s, M) is a solution of Eq. ( 5) only. 

We now proceed to find the solutions to Eq. (, 14) for TJ t [-- 1, I]. These are t IN 
no-called c(JIi~~inUUn~ eigensolutions and they are, in fact, distributions rather 
than functions in L2 space. The general xolut’ion f(JI” a( 9, p) , 17 ,I [ - 1, 11, (WI thus 

be writt’en 

Here the symbol P denotes that all integrals involving these solutions tire to be 
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done in the Cauchy principal value sense. Integrating Eq. (25)) we find 

where 

We find 

K71P 

= 
371 + 3(1 - $)Th) A2 k-37(2 - 377’) + 9?(1 

0 6(1 dT(d - 
4 - 3q2 

- 

(26) 

(27) 

mbd1 1 (2s) . . 
J 

Since Eq. (26) is a homogeneous equation for Mo( a), we set the determinant of 
the coefficient matrix equal to zero. This determines two allowable X( ?I) functions 
which in turn determine two linearly independent MO(q). Thus we find a twofold 
degeneracy in the continuum solutions. A similar degeneracy was found by 
Siewert and Zweifel (4)) (5). We choose to write the two degenerate continuum 
solutions in the form 

*1(9, cl> = 
[ 

?(l -$)P + h(,>S(v - CL) 
rl -/-l 

3 
@gal 

0 

and 

where 

X,(q) = -1 + 3(1 - q2)[1 - ?1T(s)l (3Oa) 
and 

X2(q) = 1 + 3(1 - s2)D - 11U9)l. (Sob) 

All of the eigensolutions are thus determined. In the next section we prove that 
these eigenvectors obey a rather remarkable completeness theorem. 
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IV. COMPLETENESS OF EIGENSOLUTIONS 

THEOREM I. The eigensolutions a+ , al(q, p) and *.d,q, PCL) are cowplefe ou ftw 
half-range, p E [O, 11, in the sense that an arbitrary two-componenf wcfor w’( F 1 (IP- 
fined J(OT 0 5 p 5 1 can be expanded in the form 

s 

1 
‘N/L’) = A+@+ + 4rl)*1(?1, CL) all + /‘P(ah(% P’) h. (31,) 

0 -0 

To prove the theorem, we show that a solution to the singular integral ecluntion 
above exists. This is done by solving Eq. (31) using the methods of Rlunkhclish- 
vili (11). We begin by attempting to expand an arbitrary vector w’( cl) in terms 
of the continuum modes alone. We will find that this expansion is vulid as long as 
a certain restri&ion is placed on w’(p). This restriction is easily removed by 
simply introducing t.he discrete term. Let us therefore considcl 

Substituting the expressions for the a;(~, p) given by Eqs. (291, we obt:An t8hc 
following two equations : 

and 

Since Eq. (34) contains only one unknown, /?( r] j, our procedure will be to solve 
firstly for /3(v) ; this result can then be used in Eq. (33), thus leaving cu( 17 ) as the 
only unknown. Integrating the delta function term in Eq. (34 ) , we find 

We now inkoduce the auxiliary function 

Taking the limit of No as x approaches the branch cut [0, l] from :~bovca :III~ 
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below, we obtain the boundary values, 

N,*(/.b> = ki P d’p(,)V(l - V2) A f 5 (1 - P2kGL). (37) 
rl -P 

Thus 

and 

Nz+(jL) - NZ-(PCL) = 41 - PWPcl) (38a) 

K+(d + N2-b) = ; P ~‘B(sMl 4 - q2> -. 
9-p 

It is also convenient to introduce the function 

A(z) L 1 + 3(1 - 2”) [ 1 + ; I: -$I. 

(38b) 

(39) 

Thus A(z) is analytic in the complex plane cut from - 1 to 1 on the real axis and 
its boundary values are 

A*(p)= 1+3(1-/.L2) 
[ 

. (40) 
Adding and subtracting these boundary values, we find 

A (p) = A+(P) + A-(P) 
2 

2 (4la) 

and 

37r+( 1 - p2) = A+(p) - A-( /.L). (4lb) 

With the aid of Eqs. (38) and (41)) we now write Eq. (35) as 

(1 - P”M-‘,‘(P) = K%&+(P) - N~-(P)A-(P). (42) 

The N2(z) function has its branch cut from 0 to 1, whereas the A(z) branch cut 
is [ - 1, 11; thus the right-hand side of Eq. (42) is not the difference of the bound- 
ary values of an analytic function on the same domain. We therefore introduce a 
new function Y(z) which is to be analytic in the complex plane cut on the line 
[0, l] and whose boundary values satisfy the ratio condition, i.e., 

y+(P) _ A+(P) 
y-(Pcl) A-(/J) ’ P E NJ 11. 

Equation (43) is a homogeneous Hilbert problem (11) ; the solution is 

Y(Z) = exp 
[ 

i l1 arg A+(P) &I. 

(43) 

(44) 



RADIATIVE TRANSFER 34-i 

In t’erms of the I’(x) function, Eq. (42) can be writken a:: 

(11- &z!(~)!P2$6) = AG+(/A)r-‘(,) - N2-(P)J7-(/.LJ, (Xi) 

where 

Yz(cL) A+ PP’+(P)/h+( /Al. i -Hi ) 

The right,-hand side of Eq. (45) is now written in terms of analytic fWl&JIlS with 
a COlllmOn branch cut. The solution for this special case of the iuliomopctlcol~s 
Hilbert, problem is 

The fact that, the arg A+(p) is zero at both of the end points of the cut [O. 11 
insures that, the properties of Y(x) are correct as it, st,ands ( i I ) . Since 1-c P ) is 
nonvanishing in the cut plane, N?(z) is obviously analytic in the cut plant; this 
is in agreement with our original definition of Ns( x) in IQ. ( 36 ). Also N,( 2 ) 
vanishes as l/z for large z. This property also is as prescribed by Eq. ( 36 i. \Ve 
therefore conclude that No as given by Eq. (17) is correct. It follows that PC 17 ) 
is known for it, can be obtained from the boundary values of Eel. ( 4i 1 ac~~,rcling 
to t#he form of Eq. (3Sa). 

We now turn to t#he solution of Eq. (33). Since /3( 7) is known, (u( 17) is the 
quantity to be determined. Integrating the delt’a function term, we write l<q. i :Xi i 
:lS 

where 

i-k!)) 

The dispersion function Q(x), given by Eq. (21), can alternately bc writtclrl 

Q(x) = -1 + 3(1 - 2”) [ 1 + ; s: A]. 

The boundary values of Q(x) on the branch cut [ - 1, 11 satisfy 

Q'id + Q-(P) = x1(p) - > ti:! ) 
2 

and 
n+(p) - a-(/L) = 3*&(1 - p2). I .i:: ) 
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Continuing to parallel the solution for P(V), we introduce 

(54) 

such that 

Nl+(p) - N13.J) = W(P) (55) 

and 

K+‘(p) + N17P) = ; P 6’ r/41?) $$. (56) 

With these facts we are able to write Eq. (48) in the form 

PWl’(P) + dPcL)I = N+b)Q+(P> - ~l-(~wb). (57) 

Here again the branch cut of O(z) is not the same as that of the Nl(x) function. 
We therefore define a function X(z) analytic in the complex pkne cut from 0 to 1 
and whose boundary values satisfy 

x+(P) _ fnr) 
X-(/4 w/JCL) ’ CL E [O, 11. (58) 

The solution to Eq. (58) is 

X(z) = + 1 l -2 exp - [I arg Q+(P) T 0 +z 1 (1 - x)-l. (59) 
Here t’he factor ( 1 - x)-l had to be introduced in X(x) because arg Q+(P) ++ ?r 
as P --j’ 1, i.e., the end point 1 is a special type (11). 

In the usual manner, the solution to Eq. (57) is 

Nl(2) = -L s’ 
2&X(z) 0 Ylbma4 + S(P>l 5 , (60) 

where 

71(P) 5 i4x+(/4l~+(P~l. (61) 

Inspection of Eq. (60) indicates that Nl( x) has the proper analytic properties in 
the finite plane. However, since X(x) - l/x as z approaches infinity, Nl(x) 
does not have the correct behavior at infinity, for arbitrary *‘I’( IL). This is cor- 
rected by introducing the discrete mode.6 We thus write 

K’(P) = *ihL) - A+, (62) 

6 It is indeed fortunate that the Y(z) function did not require this modification since we 
would have had to introduce the discrete solution in the p(q) equation. Thus when we needed 
the discrete solution in the (Y(V) equation the coefficient A+ would have already been de- 
termined. 
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where the \k[(~) are the components of the arbitrary function t’o be expanded; 
and if we require that 

Nl(x) is assured of vanishing as l/z for large x. Therefore the coefficient A+ is 
given by 

A+ = .I-; YI(PL)NI(PL) + g(u)1 & 

j-i YI(P) dti . 
(64) 

The expansion coefficient, (Y(T), can be determined from Nl(z) as given by Eq. (CO). 
Thus all of the expansion coefficients have been found. The theorem is therefore 
proved.7 We could explicitly obtain the coefficients from this completeness prcoof 
since it amount.s t’o a solution of the initial equations. We prefer to use the 
orthogonality relations developed in the next section. 

1’. THE ADJOINT SOLUTIONS AND NORMALIZATION INTEGRALS 

THEOREM IT. The eigensolutions a+ , *I( 77, p) and *2,( q, p) have corresponding 
half-Tange adjoint, solutions, @+‘, @l’(q, p) and @z+(TJ, p), such that 

The arljoirlf solutions are given by Eqs. (66). 
We have foulid bhe adjoint eigenvectors, a+( 7, II), without the necessity of de- 

veloping the adjoint equation; the proof of the orthogonality theorem, therefore, 
is not given in t’he usual manner (4), (5). We will simply present our adjoint 
solutions and then proceed to show that they, in fact, satisfy Eq. (65). This pro- 
cedure has merit, since it will not only prove t’he theorem but will also provide the 
necessary normalization integrals. 

In order that the adjoint solutions that we use do not appear to be apocalypti- 
cal, we briefly state their origin. As already mentioned in the completeness proof 
given in Section IV, the solution to the set of coupled, singular, integral equations 
yields results for t’he expansion coefficients A+, cu(q) and /?( 7). We proceeded 
with the solution t’hat is indicated in the completeness proof, and by performing 
many of the involved multiple integrals there, we were able t’o write the solutionti 
for the expansion coefficients in the form of scalar products. This procedure sug- 
gested the use of the adjoint solutions as a way in which to present the results in 
canonical form. The manipulations were extremely lengthy and we choose not to 
reproduce them here since by verification we will show that our adjoint solutions 
are the correct, ones. As might be expected, the fact that the continuum normal 
modes, @I( T), F 1 and a2( 7, P), are degenerate introduces some complication. How- 

i It is obvious that there is an analogous completeness theorem for the other half-range, 

f-1, 01. 
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ever, the adjoint solutions that we use were constructed so that all expansion co- 
efficients could be obtained by simply taking scalar products. 

The adjoint solutions are 

a+ t= 
[ 

-h(P) 

-Y*(ll)b + bl 1 ’ 
(f-354 

%+(?I, r> = 1 [ 
Yl(PL) ;(l - 92)-& + GdNrl - CL) + ; cc + 0) 1 
1 1 , (66b) 

and 

db?, r> = 
i 

2 -h(P) 1 
y*(p) [ ; (1 - P2) Gp + xzh)6(rl - d - 2 cc + I.4 i 11 

, (66c) 

where 

and 

a b X(l)Y( -1) + X( -l)Y(l), (67) 

b 2 X(l)Y( -1) - X( -l)Y(l), (6s) 

X(l)Y(-1) + X(-l)Y(l) 
c = X(l)Y(-1) - X(-l)Y(l) * (69) 

Let us show firstly that @,t-’ is orthogonal to the two continuum modes that, are 
given by Eqs. (29). Introducing the notation 

(i lj) ’ S,’ G’it(i, p)*j(qt p> &; i, j = +, 1, 2, (70) 

we have 

f+ 11) = I’ YI(IL) [2 (1 - ~1’) sp + X,(~I>~(V - ,,I dcL (71) 

or 

(+ 11) = 2 ~‘w(cl)(l - 2) -c.- & + X~(v)r,(s>. (72) 
v-/J 

The integral term in Eq. (72) can be evaluated from the sum of the boundary 
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values of S(Z) . (See Identity I in Appendix B.) Thus 

t+ I 1) = -?1 [ x+h) + x(q) +x l(?l)Y1(9). 2 1 (i3) 

This expression is easily shown to vanish by using the properties of the SC Z’I 
nnd A(z) functions given by Eqs. (58) and (52) and by noting the definition of 
rl(p) [Eq. ( Rl)]. In analogous fashion, for the second of the continuum modes we 
write 

(+ I 2) = 6’ ~++Mq, P) dcl. i74) 

Expanding this, me obtain 

Dividing the factor ( 1 - q2) in the integral term in Eq. (75) by (9 - II), we find 

(+ j 2) = - !J s’ YI(P)(V + CL) dti - Mvhdv)ta + hl - 0 
+ ‘G 1’ YZ(P) [v + P - (1 - 18 q-p] & i 76 ) d 0 

+ “f 6’Yz(P) [ 1 + VP - ~(1 - r”> +M 1 &. 
The principal-value integral in the above is evaluated in terms of the boundary 
values of Y(x) with t.he aid of Identity V given in Appendix B. Thus in terms of 
the moments of y i(p), 

s 

1 
yij A Y&L)P~ &, iTii 

0 

we find 

In Appendix B the moments of ri( p) have been evaluated in terms of S(Z) and 
I’(x). Using these results, we find that (+ 1 2) is identically zero. The normaliza- 
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tion integral for the discrete mode, 

(+ 1 +> = 6’$++@+ 44 (79) 

is 

(+ I +> = 710 - WzO - bd. (80) 

This in turn can be expressed in terms of .X(x) and Y(x). We find 

(+ I+> L iv+ = -y@. (81) 

To show that the two continuum adjoint solutions are correct is a very lengthy 
task and will not be given here. The evaluation of the various double principal- 
value integrals that are encountered must be done with extreme care; the Poin- 
car&Bertrand formula given by KuXer, McCormick, and Summerfield (12) is 
a very useful relation in these calculations. The normalization integrals for the two 
continuum modes take a canonical form somewhat similar to those found in other 
transport problems (J), (6). I n order to be complete, we state all of our results 
concerning the theorem below : 

(i 1 j) = 0; i#j=+,l or 2. (S2> 

(+ ( +> = -?,$[X(l)Y(-1) - X(-l)Y(l)], (S3a) 

0 11) = &(V>Kl - A (S3b) 

and 

(2 1% = fi2(11)N17 - ?I’). (33c) 

Here 

Ml?> = nh>Q+(dQ-(d (SJa) 
and 

wll> = Y2blM%)~3?). (SJb) 

Writing out X1(q) and L!&(T) explicitly, we find 

A%(r) = r4dlMd + %~“~“U - 112,21. (S5) 

Armed with the adjoint solutions and normalization integrals presented in this 
section and the completeness theorem of Section IV, we note t’hat the solution of 
actual problems becomes a straightforward task. This is demonstrated in the 
next section where the classical Milne problem is solved rigorously. 

VI. THE MILNE PROBLEM 

Having developed the necessary formalism in the previous sections of this paper, 
we now illustrate the solution of a typical problem. We choose as our example the 
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classical Milne problem, but we wish to emphasize that Theorems I and II are 
quite general and that other half-space problems can be solved in a very similar 
manner. 

We seek the angular energy density \I~~(z, ~1) in a source-free half-space. In 
addition, we insist that \IpM(z, P) be of exponential order at infinity and that t’here 
be no incident radiation on the free surface. Thus t#he boundary conditions are 
st’ated as (10) : 

(a) M,( 0, P) = 0, P > 0 (zero re-entrant radiation) 
(b) Lim,,, e-I~?~(x, P) = 0. 

The solution can be constructed from the normal modes of t’he transfer equ:l- 
tion. Condition (b) requires that no Yll( 5, &cl) be included for 17 < [ - 1, 01. We 
write, therefore, 

The expression given above obviously satisfies Eq. ( 5). It also obeys the rcst,ric- 
tion imposed by the second boundary condition. The only remaining question is 
whether we can find the expansion coefficients in order that. the first. boundary 
condition be exactly incorporated. Setting x: = 0 in Eq. (%), we must s:Ltisfy 

0 = A+*+ + A-W-CO, r> + I’ a(~)a(~, P> 6 

Substituting the expression for ~‘(0, w) given by Eq. (24) and trtlnsposing it to 
the left-hand side, we obtain 

This is a half-range expansion of 

WP) = CL [I ; d- 
in terms of the half-range basis set. Theorem I therefore applies. The (*orl~tan~ 
A- we leave arbitrary since it depends on the normalization. Using the orthogo- 
nality relations established by Theorem II, we obtain the expansion coefficients 
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immediately : 

(YOa) 

(9Ob) 

and 

s 1 

P(o) 0 
%2+h, CL) ; cc 4.l -= [I 

A- Sz(?) * 
(9Oc> 

The normalization terms IV+, A’,( 7)) and Sz( s) are given in Eqs. (S3). Of course, 
A+ , CY( q), and p( r]) are not explicit until the integrals in Eqs. (90) are performed. 
These integrations are completely straightforward, although lengthy. We find 

g- = c +;m - Y(-1)l +;&$p, (gla> 

as = 5?&s~(9)[x(l)Y(-l) - X(-l)Y(l)lf-‘, (91b) 

and 

P(v)/A- = drl - c),‘~%rl). (9lc) 

Since the stellar atmosphere being considered is a conservative one, the net 
current through the medium is constant. We therefore normalize the solution by 
taking 

where F is a constant. 
Multiplying Eq. (86) by 

‘i 
p 1 [I =p6’+ 

and integrating over p from -1 to 1, we find 

A- = %F. 

(93) 

(94) 

[The full-range scalar product of Eq. (86) by p%+ is easily evaluated by noting 
that the full-range adjoint solutions, at, are simply @. This is trivially proved 
from Eq. (71.1 
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The extrapolated endpoint, ro , is defined as the distance from the boundary at, 
which the asymptotic energy densities extrapolate to zero. It is 

z,, = A+,‘A- (95) 

and is already given by Eq. (91a). 
The complete solution to the Milne problem t’akes the final form 

where 
q k -m[x(l)I’( -1) - -kT( -1)Y(1)1-l 

and c is given by Eq. (69). 

( 97 ! 

The law of darkening can be reduced to a rather simple form by extending the 
method of Shure and Natelson (13’) to evaluate the integrals over 17. If we there- 
fore consider W&O, cl), p < 0, we have 

Here the cominuum part of the expansion becomes particularly simple because 
restricting I* to be negative makes the eigensolutions (9 > 0) no longer sing&r. 
We find 

Here t,he law of darkening is expressed in terms of the t’wo functions SC -,A I 
and J-( -P ). 

For this special case, 2 = 0 and p 5 0, our result’ agrees with others ( 2 1. This 
comparison is facilitated by noting the relat8ions between our S and l- fwvtitrrr:: 
and the HI and H, derived in Ref. (IO) : 

X(-I*) = &/HI(P) ( lOOa) 

8 These results are obtained by comparing Identities Z and 1’ of Appendix H with t,he 
integral equations for HI and H, (IO). 
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and 

Y(-/JL) = dww). (100b) 

It is clear how other half-space problems could be solved. For example, con- 
sider the albedo problem where one has a source-free half-space with incident 
distribution 

The solution must not diverge at infinity, so we set 

wk",(z,~) = A+*+ + J,'4v)eed7%(scr) dq +~lB(q)eMz'Niq,r) drl. (102) 

Since 

wa(O, P) = Tim(P), P 2 0, (103) 

the expansion coefficients are found as scalar products of adjoint functions with 
delta functions. We omit any details of this or other half-space problems in the 
present paper. 

APPENDIX A. THE NUMBER OF DISCRETE ROOTS 

The discrete eigenvalues r];& are defined as the zeros of the dispersion function 

Here we verify that there are only two such zeros. (We already know that these 
zeros are 70 = f 00 .) Since Q(x) is analytic in the complex plane cut from - 1 
to 1 on the real axis and vanishes at infinity, the number of zeros is (27r)-’ times 
the change in the argument of Q(Z) as a contour encircling the cut is traversed 
(14). Because Q+(P) = (Q-(P))* and Q(z) = 8( -z), the change in the argu- 
ment about t’he entire contour is four times the change in going from 0 + ie 
to 1 + ie. Call this change A+( 0, 1). 

From Eq. ( 51) , we have 

a+(p) = -1 + 3(1 - $)[l - D(P) + (7rV2)Pl. (44 

From (A2) it is easily verified that 

A+(O, 1) = 7. (A3) 

The total change as the cut is encircled is therefore 47r, and thus we conclude 
that there are only two zeros of Q(z) in the cut plane. 
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APPENDIX B. IDENTITIES 

IDENTITY I 

X(z) = ; 6’ %(P> (1 - /.a +-. 
2 

The proof follows by writing Cauchy’s theorem for X(x), i.e., 

where the contour can be shrunk to include only the branch cut’ (the integrand 
vanishes at infinity). Thus we write 

X(z) = & I’ W(p) - x-(p)] clcc . 
0 M-x 

Using Eqs. ( 53), (5S), and (61)) we obtain 

x+(p) - x-(p) = 37+l(P)(l - $). 

Entering Eq. (B3) with this result, we verify Identity I. 

( Bs-1) 

IDENTITY II 

X(x)X( -2) = ,5-@(z). 

For the proof, we note that the function 

i 135) 

jyz) 2 Z-ax) xc- 2) 
Xl(X) tB6) 

is an entire fun&ion because it is analytic in the cut plane and its discontinuity 
across the cut vanishes. It is thus a constant. 

Letting z approach infinity, we find 

LimF(2) = 1, (H7) 
;-cc 

because in the same limit 

X(2)X( -2) ,- -l/x’ ( B8) 
and 

Q(x) - -22/5x2. ( HI;) 

This proves Identity II. 

IDENTITY III 
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This is a nonlinear integral equation for 1X(z) which can be used by the ambitious 
to evaluate X(z) numerically. It is obtained by combining Identities I and II 
and the trivial, 

IDENTITY IV 

71(p) = 5 p 
2 X(--P> 

obtained by taking the boundary values of Eq. (B5). 
The following analogous set of identities for the Y(z) function is stated without 

proof because its development follows exactly the same lines as those for X(z) : 

IDENTITY V 

Y(x) = 1 + ; I’ -&)(l - $) A!?-. 
p-2 

IDEXTITY VI 

Y(z)Y( -2) = 36 n(x). (Bl3) 

IDENTITY VII 

IDENTITY VIII 

y*(p) = 1 -!c--. 
2 Y(-PcL) 

(Bl4) 

(B15) 

In addition to the foregoing set of identities, the following expressions for 
the various moments of the yi(~u> functions are useful. They were obtained 
by considering special cases of Identities I and V. Here 

/ 

1 

Tij = Yi(dPj 4.4 
0 

and we find 

y; = -a--l) - X(1) 
3 ’ 

y; = -X(l) + X(-l) 
3 ’ 

$ = X(-l) - X(1) - 2 
3 

(B17) 

7” = ‘(--l) - ‘(l), and & = 2 - Y(l) - y(-1) 
3 3 
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