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ON SOLUTIONS OF A TRANSCENDENTAL EQUATION
BASIC TO THE THEORY OF VIBRATING PLATES*

C. E. SIEWERT’ AND J. S. PHELPS, IIIf

Abstract. The theo:y of complex variables is used to develop exact closed-form solutions of the

transcendental equation a tan : + tanh : 0.

1. Introduction. As discussed by Leissa [1] and Marguerre [2], the study of the
vibration of elastic plates invariably leads to eigenfunction expansions. In many such
cases the required eigenvalues are established as the solutions of transcendental
equations. One such problem is that of the dually clamped oscillating plate. Here we
seek a solution to

(1) (4-k4)W(x, y)=0,

with W(a, y)= W(0, y)= 0, W(x, 0)=f(x), and W(x,/3)= g(x). The solution for
W(x, y) can be established by separation of variables, with the x component expres-
sed as

(2a) X(x)= sinh ()cos [y(-)] +sin ()cosh [y(-)],
with

(2b)

or

(3a)

with

tanh (y/2)+ tan (3,/2)= 0,

X(X)= sinh ()sin [3"(-)]-sin ()sinh [3"(-)],

(3b) tanh (3"/2)-tan (3,/2)= 0.

We wish here to investigate the transcendental equation

(4) a tan + tanh 0,

which clearly contains the foregoing as special cases.

2. General analysis: Igl -<- ’12. In order to find the real and imaginary solutions of

(5) a tan + tanh 0, a (-, c),

we first wish to introduce and study the sectionally analytic function

(6) F(z)= Log (z + 1)- Log (z 1)-ila-- [log (z + ilal)-log (z -ilal)].
a

Here we use the standard notation Log (’) to represent the principal branch of the log
function, i.e.,

(7) Log (’)= In Ir] + arg (st), arg (’) (-Tr, 7r).
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For the functions log (z +/- ilal) appearing in (6) we use branches of the log function
such that

(8) log (st) In [r{ + arg (’), arg (’) ---,
With these choices of the log functions it is clear that F(z) is analytic in the complex z
plane cut from -1 to 1 along the real axis and from -ila to ilal along the imaginary
axis. It is a simple matter to show that

(9) F(z)=(l+a)+3(1-a3)+O(-), as ]zlc.

We now wish to use the argument principle [3] to establish the number of zeros of
F(z) inside the co.ntours Ct and C2, shown in Fig. 1, as R and e 0. Since in general
F(z) vanishes as 1/z as Izl c, we find that the argument of F(z)decreases by 27r as
the contour C1 is traversed (in the positive sense). For the special case a =-1, F(z)
vanishes as 1/z 3 as Izl c, and thus for this case the argument of F(z) decreases by 67r
as C1 is traversed.

C

ilal
R

C2 2:

FIG. 1. The contours Ca and C2.

To compute the change in the argument of F(z) as the contour C2 is traversed, we
first require the limiting values F+/-(x) of F(z) as z approaches the cut [-1, 1] from
above (+) and below (-) and the limiting values F+(iy) as z approaches the cut
[-ilal, ilal] from the left (+) and the right (-). It is a relatively straightforward matter
to show that

(10) F+(x) R(x)q: iTr, x [-1, 1],
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where

(11) R(x)= 2tanh-1 (x)+la-’-Ja [sgn (x)’n’-2 Tan-1 (--) ].
We use here the convention that Tan-l(x) denotes the principal branch of the arctan
function. In a similar manner, we can compute the limiting values of F(z) as z
approaches the cut along the imaginary axis. We find

(12)

where

()

F:(iy) q:la--r+ iIo(y), y [-la I, lall,

If we use A2 to denote the change in the argument of F(z) as the contour C2 is
traversed, in limit as e 0, we can use (10) and (12) to deduce that z2 27r, for a >0,
and that A2--67r for a <0. (The special case a 0 clearly is not interesting.) We thus
conclude that for a > 0, F(z) has only a zero at infinity; on the other hand, for a < 0
we note that, in general, F(z) has two zeros in the finite plane plus one zero at infinity.
For the special case of a 1, F(z) clearly has only a triple zero at infinity.

In order to relate the zeros of F(z) to the desired solutions of (5), let us first
deduce the special forms of F(z) for z=x6(-c,-1)(1,) and for z=
iy, y (-c, -lal)t3 (lal, ). Evaluating F(z) on that part of the real axis that excludes
the cut, we find

(14) F(x)= 2 tanh-l () +[! [sgn (x)Tr-2 Tan-l (a) ],
On that part of the imaginary at.is that excludes the cut we find

(15)

F(/y) i[Y2J a.] tanh-1 (L)+ 2 Tan-1 (y)-sgn (y)Tr], Y 6(-,-lal) (lal, ).

If we now consider a (-, 1), we can deduce from (14) that F(z) has (in addition to
a zero at infinity) two real zeros + x0, x0 (1, c). It follows therefore that +/- ?0, where

(16) o=iTan-l(la]], a (-c, -1),
\ Xo/

are two of the desired solutions of (5) for this case. Considering now a (- 1, 0), we
conclude that F(z) has (in addition to a zero at infinity) two imaginary zeros
+/-iy0, yo ([a[, ). Thus we observe from (15)that +/-sCo, where

(17) o tanh-’ [i,-}, a (-1, 0),
\ Yo/

are two of the desired solutions for the considered values of the parameter a. To
summarize our conclusions thus far we note that for a >0, F(z) has only a zero at
infinity which corresponds to the trivial solution (o 0) of (5). For a (-, 1), F(z
has two additional real zeros +/-Xo which correspond to the imaginary solutions +/-sCo,
where o is given by (16). For a (-1, 0), F(z) has, in addition to a zero at infinity, two
imaginary zeros +iyo which correspond to the real solutions +-o, where :o is given
by (17).
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We note from (5)that

(18) o(a) isCo (), a (-oo, -1),

and thus we need here only o(a), a(-1, 0), in order to establish the real and
imaginary solutions of (5) such that [o[--< 77/2.

If we now consider only a < 0 and let +Zo denote the finite zeros of F(z), then we
note that the function

(19) T(z) a F(z)
2 2

Z --Zo

is analytic in the complex plane cut along L [-I, l]Ll [-ila I, ilal]. In addition, T(z)
is nonvanishing in the finite plane, and the limiting values of T(z) satisfy the Rie-
mann-Hilbert problem [4]

(20) T+(r) I_F-(’)_I T-(r), r e L.

It thus follows [4] that T(z) can differ from any canonical solution of the Riemann-
Hilbert problem by no more than a constant multiple. Thus we can write

F(z)
(21)

z- zg KX(z),

where X(z) is a canonical solution to the considered Riemann-Hilbert problem and K
is a constant to be established. The desired canonical solution X(z)can be constructed
from the work of Muskhelishvili [4]; some care is required, however, to be sure that
the "endpoint behavior" is correct. We find

1 [/o’ dx 2fold’ dy ](22) X(z)= exp xOo(x) X- z +--Tr Y6o(Y) y2+z2

where

(23a)

and

Oo,x)= tan_ [,(Tr)]x

Here Oo(x) and bo(y) are continuous, with 0o(0)=(ko(0)=-377/4 and 0o(1)=
4o(lal) 0.

We can now substitute (22)into (21) and let Izl-,oo to find to find K= 2(1 +a),
and thus we can solve (21) to obtain the general result

(24) z =z2-
F(z)

a<0.
2(l+a)X(z)’

Equation (24) represents a general solution for the zeros of F(z) and is valid for any
value of z. We can let Izl c in (24) to find the specific result

2 2f lal 2Io’ (1-a3)
(25) Zo Cko(y)y dy--- Oo(x)x dx-3(1 +--), a<0.

77./O 77
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It is clear that (25) can be used in

(26a) so tanh-1

or

a 6(-1, 0),

(26b) sCo =/Tan-’
/

t [al’
[Zo[]’

a (-oo, 1),

to give exact analytical results for the desired solutions (+sCo, 1ol -< (r/2))of (5). In the
next section we develop similar expressions for the solutions such that [so01 _-> (rr/2).

3. General analysis: ]1-> (=/2). Here we wish to generalize the analysis of the previous
section in order to find additional real and imaginary solutions of (5). If we
let

(27) Fk(Z) F(z)+ 2k’n’i, k 1, 2, 3.",

then we conclude that Fk (z) is analytic in the plane cut along L and has limiting values

F: (x) R(x)+ i(2k q= 1)Tr, x6[-1, 1],(28)

and

/I
(29) F: (iy)

a

Here R (x) is given by (11) and

(30) Ik(y)= Io(y)+ Zk’a".

If we use the argument principle again, we find that F (z) has exactly one zero in
the finite plane. Note that if we were to allow k to be negative we could write
F_(z)=-F(-z); thus the zeros corresponding to negative values of k are just the
negative of the zeros corresponding to positive values of k. If now we evaluate F(z)
on the imaginary axis, but not on the cut, we find that

(31) F(iy)= F(iy)+ 2ki, y (-, -lal) (la], ),

always has one simple zero, say Yk. It follows from (31) that + k, where

(32) sc= k--- rr+--a Tan- (l yk ), k=1,2,3...,

are the additional real solutions of (5) that we seek. As in the previous section, we can

generate the imaginary solutions +/- of (5)by

(33) k(a) ik a (--c, o).

We now observe that

F (z)
(34) KkXk (Z),

Z iyk

where K is a constant to be established and Xk(Z) is a canonical solution of the
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Riemann-Hilbert problem defined by

(35) X (7-)=
lF 0")J’’ (-r), 7" L.

We find that Xk(Z)can be written as

(36) Xk(z)=
1 [ 1 I01 dx

z -i--- exp / [z In Mk(X)+ 2iXOk(X)] X2 Z

where

(37) Mk(X)=

(38)

and

(39)

R(x)+ (2k 1)7re

R2(x)+(2k + 1)27r2’

Ok(X)=tan_l[ -2,rrR(x) ]R:(x)+.a.2(4k2_ l)

b(y) tan- [(l/--a)Tr]Ik(y) J"

if dy ]/-
-rr --Ial Y + tz

The angle defined by (38) is continuous for x (0, 1), with 0k(0)= tan-1 (- la l/ a )/ (2k 2).
As y varies from -lal to la], the angle 4k(Y)varies from -Try0, for a <0, and from
0zr, for a>0; we note that 4k(Y)has a discontinuity at y =0.

If we now substitute (36) into (34) and let Iz oo, we find that Kk 2k’rri. Thus
we can solve (34) to obtain the explicit result

Fk(z)
(40) Yk =--iz +2k’rrXk(Z)’ a 6(-oo, oo).

Equation (40) is valid for any z, and thus can be substituted into (32) to give the
remaining real solutions of (5). To obtain a specific form of (40), we can let Izl --> oo to
find

l+a 1 fo(41) Yk a 4- k----+2- In Mk(X) dx- dk(lalx ) dx.
"TI"

4. Conclusions. We have successfully found all of the real and imaginary solu-
tions of (5). The real solution corresponding to k 0 is given by (25) and (26a) for
a (- 1, 0), and the imaginary solutions are given by (25) and (26b) for a e (-oo, 1).
For a >0 there are no real or imaginary solutions corresponding to k =0. For
a (-oo, oo) and k 1, 2, 3 , the real solutions of (5) are given by (32) and (41); the
imaginary solutions are given by (33). Of course, if is a solution, so is -:.

To be sure that our final results are free of errors, we have evaluated (25), (26),
(32) and (41) numerically for various values of a and k; without difficulty solutions
correct to six significant figures were obtained.
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