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SOUND-WAVE PROPAGATION
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SUNTO0. — Facendo uso delle soluzioni di un modello linearizzato dell’equa-
zione di Boltzmann, si risolve il problema della lastra oscillante in un semispazio.

INTRODUCTION.

This work concerning sound-wave propagation is a contribution
to the collaborative work of Siewert and Thomas [1] and Loyalka
and Cheng [2].

In a recent paper [3], hereafter referred to as SB, the linearized
and modeled Boltzmann equation
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was investigated and various elementary solutions were reported.
We now wish to use the established elementary solutions to solve
the problem of sound-wave propagation in a semi-infinite medium.
Here h(z,e, t) represents the perturbation of the distribution func-
tion from the Maxwellian distribution, e, with components ¢, , ¢,
and ¢, and magnitude ¢, is the velocity, ¢ is the time and « is the
space variable.
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For the case of an oscillating plate located at x =0, we seek
a solution of Eq. (1) subject to

(2a) lim h(z,e,t) < ®
and
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where u,, the amplitude of the oscillation, has been taken equal to
1/2 and o is the frequency of oscillation. We note that this boun-
dary-value problem has been discussed by Buckner and Ferziger in
a fundamental paper [4] published in 1966. Since Buckner and
Ferziger did not have available the required half-range analysis [3],
they developed only an approximate solution that was based on
their full-range theory. Further, it seems that Buckner and Ferziger
did not insist on particle conservation at the wall.

Here we wish to use the half-range analysis [3], to solve the
given problem explicitly in terms of the H matrix [3].

BASIC FORMULATION.

Since we are concerned here with temperature-density effects,
we can take « moments » of Eq. (1) to obtain equations dependent
only on = and ¢,. Thus we let

— T —(2 4P
(3a) vi(2, Cp, ) = (7)1 { e v n(x, e, t)de,de,

—00 —O00

and

T T 2 2 5
(3b) ya(z,c,,0) = (n)‘mf je_(cy"'cz) h(z,e, t)(cy + cs— 1) de, de,

—00 —00

so that the density perturbation

(4) AN (2, t) = n-32 f h(z, e, t) e-"dd ¢
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and the temperature perturbation

(5) AT (z, t) = 2 n=32 f h(z, e, t) (c‘-’ — —3—>e-°2 d?c
3 2
can be expressed as
1 .
(6) AN(x, t) == 7 / y)l(x, u, t) e« du
and -
2 g o 1 2
() AT (2, 1) =§/ [ (.“‘— 7) wi (@, u, ) + wa(x, u, t)| e=*" du,

where we have used u for c¢,. If we now multiply Eq. (1) by
exp (—-—c; —c?) and integrate from — » to « over ¢, and c., and
then multiply Eq. (1) by (c; + ¢2—1) exp (— cz —c?) and inte-
grate similarly, we find that the resulting two equations can be
expressed as

® (el 1)@t =
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and ¥(x, u, t) is a vector with components vy, (x, g, t) and y2(x, u, t).

The boundary conditions on ¥ (x, u, t) can readily be established
by taking the appropriate moments of Eqgs. (2) and using Egs. (3).
We thus seek a solution of Eq. (8) subject to

where

(9) Q(n) =

’

(10a) lim P(x,ut) < o

@ -— 00
and

(10b) (0,1 t) — V7 (M 1 H_) ! (1) giot
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0
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In order to construct the desired solution, we write
(11) qr(x’ My t) =V Yrl(x’ My t) + Vo B lI’O(x’ u, t) ’

where Wo(x, u, t) and ¥ (x, y, t) both are bounded, for x > 0, solu-
tions of Eq. (8) constrained to satisfy the boundary conditions

(12) Y0, u, t) = ub eint

él, u>0, B=0 and 1.

We find, on substituting Eq. (11) into Eq. (10b), the required ex-
pression for the constant E':

4 U1_1 —I— ]/;

(13) E— 5

where U, and U, are, respectively, the upper elements of

oo

(14) Up — e-iot f W e Wy (0, — i/, t)dy/, f=0 and 1.

0

Of course, once P (w, u, t) is established, such quantities as the
xx component of the perturbed pressure tensor

(15) APm(x, t) = %/2 f h(x’ e, t) ci e-*dse
JT

and the perturbed gas pressure [5]

1

3732

(16) AP, £) — f h(z, e, t) ¢ e~ dde

are readily available. We find

Tw
(17) AP, (@, t) — il 1| [ @, ut) e w2 dp
a | 0] .
and
< 2 |T
(18) AP@t) = 5 | { LA l W (2, 1 t) e du.

In addition, Eqs. (6) and (7) give, respectively, the perturbed den-
sity and temperature distributions in terms of ¥ (x, u, ?).
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SOLUTION.
Since the elementary solutions of Eq. (8) are given in SB, we
can express the two vectors required in Eq. (11) as

k (iw)

(19) Py(x, u, t) = et % E Ap(va) P(va, u;iw) e~tothalr, 4

a=1

+ [ B(v, u; iw) Ap(v) e+l dy i , f=0 and 1,
0

where
20 80, uii0) = 05 Po(s2—) Q) @+ yruD) +

+o(r—p e’ @ TG) Alrv;iw),
and
(21) &(va, u; i) = 0 m(,—a_l_ﬂ ) Q) (I + 77 D) M (v),
with

1 2 iw

(22) 0= Gorn M 7 =71

Here the discrete eigenvalues », are the « positive» zeros of
A(z; iw) = det A(z; iw), where

R ” du
(23) Aiio) =T+z [ ¥ () 2,
with the characteristic matrix given by
(24) ¥ (1) = 0e " Q (1) Q) (I+yu2 D).

In addition, M (v,) is a null vector of A (»,;iw),

du
—

(25) z<v;1:w>=1+vpf ¥ ()

and

(26) D=‘8(1)‘



262 C. BE. SIEWERT

We use k(iw) to denote the number of + pairs of discrete eigen-
values, and we use the convention that », (rather than — »,) is such
that ¥, (x, 4, t) and ¥.(z, y, t), as given by Eq. (19), remain bounded
as x approaches infinity. In a previous paper [6] we reported ex-
plicit expressions for the discrete eigenvalues and, as did Buckner
and Ferziger [4], concluded that k(iw) could be 0, 1, or 2; i.e.,
k(lw) =2 for 0 < w < 0.646453..., k(iw)=1 for 0.646453...<
<w<214517..., and k(iw) =0 for w > 2.14517... .

The expansion coefficients appearing in Eq. (19) can be deter-
mined by constraining the solutions to meet the boundary conditions
given by Eq. (12). Thus we must solve

k (tw)

(27) w ol =2 4000 @ 0 usio) +
a=1

+[ & (v, u;iw) As () dv, u>0.
0

In SB a half-range completeness proof was given for the case
k(iw) = 0, which ensures that Eq. (27) has a solution for k¥ (iw) = 0.
In addition, Siewert and Kriese [7] have deduced the half-range
adjoint functions so that Eq. (27) can formally be solved for gene-
ral index % (iw) in terms of the H matrix [3]. We find that we can
write the continuum coefficients as

@) A6 = () () L) A HTG) -

AV
- [H )+ DH (—21 Y|
and
@ AG) = (E) ) L e 0 HE) -
[+ 2) I—22; K] (I — HY) (1’ 1
where
(30) L) =10r;t0)P-1(») A(v; iw) + 722 € (v),

(31) H, — f H' (W ¥ Wdu, @ =x@wPWa(u,
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1 0
21 —2
21

(82) w(z) = and yU2z2, = 1.

In addition, the K matrix is given by
(33) K = [H(z1) + DH(—2)]'D H(—=zy),

and the H matrix is a generalization of Chandrasekhar’s H fune-
tion [8].

We can also use the orthogonality relations discussed by Siewert
and Kriese [7] to find the discrete coefficients Aq(»,) and A.(»,).
We find, for a =1,2,..., k(iw),

221 1 VYa _ .
(34) Ag(ve) = ( 9 }( PRI ) ¥ o) MI(va) e(—ra) H=T(va)
- [H(z) + DH(—2)! 1 !
and
21 1 Va _
@) ) = () e MG a—n) BT -
o+ T2 KIE—HD | ]|,

where the normalization integral N(»,) is given by

(36) N = e M (va) 7t (Va) 7 (—va) A’ (va) M (7a) -

Since Egs. (28), (29), (34) and (35) explicitly express the de-
sired expansion coefficients in terms of the H matrix, the function
¥Y(x, u, ) is readily available and can be used, for example, in
Egs. (6), (7), (17) and (18) to give, respectively, the perturbed
density, temperature, xx component of pressure and the pressure.
On substituting Eq. (11) into Eqgs. (6), (7), (17) and (18) and car-
rying out the indicated integration, we find we can write

k(tw)
—(iw—1) x/va

Z avomone

a=1

(37) AN(z, f) — —— giot
V&

— (i 1) zf»

+fA(v)e dy |,
0
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k (iw)

? . 1|7 —(iw+l)x/va
(38) AT (x, t) =Vﬁ giot Ol [ > A M) e
a=1
2 —(iw +1)z/v
- + j AQ) e dv} ,
0
1 20T [ (w12
io) zw 2 —(tw x‘)’a
39) APuu(a, 1) = et (2] T [k (0 MG
a=1
o — (il + 1) afv
+[ 2 Av) e dy|,
0
and
1 1 |7 g — (w41 2/
(40) AP(x, 1) = —— et \vs_m‘ [2 A(va) M (va) €
a=1
F — (o +1) x|y
+ f A® e dv].
0
Here

(41) A(») =A.;(») + E Ay(») and A(vs) = A1(vs) + E Ao(va) .

Although the constant E can be computed from Egs. (13) and
(14), we prefer to use the R matrix of Siewert and Kriese [7] to
obtain

o|T 0
ERN 1 W, 1}

(42) E = YK 0 )

W]
where
(43) W, = [H7(z2)) — H7(—2)] [H(z1) + DH(—21)]
and
(44) W, = [A—H)—H"T(z1) +

+ {H7(2) — HT(—2)}K] T— H]).
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ABSTRACT. — The elementary solutions of a linearized and modeled Boltz-
mann equation are used to solve the oscillating-plate problem for a semi-infi-
nite half space.
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