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ABSTRACT 

Explicit solutions of the equation mentioned in the title are developed. 

1. INTRODUCTION 

In a recent paper [1], the zeros of  

Fk(z)=Log (z+l)-Log(z-1)- ilal [log(z+ilal)-log(z-ilal)] 
a 

+ 2k~i (1) 

were used, for k = 0, 1, 2 .... , to deduce explicit 
solutions of  a transcendental equation, 

a tan ~ + tanh ~ = 0, a E (-oo, oo), (2) 

basic to the study of  vibrating plates [2,3]. In this 
note, we wish to show how these same zeros of  Fk(z ) 
can, for different values of  k, yield solutions of  t}/e 
more general transcendental equation 

b(tan ~ tanh ~ -a) + a tan ~ + tanh $ = 0 (3a) 

o r  

a tan ($ - kzr) + tanh ~ = 0, (3b) 

where 

b = tan kzr, (4) 

It is clear that equation (2) is a special case of  equations 
(3) corresponding to integer values o f  k. On the 

1 3, _+ 5,..., equations (3) other hand, for k = +- -~-, +- 

yield 

tan ~ - a coth ~ = 0. (5) 
In general, we will use all of  the zeros of  (Fk(z) ), for 
which k yields a given value of  b, to develop solutions 
of equations (3). Note that we need only consider 
b > 0 since ~(-b,a) = -~(b,a). 

2. ANALYSIS 

We note that the log functions appearing in equation 
(1) are such that 

Log (~)=~nl~'l + i arg (~'), arg(~') ~ ('¢r,rt), (6a) 

and 

log(~')=~nl~'l + i  arg (('), arg(~) ~ (-2--1 lr' 31r2 ). (6b) 

It thus follows that, as previously discussed [1], Fk(Z ) 

is analytic in the complex plane cut from -1 to i along 
the real axis and from -ital to ilal along the imaginary 
axis. Also 

Fk(Z)-*2krd +2(l+a)z + 0 ( ~ ) ,  as Izl-* =. (7i 
Z 

If, in equation (1), we consider k to be a general 
complex number, but k ~ 0, then we can use the 
argument principle to deduce, for a > 0, that Fk(Z ) has 
one zero for all non-zero k contained in the region 
denoted as R 1 in £gure 1 and no zeros for k ~ R 1. For 

a < 0, Fk(Z ) has three zeros for all non-zero k ~ R 3, 

one zero for k ~ R1, as shown in figure 2, and no zeros 

for other non-zero values of  k. Since F k(-Z ) = -Fk(Z ) 

and -F_(-5)= Fk(z ), it is clear that to establish the 
k 

zeros of  Fk(Z ), for all k, we need consider only the 

first quadrant of  the k plane. However, since we wish 
to utilize the explicit results developed in our previous 
paper [1], we consider here that k ~ (-% 0) u (0, ==). 
We note t h a t  

Fk(iY ) = i [- 21ala tanh-1 ( ~ )  + 2taffl(Y)+(2k-sgn(y))lr]' 

y ~ (-=, -lal) u (lal, =), (8) 

and thus for {a,k)~al ,  where a 1 ~ k ~ (-% 0) u (0,=) 

1 1 = for a <  0, Fk(Z) f o r a >  O a n d a l ~ k c ( - = , - ~ ) u ( ~ :  ) 

has one imaginary zero, i sgn(k)sgn(a)lYlkll, where 

lYlkll > lal for k finite. It therefore follows that 

~k = ( k l  lakl)~ r + lakl tan-l(tYkl), {a,k)~ a l ,  (9) 
2 a k "  ak 

establishes real solutions of  equations (3) for all those 
values of  k such that b = tan k~r. We note that explicit 
expressions for Yk are given as equations (36) and (37) 

in our earlier paper [1]. 
In order to establish a convenient labeling of  our 
solutions here, we let k~ = k 0 + Q, e = 0, +-1, +-2, ..., 
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where ~rk 0 = tan ' lb ,  k0¢0,  and use ~ to denote the 

solution computed  from k = k~. Thus 

~ = sgn [a(k0+Q)] [(I-~k 0 + ~1-~)¢r + tan-llYlk0+~ iI], 

{a, k 0 +~}e a 1. (10) 

We now wish to consider {a,k0} ~ a 3 ; i.e., a < 0 and 

k 0 ~ (0 ,1 ) .  The case k = 0 has already been discussed 

[1] and special attention will be given to the case 

a < 0 and k 0 = i since, as can be seen from figure 2, 
2 

Fk0(Z ) vanishes o n the cut. Since for {a, k 0 }e a3, 

Fk0(Z ) has three zeros (one of which is always 

imaginary) in the finite cut plane, we must modify the 
results given in our earlier paper [1] to obtain 

Fk0(Z)= (z-z0,1) (z-z0,2) (z-iYk0) 27ri k0Xk0(Z), 

{a'k0} ~ ~3' (11) 
where 

1 
(z) = ( z2"1 exp {2~1 J0 [zQnMk0 (x7 

.1  
Xk 0 

)(z h) 
dy. ). 

dx +1_ flal ~ko(Y) y+lz ÷ 
2iXOko(X)] x 2 z 2  ¢r -lal 

(12) 

We note that  Mk0(X ) and ~bk0(Y ) are d~fmed by equa- 
tions (33) and (35) of  [1]; however here 

0k0(X) = tan-1 [ -21rR(x) ], (13) 
R2(x) + ~'2(4k02-1) 

with 

lal [sgn(xflt- 2 tan-l(l-~1 )1,(i4) R(x) = 2 tanh-l(x) + ~ -  

is defined to vary continuously from tan -1 ( 1  7 at 

" ~ ' O  
x = 0 + to 2rt at x = 1. Also we have written the three 
zeros of  Fk0(Z), for a < 0, as iYk0 ' z0,1 and z0, 2, 

Since equation (11) is valid for all z, that equation 
can be evaluated at three different values of z, and 
subsequently the resulting three equations can be 
solved simultaneously to yield the three zeros iYk0, 

z0,1 and z0, 2. On the other hand, we can investigate 

equation (11) as Izl ~ - t o  find that the three zeros 
iYk0, z0,1 and z0, 2 are the solut iom of  

z 3 + pz 2 + qz + r = 0, (15) 

wheA~e 

ip = l+a  + a + L1, (16a) 
k07r 

. 1 2 a(l+a) _ 1 - [a +~l+a) ] L - + L ^ - - - L  , (16b) 
q =  k01r k01r x z 2 1 

and 

ir = (1"a3)-[a+ I + L ~ ] [ 1 - L ^ + I L  21 
3k0r r k0cr z 2 1 

T3 
a(l+a) L 1 

+ L3-Ll+LIL2--~-! " 6  (16c) 
k0~r 

Here 

_ 1 1 1 flal 
L1- -~-~  ~ QnMk0(x)dx--Tr "-Ial ~bk0(Y)dY' (17a) 

L 2 _  1 f lx0 (x)dx _1 _flal - -~ b k 0 ¢c --lal Yq~ko (y)dy'  (17b) 

and 

1 1 2 1 lal 
L 3 = ~ -  ~ x QnMk0(x)dx +-~ f-lal Y2~bk0(Y)dY" (17c7 

We note that for all a < 0 the additional real solution 
of equations (3) is 

~0,1 = (k0 + 2 )or" tan-llYk0 I' k0 ~ (0, 1/2). (18) 

For a < -1, z0,1 and z0, 2 are complex, with z0,1  

= -z0,2; these zeros are not required here. For 

a ~ (-1,07, z0,1 and z0, 2 can both be imaginary, or 

both comphx ;  when they are imaginary, they are 
of  the form z0,1 = ilz0,11 and z0, 2 = ilz0,21 and they 

can be used in 

~0,~ = (ko -1)¢r + tan-llz0,a-1 h a = 2 and 3, 

k 0 e (0, 1/2), (197 

to yield two additional real solutions of  equations (37. 

For the case k 0 = __1 and a < 0, we note  that  special 
2 + 

attention is required because F1/2(x ) and F~i/2(x ) 

both have zeros at -+ x 0 ~ (-1,1). We thus f'md it 

convenient here to investigate the funct ion 

A(z) = Fl /2(z)F_l /2(z  ). (20) 

If we consider the Riemann-Hilbert problem defined 
by 

X+(T) = G ( ¢ ) X - ( T ) ,  r E  [ -1 ,1]  u [- i lal ,  i laJ],  (21)  

where 

G(T) = A+(r) , (22) 
A-CT) 

we Fred we can express A(z) in terms of  a canonical 
solution of  equation (21) : 
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A ( z )  

z2 (z2+a  2) 

d x  

2 2 
X -Z 

2 lal 2d+_~z 2 + -  f Y~I/2(Y) ]" '(23) 
7r -lal y 

Here -+iYl/2 are the two imaginary zeros of  A(z), 

tan-1 ( -2zr ), °I/2(x) = 

with 

• ( 2 4 )  

R(x) = 2 tanh-l(x) - sgn(x)zr + 2 tan -1 (1~1), 

and 

$1/2(y ) = tan-1 -,r 
( I i /2(y)) '  

with 

_ 1  to yield the additional required solutions for k 0 - 
and a < 0. 
It is clear that a solution by iteration of  equations (3) 
can be established; however, tO deduce by iteration all 
of  the solutions of interest here would require first ap- 
proximations of  sufficient accuracy so that the iteration 
schemes would, in fact, converge to each of  the requir- 
ed results. To our knowledge this has not been done. 
For selected data cases, we have used a simple quadra- 
ture scheme to evaluate our "exact" solutions to get 
results for first approximations required in an iterative 
solution of  equations (3). 
This work was supported in part by N.S.F. grant 
ENG-7709405. 
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I1/2(y ) = 2 tanhd(Yl)+2 tan-l(y)+[1-sgn(y)]lr. (27) 

We note that the angle 01/2(x) appearing in equation 

(23) is continuous for x ~ [0,1] with 01/2(0 ) 

= -lr + tan-l(2); the angle ~1/2(Y) varies from -lr to 0, 

as y varies from -lal to lal, and is discontinuous at 
y=0.  
If  we now observe equation (23) as lzl-~ "5 we can 

2 2 
deduce that x 0 and Yl/2 are the two zeros of  the 

polynomial 

~.2 +: b~ + c = 0 (28) 

where 

b = a 2 + 4(1+a)2 + M 1 (29) 
lr 2 

and 

c = 4 ( l + a ) 2 a 2  + 8 (l_a3)(l+a) 

rr 2 3rt 2 

+[4(1+a) 2 +a2]M1 +I 2 +M2. (30) 
~r2 2 M1 

Here 

M1 = 2 C x01/2(x)dx _2 / ial y@l/2(y)dy (31) 
lr ¢r -lal 

and 

1 + 2  flal 
M2 = 2 f0  x301/2(x)dx y3~l /2(y)dy.  (32) 

lr ~ -lal 

We can solve equation (28) to obtain x 0 and Yl/2; the 

latter result can be used in 

± G0 = ~r - tan'llYl/21 (33) 

Fig. 1. The complex 
k plane : a > 0. 

7 J I J A  

Fig. 2. The complex 
k plane : a < 0. 

Journal of  Computational and Applied Mathematics, volume 5, no 2, 1979. 101 


