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A POINT SOURCE IN A FINITE SPHERE
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Abstract—Exact analysis and the Fy, method are used to compute the radiation field due to a point source
of radiation located at the center of a finite sphere.

1. INTRODUCTION
In a recent series of papers'™ the Fyy method basic to radiative transfer and neutron-transport
theory was introduced and used to solve concisely and accurately numerous basic problems. To
date, however, the Fyy method has been used primarily to compute surface quantities such as
the albedo and the transmission factor. Here we wish to apply the method in order to establish
the mean intensity J, as a function of the optical variable, interior to a finite sphere.
We consider the equation of transfer for isotropic scattering in the monochromatic form

LU=p)a _gf‘ 8(r) .
“arl(" B)+ r o I(ru)+I(rp) = 7)., I(rp)du +8_7_r7 1
Here, the isotropically emitting source term
S(r) = 8(r)/ (87 ()
is normalized so that
1 o0
4n f J' AS(r)drdu = 1. Q)
-1J0

We thus seek a solution of Eq. (1) for r € (0,R], R is the radius of the sphere, subject to the
condition of no entering radiation:

I(R,—p)=0, u>0. C))
The solution to this problem was formulated by Erdmann and Siewert’ some years ago and,
recently, the method of elementary solutions® was used to evaluate the solution numerically.”
We thus have available accurate results with which to compare the solution obtained here by
the Fy method.

As noted by Davison,® Eq. (1), along w1th the boundary condition given by Eq. (4), can be
converted to the equivalent integral form

R
p(r) = } f_k FEy(r- f[)[%o(f) + S(r’)] dr, rE[- R, R]. ©)
Here
1
() =2J(r) = L I(ru) du ; ©)

tPermanent address: Instituto de Energia Atémica, Cidade Universitaria, Sio Paulo, Brasil.
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and we have extended the range of r to r €[~ R, R]. We have also defined p(—r) = p(r) and
S(—r) = S(r). The first exponential integral function is denoted by E;(x). Of course, once p(r)
is known, the complete radiation intensity I(r,u) can readily be obtained from Eq. (1).

2. BASIC ANALYSIS
Following the paper of Wu and Siewert,” we find that we can express p(r) as

1
b0 =1 [ ow)dn, )

where ®(r,u) is a solution of the pseudo-slab problem defined by

p2orm+oem=2 [ drpdu  reo, ®
with the conditions
O(-r,~p)=—0(r,p), (9a)
4mp [ D0 ) ~ (1’(0;,#)] =1L, pE€(-LD, 9b)
and
®R - p)=0, u>0. ' )

To solve the pseudo-problem defined by Eqgs. (8) and (9), we first write
1
O(r,u) = A(vo)e(vo,u) e 0+ f AW)e(rp) e ™ dv+ @ (rp), r>0, (10a)
0

and
1
O(r,i) = — A(w)o(— vo,u) €™ —f AW)p(~ vp) e dv+ & (ru), r<0, (10b)
0

where

1
@ (r,n) = B(volo(voit) e "0 — o(— vo,u) €] +f0 Bw)e(v,p)e™ — o(— vu) e™]dv
v an

is a correction term to account for the fact that we are considering a finite sphere. Here, Case’s®
elementary solutions are

o(vo,in) = wrel[2(vy~ p)] (12)
where
_aaovn (! _de _
A =1+532 | =0 (13)
and
‘P(V,;L)=%ZPU(V1M)+[1 ~ v tanh™ P18(v - ). (14)

If we substitute Eqgs. (10) into the jump condition, Eq. (9b), we can use Case’s full-range theory®
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to ind A(wo) = U4mN(vo)] (152)
and
AW = UdmN )], . (15b)
where
N(vo) = %Vo3(y_0;,__1 - ;1'5) (162)
and
N) = (11 - ov tanh™ o+ wzy%ﬂ) (16b)

Considering Eqs. (7) and (10), we see that we can now write

p(r) = pAr) + pc(r),

where

N R SRR L G
””(”=4?[VON(%)" " +fo N d”] (17

and

1
ptn=1[ D) d (18)

Since ®.(r,u) satisfies Eq. (8) subject to

D (—r,—p)=-0(r,p) © (192)

and
®.(—-Ru)=K(u), p>0, (19b)

with
K(p) = A(mo)p(— vo,p) €0 + L Ao~ vp) e dy, (20)

we can use the Fy method to compute this correction term and thus to complete the desired
solution. Since the details of the Fy method are described in Refs. 1-4, we give here only a brief
account of the analysis required for thls application. We approximate the exit distribution by
writing

' N
q)c(_R’_,uf): z_:oaall‘a’ ”‘>09 (21)
where the constants a,,a =0, 1,..., N, are found from the following system of linear algebraic

equations:

N
3 Bl -e a6 | =) @)
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with
2 1 1
A&) = w_g,,[ fo o(— Ea)K () dps — 26 fo PlEsm K (wndp | 23)

For the Fy-approximation, we use only & = 1, in Eq. (22); for the F;-approximation, we use
& =1 and £, =0; for the Fr-approximation, we use & = vy, & =0 and & =1 and, for higher-
order approximations, we use additional values of & spaced equally in the interval [0, 1]. We
note that the known r.h.s. of Eq. (22) can be expressed as

AE) = AH) —e A8 249

with

e l -~Rlv
80 =S a0 Al [ Sk - a2 aso

and

le R

30 = o {0 + Aol [ S B+ a0 S) e

The functions A.(£) and B,(£) appearing in Egs. (22) and (25) are given by

Adg)=1-£log 1+ é) (26a)
A= A+ =1, (26b)
Bo(&)=2-1-¢log (1+-é-), (27a)
and
BO) = Bo (- g =1 @)

Once we have solved the system of linear algebraic equations given by Egs. (22) to obtain
the constants a,, a =0, 1, 2,..., N, we can use Eq. (11) evaluated at r = — R, Egs. (19b) and
(21), and again Case’s full-range theory® to find the expansion coefficients B(»,) and B(»)
required in Eq. (11) to complete the solution. We thus find that our final result can be expressed
as

p(r) = pu(r)— [E(Vu) e ®nsinh (rlvg) + f E(»)e ™" sinh (r/v) dv] (28)
where
drwé
B0 -1 [840- 3 a.a0)] 9

3. NUMERICAL RESULTS
After finding », from Eq. (13), we approximated the-integral in Eq. (17) by a Gaussian
quadrature scheme in order to evaluate p.(r). We also evaluated Eqs. (25) in a similar manner
and solved Egs. (22) for the constants a, required in Eq. (29), and thus we were able for various
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Table 1. Numerical results for @ =0.3 and R =1.

4arp.(r) 47r°p(r)
r  Exact F F; F;s F, Exact

0.0 1 1 1 1 1 1

0.1 096440 0.96418 0.96418 0.96418 0.96418 0.96417
0.2 091965 0.91873 0.91872 0.91872 0.91872 0.91871
0.3 0.87101 0.86888 0.86887 0.86886 0.86886 0.86885
04 082091 0.81697 0.81695 0.81694 0.81693 0.81692
0.5 0.77076 0.76429 0.76426 0.76424 0.76423 0.76421
0.6 0.72147 0.71155 0.71151 0.71147 0.71146 0.71143
0.7 0.67364 0.65900 0.65894 0.65889 0.65888 0.65883
0.8 0.62765 0.60636 0.60628 0.60626 0.60624 0.60620
0.9 058374 0.55282 0.55270 0.55258 0.55256 0.55247
L0 054204 0.49206 0.49192 0.49172 0.49169 0.49154

Table 2. Numerical results for o =09 and R =1

Anr?p(r) 4xr’p(r)
r  Exact F F, Fs Fe Exact

0.0 1 1 1 1 1 1

0.1 11208 1.1147 11147 L1147 1.1147 1.1147
02 12342 12099 12099 1.2099 12099 1.2099
03 13383 1.2832 1.2832 1.2832 12832 12832
04 14326 13336 1.3336 1.3336 1.3336 1.3336
0.5 15169 13603 1.3602 1.3602 1.3602 1.3602
0.6 15914 13621 13620 13620 1.3620 1.3620
0.7 1.6567 1.3374 13373 13373 13372 133712
08 L7129 12830 1.2829 1.2829 1.2828 1.2828
09 17607 L1917 1.1916 11915 11915 1.1914
1.0 18006 1.0263 '1.0260 1.0259 1.0259 1.0258

orders of the Fy approximation to evaluate Eq. (28) and establish p(r). In Tables 1 and 2, we
list our results for the Fy calculation of p(r) along with p.(r) and the “exact” results taken
from Ref. 7.

It is clear from Tables 1 and 2 that the Fy method yields better results for o = 0.9 than for
o =0.3. This result is obtained because the approximation given by Eq. (21) has greater validity
when there is less absorption. We note also that the Fy results in Tables 1 and 2 improve as r is
diminished from r= R. It thus appears that the errors introduced at the boundary, by the
approximation given by Eq. (21), are reduced as the interior of the sphere is approached. In
summary, we consider the Fy results given in Tables 1 and 2 to be remarkably good.
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