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A POINT SOURCE IN A FINITE SPHERE 
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Abstract-Exact analysis and the FN method are used to compute the radiation field due to a point source 
of radiation located at the center of a finite sphere. 

1. INTRODUCTION 

In a recent series of paperP the FN method basic to radiative transfer and neutron-transport 
theory was introduced and used to solve concisely and accurately numerous basic problems. To 
date, however, the FN method has been used primarily to compute surface quantities such as 
the albedo and the transmission factor. Here we wish to apply the method in order to establish 
the mean intensity J, as a function of the optical variable, interior to a finite sphere. 

We consider the equation of transfer for isotropic scattering in the monochromatic form 

(1) 

Here, the isotropically emitting source term 

S(r) = S( r)mrry (2) 

is normalized so that 

?S(r) dr dp = 1. (3) 

We thus seek a solution of Eq. (1) for r E (O,Rl, R is the radius of the sphere, subject to the 
condition of no entering radiation: 

Z(R,-/.L)=O, /.L>O. (4) 

The solution to this problem was formulated by Erdmann and Siewert’ some years ago and, 
recently, the method of elementary solutions6 was used to evaluate the solution numerically.’ 
We thus have available accurate results with which to compare the solution obtained here by 
the FN method. 

As noted by Davison: Eq. (l), along with the boundary condition given by Eq. (4), can be 
converted to the equivalent integral form 

p(r) = A jR r’E,((r- r’l)[;p(r’)+ S(J)]dr’, rE [-R,R]. 
r -R 

Here 

p(r) = Wr) = I_: Z(w) dp (6) 
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and we have extended the range of r to r E i--R, R]. We have also defined p(- r) = p(r) and 
S( - r) = S(r). The first exponential integral function is denoted by E,(x). Of course, once p(r) 
is known, the complete radiation intensity I(r,p) can readily be obtained from Eq. (1). 

2. BASIC ANALYSIS 

Following the paper of Wu and Siewerty we find that we can express p(r) as 

where @(r,p) is a solution of the pseudo-slab problem defined by 

(7) 

(8) 

with the conditions 

and 

@( - r, - CL) = - @(r,cL), Pa) 

4VJZ[@(O’,cc)- @w,pcL)I= 1, I_L Et--LO, CW 

@(R-p)=O, p>O. (9c) 

To solve the pseudo-problem defined by Eqs. (8) and (9), we first write 

1 

@hp.) = A(vo)~~(~o,P) e-d”o+ A(v)(p(v,p) e-“” dv + @Jr+), r > 0, (104 

and 

I 
1 

@(w) = - A(vo)rp( - ~o,P) e +%_ A(v)cp( - CCL) e’” dv + @dr,p), r < 0, WW 
0 

where 

I 

I 

@Jr+) = WO)[P(~O,P)~ +o- cp(- ~~,p)e""~] + B(vNdw)e-“” - cp( - w) @‘I dv 
0 

(11) 

is a correction term to account for the fact that we are considering a finite sphere. Here, Case’s6 
elementary solutions are 

(P(vo,cL) = ~volP(~o- P)l (12) 

where 

@VO A(&= l+- 
I 

’ A=() 
2 -1/J-vo 

(13) 

cp(w) = + [ 1 - WV tanh-’ v]S( v - cc). (14) 

If we substitute Eqs. (10) into the jump condition, Eq. (9b), we can use Case’s full-range theory6 
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to find 

and 

where 

and 

A(m) = l/[47w~(~o)l 

A(v) = 1/[47rvN(v)], 

N(b) = $+--&--$) 

N(u) = Y([l - 
1 

ou tanh;’ ZJ]* + -w*Y~T* 
4 > 

. 

Considering Eqs. (7) and (lo), we see that we can now write 

p(r) = P-(r) + k%(r), 

where 

p,(r) = J- c * 4m 
-ee-~%+ 
v,N( vo) 

UW 

Wb) 

(164 

(W 

(17) 

(18) 

Since @&,P) satisfies Eq. (8) subject to 

@,( - r, - P) = - @&L) (lqa) 

and 

with 

@c( - Rcc) = K(p), p > 0, (1%) 

I 
I 

K(P) = 4~0)d - UO,CL) e- w”+ A(u)cp( - u,p) e-“‘dv, 
0 

(20) 

m 

we can use the FN method to compute this correction term and thus to complete the desired 
solution. Since the details of the FN method are described in Refs. 1-4, we give here only a brief 
account of the analysis required for this application. We approximate the exit distribution by 
writing 

where the constants a,, a = 0, 1 , . . . , N, are found from the following system of linear algebraic 
equations: 
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with 

For the Fo-approximation, we use only to = v. in Eq. (22); for the F,-approximation, we use 
to = v. and 5, = 0; for the &approximation, we use to = vo, & = 0 and t2 = 1 and, for higher- 
order approximations, we use additional values of & spaced equally in the interval [0, 11. We 
note that the known r.h.s. of Eq. (22) can be expressed as 

AtO = MO - e-2”*A2t5) (24) 

with 

AI(~) = z( G [Aott) - A,(uo)l$-q + I o’ $$Mot5) - Aotdl~} (254 

and 

The functions A,(t) and B,(t) appearing in Eqs. (22) and (25) are given by 

Ao(f)=l-(log 1,; , 
( > 

(264 

.4X) = - &L-,(5) + 5, (Yzl, (26b) 

and 

(2W 

t27b) 

Once we have solved the system of linear algebraic equations given by Eqs. (22) to obtain 
the constants a,, LY = 0, 1, 2,. . . , N, we can use Eq. (11) evaluated at r = - R, Eqs. (19b) and 
(21), and again Case’s full-range theory6 to find the expansion coefficients B(vo) and B(v) 
required in Eq. (11) to complete the solution. We thus find that our final result can be expressed 
as 

1 
w”o sinh (r/v,,) + E(v) emRl” sinh (r/y) dv 1 , (28) 

where 

(29) 

3.NUMERICALRESULTS 

After finding v. from Eq. (13), we approximated the. integral in Eq. (17) by a Gaussian 
quadrature scheme in order to evaluate p,(r). We also evaluated Eqs. (25) in a similar manner 
and solved Eqs. (22) for the constants a, required in Eq. (29), and thus we were able for various 
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Table 1. Numerical results for o = 0.3 and R = I. 

4?r?pdr) 4r?Zp(r) 
I Exact Fj F4 Fs Fh Exact 
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0.0 1 1 1 1 1 1 
0.1 0.96440 0.96418 0.96418 0.96418 0.96418 0.96417 
0.2 0.91965 0.91873 0.91872 0.91872 0.91872 0.91871 
0.3 0.87101 0.86888 0.86887 0.86886 0.86886 0.86885 
0.4 0.82091 0.81697 0.81695 0.81694 0.81693 0.81692 
0.5 0.77076 0.76429 0.76426 0.76424 0.76423 0.76421 
0.6 0.72147 0.71155 0.71151 0.71147 0.71146 0.71143 
0.7 0.67364 0.65900 0.65894 0.65889 0.65888 0.65883 
0.8 0.62765 0.60636 0.60628 0.60626 0.60624 0.60620 
0.9 0.58374 0.55282 0.55270 0.55258 0.55256 0.55247 
1.0 0.54204 0.49206 0.49192 0.49172 0.49169 0.49154 

Table 2. Numerical results for w = 0.9 and R = I 

4lrrzp&) 
r Exact 

0.0 1 1 
0.1 1.1208 1.1147 
0.2 1.2342 1.2099 
0.3 1.3383 1.2832 
0.4 1.4326 1.3336 
0.5 1.5169 1.3603 
0.6 1.5914 1.3621 
0.7 1.6567 1.3374 
0.8 I.7129 1.2830 
0.9 1.7607 1.1917 
1.0 1.8006 1.0263 

F, 
47rrMr) 

F4 R R 

1 1 1 
1.1147 1.1147 1.1147 
1.2099 1.2099 1.2099 
1.2832 1.2832 1.2832 
1.3336 1.3336 1.3336 
1.3602 1.3602 1.3602 
1.3620 1.3620 1.3620 
1.3373 1.3373 1.3372 
1.2829 1.2829 1.2828 
1.1916 1.1915 1.1915 
1.0260 1.0259 1.0259 

Exact 

1 
I.1147 
1.2099 
1.2832 
1.3336 
1.3602 
I .3620 
1.3372 
1.2828 
I.1914 
1.0258 

orders of the FN approximation to evaluate Eq. (28) and establish p(r). In Tables 1 and 2, we 
list our results for the FN calculation of p(r) along with p,(r) and the “exact” results taken 
from Ref. 7. 

It is clear from Tables 1 and 2 that the FN method yields better results for w = 0.9 than for 
o = 0.3. This result is obtained because the approximation given by Eq. (21) has greater validity 
when there is less absorption. We note also that the FN results in Tables 1 and 2 improve as r is 
diminished from r = R. It thus appears that the errors introduced at the boundary, by the 
approximation given by Eq. (21), are reduced as the interior of the sphere is approached. In 
summary, we consider the FN results given in Tables 1 and 2 to be remarkably good. 
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