
1. QyMl. Specfmsc. R&I. Tmnsfn Vol. 22, pp. 441446 
Pergamn Press Ltd., 1579. Printed in Great Britain 

ON THE INVERSE PROBLEM FOR A 
THREE-TERM PHASE FUNCTION 

C. E. SIEWERT 

Nuclear Engineering Department, North Carolina State University Raleigh, NC 27650, U.S.A. 

(Received 2 February 1979) 

Abstract-Elementary considerations are used to establish the phase function for a three-term scattering 
law basic to the inverse problem for radiative transfer in a finite slab. 

I. INTRODUCTION 
In a recent paper’ the X and Y functions of Chandrasekhar’ were used to establish an exact 
solution of the inverse problem for a two-term scattering law. Here we would like to report an 
alternative development of the solution for a more general case and to discuss the extension to 
a three-term scattering model. This method of solution uses only the equation of transfer and 
the boundary conditions and thus does not require anv detailed knowledge tsav in terms of X 
and Y functions) of the intensity. Fist of all we consider the equation of transfer 

P-$7, P) + I(?* cl) = ; I1 + &PP’+ ~2P2(/.4V’2(~‘1147, p’bb’, 7 E IL RI, 
1 

and the boundary conditions 

and 

Z(L P) = F,(P), I-L >o, 

I(R -cl) = Fz(Ph CL ‘0. 

(1) 

(2d 

CW 

Here ~1 is the direction cosine of the propagating radiation, as measured from the positive 7 
axis, T = L and 7 = R correspond respectively to the left and right boundaries of the atmos- 
phere and F,(p) and F2(p) are considered given incident distributions. We assume that we can 
measure the exit distributions Z(L, -p) and Z(R, p), p > 0, and thus we wish to express w, 6,, 
and b2 in terms of Z(L, p) and Z(R, p), p E (-1, 1). 

If we let 

2. ANALYSIS 

then we can change P to -CL and write Eq. (1) as 

F(T --CL) + Z(7; -cc) = pl(d - h/.4(4 + b2P2(/.L)Z2(7)1, 

(3) 

(4) 

(5) 

where 

I 
I 

L(4 = 
-1 

Z(T, /.M~(cL) dp. 
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Now we can multiply Eq. (4) by Z(T, CL) and integrate over Z.L from -1 to 1 to obtain 

TO(T) + 2 ’ 1(r, p) I(T, --EL) dp = ;lZ,,%) - ~,Z,*(T) + b~Z:(7)1, 

where 

J-O(T) = I_‘, Z(T, PUTT, -cc) dcc. (7) 

If we now differentiate Eq. (7) and use Eqs. (3) and (4) we can write 

(6) 

or 

Differentiating Eq. (6), we find 

$-o(T) = 2f$@(T) - h&2(7) + fd?(T)l -I,’ z(Tv cL)z(T, --CL) dp) 

(9) 

(10) 

which can be used in Eq. (9) to yield 

-&TO(T)= 0 (11) 

or 

&($162(T) - hb2(T) + b2&2(7)1 - 16 z(T, cL)z(T, -cL) G) = 0. (12) 

Finally we can integrate Eq. (12) from 7 = L to T = R to obtain 

4So - o[Z:(R) - Z:(L)] - ~cx[Z,~(R) - Z,2(L)] + $Z:(R) - Z:(L)] (13) 

where 

1 
so = ZUt pLW.4 dp - o1 Z(L, -p)F,(cc) + 

I 
(14) 

and we have introduced 

a = +ob,, p = ;ob,. (150) 

We observe that Eq. (13) contains only the known intensities at the two surfaces and the three 
unknowns o, CY, and ~3. 

In a similar manner we can multiply Eq. (4) by ~‘Z(T, CL) and integrate over ZL from -1 to 1 
to obtain 

7.2(7)+2 lo'z(T, P)z(T, --/.4pZdp =;(zo(T)K(7)-hb(T)L(T)+ ~1Z*(T)[3M(T)-K(7)1), 

(16) 



where 
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K(T) = 1’ Z(T, /4d dp, 
-I 

MT) = j’ Z(T, pL)cL4 dp, 
-1 

(174 

(17b) 

(17c) 

I 
I 

T2(7)= Z(7, PL)F(T, -P)cc~~P. (18) 
-I 

Differentiating Eqs. (16) and (18) and eliminating between the two resulting equations, we 
deduce that 

-$2(r) = ;[&,WW1- 2Wd dTK(d - b,($l,(d~(dl- 2b&~(d) 

1 
+jb2 dT (A{ &(T)[3hf(T) - K(T)]}- %(T&~(T) - K(T)])]* (19) 

Equation (19) can be integrated from L to R and substituted into the difference between Eq. 
(16) evaluated at T = R and Eq. (16) evaluated at 7 = L to yield 

;s2 = IR 
L 

&k&(T) dT - 6, IR 
L 
Z,(T)~L(T) dT + $2 1: z2(T)-$M(T)- K(T)] dT, (20) 

where 

S2= o'Z(R, dF2(cL)pzdcL - o'Z(L, -dF,(p)p*dp. 
I I 

(21) 

Now if we multiply Eq. (1) by (CL’, k = 0, 1,2, and 3, and integrate over JL, we find 

$r,(d + (l-@)zo(d 7 0, 

$(T) + (1 - Ly)zl(T) = 0, 

;L(T)+K(T) = $ZdT)+@Z2(T)], 

and 

-&f(T) + L(T) = ;&z,(T). 

Equations (22) can be used in Eq. (20) to obtain 

VW 

VW 

(224 

(224 

4s~ = (~)IZ,?R) - Z,2(L)1 - 3(&)IK207) - Kz(L)l +5(&)IM?R) - M?L)l. (23) 

where 
3 1 

QSRT Vol. 22, No.5-C it!f2(T)= -L(T)--Z,(T). 2 2 (24) 
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It is clear that Eq. (23) contains only the known intensities at the surfaces and the three 
unknowns o, (Y, and Z3. It is also clear that for the case /3 = 0 Eqs. (13) and (23) can be solved to 
yield the explicit results given previously’ for F&L) = 0. 

A third equation involving only the surface intensities and w, (Y, and #l can be established by 
multiplying Eq. (4) by ~‘Z(T, CL), integrating over E.C, and subsequently proceeding in a manner 
analogous to that used to deduce Eq. (23). This calculation involves a great deal of tedious 
manipulation and thus we quote here only the final result: 

where 

4s4 = W(R) - W(L), (25) 

1,(+(r) -6aK(r)Zkf(r) + 3uL2(~)] - 5(&)[2~z(~)u(7) 

(26) 

Here 

and 

U(T) = -gg(j&) Z,(T) -; I_‘, Z(T, p)p5 dp + YUT), 

with 

It is apparent that Eqs. (13) and (23) can be solved to yield w and LY in terms of p. These 
results thus can be substituted into Eq. (25) to give a single equation to be solved for the third 
unknown j3. Since this final equation for p will be complicated, a direct iterative solution of 
Eqs. (13), (23), and (25) may prove more expedient. 

We note that though the results deduced here are, in principle, exact, it is not clear how the 
limited accuracy of the experimently measured intensities at the surfaces will affect the 
computed values of o, b,, and b2. In addition, we may have some choice in the equations we 
use; for example if b, = b2 = 0 then Eqs. (13), (23), and (25) can each be solved to yield, 
respectively, 

o = 4S,,[Zo2(R) - Zo2(L)]-‘. 6, = 62 = 0, (30) 

o = 4s,[z,2(R) - z,2(L) + 4&l-‘, 6, = b2 = 0, (31) 

and 

Here 

0= 
-B - [R2 + 16A S4J”2 

2A ’ 
61 = b2 = 0. 

A = 4S4 + $Z,2(R) - Z,2(L)1 - Z3 

02) 

(33) 
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B = ss, - [zc(R) - P(L)] + 2[Z*(R)L(R) - Z,(L)L(L)I. (34) 

Finally, we observe that should F*(p) = F*(p) an alternative procedure would be required 
since our results become indeterminate for this symmetric case. 

3. ADDITIONAL REMARKS 

First of all we wish to point out that in considering the azimuthally symmetric form of the 
equation of transfer, i.e. Eq. (I), we are not placing any such restriction on the incident radiation. It 
is well known’ that a radiative transfer problem without azimuthal symmetry has as 

one component in the solution the considered symmetric problem. As discussed here the 
desired unknowns can be found from this component of the complete problem. We note that 
McCormick3 has found it convenient to consider all of the components of the azimuthally 
dependent problem. 

Secondly we wish to call attention to the fact that one of the attractive features of the 
developed solution for the unknowns o, b,, and bZ is that the optical thickness of the 
considered medium is not required. 

Let us now discuss the manner in which we can extend the foregoing analysis to include the 
effect of reflecting and non-transparent boundaries. If we wish to allow the boundaries (inter- 
faces or walls) to introduce additional effects then we must distinguish between T = L’ and 
r = R’, i.e. just inside and just outside the slab. We thus write Eqs. (2) as 

z(L+, /.L) = o&)f,b) + I,’ W+, -jOnLW+ Icb’ dp’v P ‘0, (354 

and 

I@-, -CL) = ORB + I,’ OR-, /.O~Rb’+ cL)p’ @‘a El. >o, 

where the operator O(p) is used to represent the effect of the boundary on the externally 

incident radiation f(p), and the function n(p’+~) is used to characterize the internal 

reflection at the boundary. In addition, to express the effect of the boundaries on the exit 
radiation we write 

Z(L--, -/.A) = ML(cL)Z(L’9 -CL), CL ‘0, (364 

and 

OR’, IL) = MR(P)Z(R-, CL), P ‘0. (36b) 

It is clear that a detector placed outside the slab measures both the externally reflected 
radiation and the radiation escaping the slab, i.e. 

La-, -CL) = MdP)m+, -CL) + ~L(Plfl(CL)r P > 0, (374 

L(R+, CL) = MR(/J)Z(R-, cc) + NR(/dfZ(dr P ‘0, (3%) 

where N&) and &(p) are used to represent the effect of the external reflection of the 
incident radiation. It is apparent that if the boundary properties are known, to the extent that 
the operators O(P) and ~(,u’+P) are known, and if we measure experimentally Z(L+, -cc) and 
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Table 1. The computed value of o. 

Result 

Eq. (30) 
Eq. (31) 
Bq. (32) 

F0 S 

0.7444 0.8245 
0.7952 0.8053 
0.7990 0.8014 

F2 F3 F4 FS Exact 

0.8094 0.8021 0.8009 0.8005 0.8 
0.801 I 0.8000 0.8000 0.8000 0.8 
0.8002 0.8000 0.8000 0.8000 0.8 

Z(R-, p), CL >O, then 

and 

(38b) 

can be considered known, and thus the results of Section 2 are applicable here. On the other 
hand, if we can measure only I,,&!-, -p) and Z,,,(R’, p) then we need to specify the operators 
M(p), M-‘(p), and N(p) and subsequently we can use Eqs. (37) and (38) to render the results 
of Section 2 appropriate here. Clearly if the boundary properties are unknown then the 
corresponding inverse problem is considerably more difficult and thus remains unsolved. 

Finally we wish to report that a study of the effect of the accuracy of the surface intensities 
on the values of o, b,, and b2 that can be found from Eqs. (13), (23), and (25) has been 
undertaken by Dunn and Maiorino and will be reported at a later date. In the meantime we 
quote in Table 1 some results communicated by Maiorino4 of calculations based on the 
isotropically scattering model. In Table 1 various orders of the FN approximation5S6 were used 
to represent the effect of inaccuracy of the surface intensities for the considered case, 
bl = bZ = 0, R - L = 1, F,(p) = 0, and w = 0.8. 
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