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Abstract-The FN method is used to compute the net radiative heat flux relevant to radiative transfer in an 
anisotropically scattering, plane-parallel medium with specularly and diffusely reflecting Boundaries. 

1. INTRODUCTION 

In a recent series of papers,‘” the Fh’ method relevant to radiative transfer and neutron 
transport theory was introduced and used to solve concisely and accurately numerous basic 
problems. Here we wish to demonstrate the manner in which reflective boundary conditions can 
be incorporated into the FN calculations. 

We consider the equation of transfer6s7 

which includes anisotropic scattering of order L. Here T is the optical variable, p is the 
direction cosine of the propagating radiation (as measured from the positive T axis), w is the 

(1) 

single-scattering albedo, T(r) is the temperature distribution in the medium and the constants f~, 
I = 0, 1,2, . . . , L, with f,, = 1, are the coefficients in a Legendre expansion of the phase function. 
For a parallel plate of thickness A, we seek a solution of Eq. (1) subject to boundary conditions 
of the form 

and 

1 
+pz”I(R,p)+2~2~ Z(R, p’)cL’ dp’, P > 0, CW 

where T = L and T = R refer respectively to the left and right boundaries of the plate. Here, T 
and T2 refer to the left and right surface temperatures, u is the Stefan-Boltzmann constant, p,,” 
and pad are respectively the specular and diffuse reflectivities and l 1 and ez are the emissivities. 

2. ANALYSIS 

We begin by expressing the radiation intensity in terms of the known elementary solutions’ 
and a particular solution I,(T, p) 

r-l 

I(T, CL) = 2 Mqdd(va, P) emd”a + A(- v,&#d- V,S CL) e”“el 
p=o 

J 
I 

+ &+#J(v, CL) e+ dv + &(T, CL). (3) 
-I 
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Here 
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‘h(x) = $4x. XL 

and the polynomials g,(y) can be generated from 

‘43(V) = (I+ lk,+dy)+ k-,(v) 

with 

&l(v) = 1 and g,(v) = V(1 - 0). 

In addition. 

and the z+, p = 0, 1, 2,. . , K - I, denote the positive zeros of 

.4(z) = 1 + 2 
1’ 

] 4(X+- 
x--,’ 

(44 

(4b) 

(4c) 

(4d) 

Ga) 

(Sb and c) 

(Cd) 

(6) 

(7) 

in the complex plane cut from - 1 to 1 along the real axis. The expansion coefficients A(? vo) 
and A(u), Y E (- I, l), appearing in Eq. (3) are to be determined by the boundary conditions. We 
note that the solution given by Eq. (3) satisfies Eq. (1) exactly. 

As discussed in Ref. 2, the full-range orthogonality relations concerning the functions 
4([, CL) can be used to develop a system of singular integral equations and constraints for the 
distribution of radiation at the surfaces of the considered plate (the same singular integral 
equations and constraints were reported by Bowden, McCrosson, and Rhodes’). Thus, we let 
Z*(T, CL) = I(T, CL) - &,(T, CL) and consider 

(8a) 

and 

where P j {vp} U (0,l). Equations (8) are exact; however, we wish now to introduce the FN 



The FN method for radiative transfer problems with reflective boundary conditions 

method. We let 
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CL > 0, (W 

and 

l(R CL) = U$O &CL“, P > 0. (9b) 

If we substitute Eqs. (9) into Eqs. (8) and use the boundary conditions given by Eqs. (21, we find 
we can evaluate analytically the required integrals to obtain 

and 

j. b,[B,(5)-m”A,(5)-2p2d(~)A00] 

+ e-A’6 z. a, [A&) - P,“&(5) - 2d(-&)~o(4 

= Kz(t), 5 E P, (lob) 

where 

and 

K2(0 = l 2($74oW +$I_‘, P#@, p)lpW, pu) dp 

+e-“l[CI(~)Bn(S)-~1_IIpd(5,I*)I,(L,l*)dlr]. 

We note that the functions A,(t) and B,(t) can be readily computed from3 

with 

A,+,(Z) = --&L(5) + to (21 + I)(- l)‘h(5)A,,~ (124 

A,(5) = 1 -;tWl log (I+ l/5) + & @I+ l)f&(5)ndt) (12b) 

and 
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here, 
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In addition, 

Bo(5) = 2 - 2 + A,(5). 

A,,I = 
I 

'P"+%WP 
0 

is readily available from 

Aa,,+ = (=)A,./ 

(13b) 

(14) 

(154 

with 

Am.0 = l/(a + 2) (15b) 

and 

A,,, = l/(cu + 3). 

The polynomials II,(t) required in Eq. (12b) can be generated from 

(21+ l)Sff,(4Y = (- 1)‘(21+ 1)Ao.r + ([ + l)fL+,(4? + ffL,K), 

with 

n,(5) = 1, 

fM$)= 6-L 

(15c) 

(16) 

(17a) 

(17b) 

and 

n,(5) = tscs - 4). (17c) 

Although Eqs. (10) cannot be satisfied for all 5 E P, we can select N + 1 different values of 
5 E P, say {tj}, and solve the following system of 2(N + 1) linear algebraic equations for a, and 
b,,a=0,1,2 ,..., N: 

and 

We note that the FN method yields first of all the exit distributions of radiation I(L, - CL) 
and Z(R, CL), p > 0. However, once these quantities are established, the complete solution is 
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given by Eq. (3) and 

569 

A(+ 5) esUE = + &j I I, I-#+& P)[I(L, CL) - ZJL, CL)] dp WW 

where 

and 

N(u) = u[h2(u)+aT2W2u2g2(u, u)]. (21) 

3. NUMERICAL RESULTS 

In order to demonstrate the accuracy of the FN method we consider now the specific case of 
constant heat generation, i.e. T(r) = T, a constant. Thus, the appropriate particular solution is 
&,(T, CL) = uT*/lr, and Eqs. (1 I) become 

and 

We also now consider that the two surfaces have the same reflecting properties, i.e. pIS = p2” 
and pi” = hd and E + p” + pd 5 1; thus, it is apparent that, if we choose L = -A/2, we can 
express the desired solution as 

(23) 

Here @(r,~) satisfies Eq. (1) with uT4/r = 1, @(~,p)= @(-7,-p), and 

I 
I 

@(-A/2, /.J) = @@(-A/2, -&+2pd @(-A/Z -P’)P’~P’, P ‘0. (24) 
0 

Also O(r, CL) satisfies Eq. (1) with (rT4/a = 0, 

I 
e(- A/2, /L) = I + pV(- A/2, - /L) + 2pd t’(- A/2, - P’)P’ dp’, CL > 0, (25a) 

and 

I 
I 

8(A/2, -CL) = p”8w2, II) + 2pd e(A/2, P’)P’ dp’, P ’ 0. (25b) 
0 

The first basic problem clearly is symmetric and, therefore, to establish @(7, CL) we need only 
consider Eq. (18a) and solve, in the FN approximation, (N + I) linear algebraic equations. For 
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the second problem, we have the choice of solving 2(N + 1) simultaneous equations or, after we 
express e(r, CL) in terms of symmetric and antisymmetric components, solving two independent 
systems of (N + 1) equations. 

For our numerical calculation, we consider a scattering law, shown in Table 1, deduced from 
the Mie scattering theory ‘,I0 and relevant of x = 3 and II = 1.2, where n is the index of refraction 
and x is the size parameter. We consider three cases for the single-scattering albedo, w = 0.2, 
w = 0.8, and w = 0.95, and in Table 2 we list the discrete eigenvalues basic to these parameters. 
To calculate these discrete eigenvalues, an iterative solution of 

h(Z) = 1 + 2$(z) log 
( ) 
2 + wz $ (21+ l)f,g,(z)r,(z) = 0 

/=I 
(26) 

was achieved after using the exact expressions” for v. and vl (when appropriate) as initial 
values. Here the polynomials r,(z) are defined by 

(21f I)z~,(z) = - 6r,o + (I + I)T,+,(z) + /r,-,(Z) (27) 

with 

rot4 = 0. (28) 

As discussed, we solved two problems, one for @(T, p) and the other for @(r, p). The FN 
equations for the first problem are given by 

-A/tj] + A,(fj)[eeA’6 - p”] -s [Ao(t$) + &(5i) eeA’41] 
2 = (1 - e-A’*i)-( 1 - w) (29) 
w 

and, for the second problem, by 

and 

Table I. Scattering 
law. 

1 (21 + I)f, 

0 1.0 
I 2.35789 
2 2.76628 
3 2.20142 
4 1.24514 
5 0.51215 
6 0.16096 
7 0.03778 
8 0.00667 
9 0.00081 

10 O.OOOOO 

Table 2. The discrete eigenvalues. 

w h vi 

0.2 1.06303332 - 
0.8 2.43716171 1.051%601 
0.95 5.34762059 1.14901459 
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where we have used the approximations 

@(-A/2, -CL) = @(A/2, CL) = a$0 a,~~, CL > 0, 

13(-A/2, -cc) = 2 a$u", p >O, 
a=0 

and 

0(8/2, /.L) = 2 b:p”, CL > 0. 
a=0 

571 

(31) 

(32a) 

Wb) 

To solve the above linear system of equations, we have selected & = vs, /3 = 0, 1,. . . , K - 1, 
and the remaining .$ as given by 6+_r = (2j - 1)/[2(N - K + l)], j = 1,2,. . . , (N - K t I), where N 
is the order of approximation. 

Here we wish to report the net radiative heat flux at the boundaries, i.e. 

or, in terms of the forward and backward partial fluxes, we can write 

q(? A/2) = CJ+(+ A/2) - q-(2 A/2). 

Using Eq. (23), we note that 

where 

and 

I 
6’(?A/2)= 0W/2, f~L)p dp. 

In terms of the FN approximation, we can write 

cp-(- A/2) = rp+W) = z. (-$), 

cp+(-AD) = (P-W) = (p” + pd) j. (--f$), 

W- AD) = $ (-&) , 

79+W) = a$,o (-j$) , 

WAD) = (P’ + pd) go (5) 

(33) 

(34) 

(35) 

(36a) 

(36b) 

CW 

WV 

(37c) 

(37d) 

(37e) 

and 

6+(-A/2) = ; f (P” + pd) a$o (5). 070 
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Table 3. Partial heat fluxes for w = 0.2 and A = 1. 

Wall 
reflectivity 

P’ Pd 

0.0 0.5 

0.5 0.0 

0.25 0.25 

Partial 
heat 

fluxe\ 

rF CL) 
79_(L) 
B+(R) 
rF IL) 
9-(L) 
19+(R) 
C(L) 
19-(L) 
B+(R) 

GI F, Fi F, “Exact” 

0.3776 0.4186 0.4163 0.4164 0.4164 
0.0413 0.02323 0.02461 0.02458 0.02458 
0.2035 0.1315 0.1427 0.1426 0.1426 
0.3776 0.4158 0.4139 0.4140 0.4140 
0.0413 0.02763 0.02861 0.02863 0.02863 
0.2035 0.1408 0.1436 0.1434 0.1434 
0.3776 0.4173 0.4152 0.4153 0.4153 
0.0413 0.02537 0.02657 0.02656 0.02656 
0.2035 0.1400 0.1430 0.1429 0.1429 

The basic quantities p-(-A/2), 6-(-A/2), and 6’(A/2) clearly can be used with Eqs. (37) to 
deduce the net radiative heat flux, as given by Eq. (35), and thus these quantities are reported in 
Tables 3-5 for the considered cases. In order to illustrate the effectiveness of the FN method 
for this problem, we list in Tables 3-5 the results predicted by various FN approximations. We 
also include the “exact” results deduced from the FN method as N varied between 10 and 20. 
Because the lowest-order approximation is particularly simple and also accurate for many 
cases, we include in Tables 3-5 the F0 results. Clearly the considered cases of w = 0.8 and 
w = 0.95 can be solved by the F0 approximation to within 8% of error, which is adequate for 
many engineering applications. 

We note that in contrast to the Eddington approximation? the F0 approximation, though 
particularly concise, includes the effect of the complete scattering law. For the cases considered 
the Fj approximation is generally accurate to at least three significant figures, and for all 

Table 4. Partial heat fluxes for w = 0.8 and A = 1. 

Wall 
reflectivity 

P‘ Pd 

Partial 
heat 

Ruxeb F, F? “Exact” 

(F-(L) 0.2203 0.2341 0.2348 0.2342 0.2342 
0.0 0.5 19.(L) 0.1640 0.1609 0.1633 0.1639 0.1639 

8+(R) 0.3953 0.3710 0.3671 0.3678 0.3678 
m-(L) 0.2203 0.2330 0.2328 0.2323 0:2323 

0.5 0.0 it-(L) 0.1640 0.1635 0.1690 0.1696 0.1696 
9’(R) 0.3953 0.3705 0.3654 0.3659 0.3659 
K(L) 0.2203 0.2336 0.2339 0.2333 0.2333 

0.25 0.25 a-(L) 0.1640 0.1622 0.1661 0.1667 0.1666 
o+(R) 0.3953 0.3706 0.3661 0.3667 0.3668 

Table 5. Partial heat fluxes for w = 0.95 and A = I. 

Wall 
reflectivity 

PV Pd 

Partial 
heat 

fluxes 

9-u-d 0.0828 0.084% 0.08502 0.08494 0.08494 
0.0 0.5 6-(L) 0.2890 0.2956 0.2982 0.2982 0.2982 

8+(R) 0.5453 0.5344 0.5318 0.5319 0.5319 

9 -NJ 0.0828 0.08474 0.08468 0.08462 0.08462 
0.5 0.0 s-(L) 0.2890 0.02979 0.3029 0.3031 0.3030 

if+(R) 0.5453 0.5326 0.5277 0.5277 05277 
9-W 0.0828 0.08487 0.08487 0.08480 0.08480 

0.25 0.25 a-(L) 0.2890 0.2%9 0.3006 0.3007 0.3006 
B+(R) 0.5453 0.5334 0.5297 0.5297 0.5298 

F3 “Exact” 
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considered cases of o = 0.8 and w = 0.95 the FS approximation is accurate to four significant 
figures. We consider this excellent especially since the computation time, on the IBM 370/165 
machine, for the K approximation of CJJ-(- AL?), K(- A/2) and 0+(A/2) for a set of given values 
of p’, pd, A, and o is less than 10 seconds, which includes the calculation of the required 
discrete eigenvalues. 

In conclusion, we note that once the constants a,, a$ and b$ have been established the 
complete intensity I(T, ,u) can be found in the manner discussed by Siewert and Maiorino.” 
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