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I. Introduction 

Basic to exact analysis [1] of 

1 f |  /z ~-~ W(x,/z) + W(x,/~) = ~-~ Q(~) Q T ( / ) W ( x , / )  e-  "'~ did, (1) 
- o o  

the equation formulated by Cercignani [2] to describe temperature-density variations 
in plane-parallel media, is the solution to the Riemann-Hilbert problem [3] 

cI, § (/~) = G ( / z ) ~ -  (/~), /~ ~ (0, Go). (2) 

Here for the linearized BGK model 

V~ (3) 

and the elements of the two-vector tY(x, ix) are related to the temperature and density 
variations. 

Given that the G matrix in Eqn. (2) can be expressed as 

G(/x)  = A + ( / x ) [ a - ( / ~ ) ]  - ~, (4) 

where 

f ~  a~ (5) A(z) = I + z W(/~)/~ 
Z '  - o o  

with 

_/z2 �9 (/~) = Qr(/~)Q(/z) e , (6) 

we seek a 2 x 2 matrix ~(z) that is analytic in the complex plane cut along the positive 
real axis such that det ~(z) r 0 and such that the limiting values of ~(z), i.e. q~ • 
as z approaches the cut from above and below satisfy Eqn. (2). 

II. Analysis  

We note first of all that we can write 

Q - r ( z ) A ( z ) Q - ~ ( z )  = n ( z )  + f (z) I  (7) 
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where we use - T  to denote the inverse transpose operation, 

II(z) 
~ � 8 8  ~z~' 

and 

345 

(8) 

f ( z )  = e-  ~2 (9) 
-oo ~ - z  

It is apparent that 

W(z) = Q -  r(z)A(z)Q - l(z) (10) 

can be diagonalized by a similarity transformation involving at worst 

R(z )  = qr  (11) 

where q(z)  is a polynomial. This idea of diagonalizing the considered matrix Riemann- 

Hilbert problem by non-analytic functions was reported originally by Darrozbs [4]; 

however because this first solution is not of finite degree at infinity, the result of 

Darroz6s is not correct. Cercignani in a recent work [5] has reported an elegant method 

for correcting Darroz6s' result at infinity. Here we use a result, similar to that obtained 
by Cercignani [5], to construct a canonical solution of the considered matrix Riemann- 

Hilbert problem and subsequently the related H matrix [1 ]. 
We find that 

S(z) = [ ~ /3  ~[R(z) - z 2 - 3]] ,  (12) 
L - V ~  k[R(z) + z2 + ~]J 

with 

q(z)  = z 4 - 3z 2 + -~-, (13) 

is such that 

S ( z ) A ( z ) Q ( z ) - l Q - r ( z ) S - ~ ( z )  = ~(z), (14) 

where the diagonal ~2(z) has elements 

9~1,2(z) = �88177 _ z 2 +_ R(z )  + 4f(z)]. (15) 

The sectionally analytic function R(z )  has branch points _+ a and _+ ~, where a = 

V'2 + iv/2/2, and here we consider the branch of R(z )  that is analytic in the complex 
plane cut along F, the two straight-line segments [ - ~ ,  a] and [ - a ,  ~]. 

If  we now write our desired solution as 

r  = S -  ~(z)U(z)S(z) ,  (16) 

and require 

r = G(/z)r /z e (0, oo), (17) 
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and 

~ + ( r )  = ~ - ( r ) ,  r e F, (18) 

then the sectionally analytic U(z) must satisfy 

U+(/~) = Go(/~)U-(/~), > e (0, m), (19) 

and 

U+(r)T = TU-(r ) ,  r ~ P. (20) 

Here 

Go~)  = S(t,)G(/~)S - 1(/~) = ~2 + (/~)[~2 - (t*)] -1 (21) 

and 

T = - S + ( r ) [ S - ( r ) ] - l =  [0 ~],  (22) 

and since Go(/~) is diagonal, we consider 

U ( z ) =  [U~z) Us(z)O ].  (23) 

If  we let 

a2(t ) (o, oo), y~(/~) = f~g(/~), t* e = 1 or 2, (24) 

rl( ) (25) = 

and 

B(/*) = yl(/~)y2(t~), (26) 

then we find, since R+(r) = - R - ( z ) ,  z E U, that  

R(z) r, 2k~riA(x)]} xdX_ z ) 

(27) 

can be used in Eqn. (23) to yield a solution of  Eqns. (19) and (20). Here k is an integer 

and 

A(x) = 1, x ~ (Xo, xl), (28) 

= 0, otherwise. 

Since A(x) and B(x) have unit magnitude, we write Eqn. (27) as 

U*(z) = exp ~ arg B(x) - , . ,  R(x) [arg A(x) + 2krrA(x)] 

(29) 
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and use continuous values of  arg A(x) and arg B(x) such that  arg A(oo) = arg B(ov) 

= 0. We note  that  R(z) ~ z 2 as z ~ m, and thus U*(z) will have an essential singu- 

larity at infinity unless we impose the condit ion 

o r  

fo ~ dx [arg A(x) + 2k~A(x)] R-- ~ = 0 (30) 

f f l  dx 1 fo "~ dx 
o R(x---) = 2~:~r arg A(x) R(x)' (31) 

We write 

y~(x) = e=~O. (*) (32) 

with 

[ 4V'~rx e -'`2 ~ (33) 
~ ( x )  = tan-1  \M(Z) ~ ~2-[~R(x)] 

defined such that  u~(x) varies continuously from 0 to 9, and thus 

arg A(x) = 2[~1(x) - ~2(x)] = - 2 0 ( x )  (34) 

and 

arg B(x) = 2[~1(x) + u~2(x) - 2~r] = 2,~(x). (35) 

Here 

M(x) = - x  2 + 1_21 _ 8x e-x2 e ~'" dy. (36) 

It is thus apparent  that  the essential singularity at infinity can be removed by imposing 
the condit ion 

f f ;  dx I f [  dx R-~) = -F~ O(x) ~ - ~  (37) 

which for  x0 = 0, clearly has a solution Xl for  any integer k > 1. We thus use xo = 0, 
k = 2 and the corresponding xl  computed by Yuan [6]: 

xl  = 0.4232585948 . . . ,  k = 2. (38) 

Thus 

U*(z) = exp ~ ~(x) + ( - 1 )  ~ R(z) 0 x dx 
X - - Z  

f; ~ 1 dx  ] 
+ ( - 1 ) " + l R ( z )  R-(x) x "~ z] '  (39) 
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and to remove  the singularity at z = xl  we write our  final results as 

U~(z) = (z - xl)V*(z).  (40) 

N o w  since 

det cl,(z) = U~(z)U2(z), (41) 

o r  

(:f0 det cl,(z) = (z - x l )  2 exp ~(x) T - - z /  (42) 

it is clear that  

r = S-~(z)[U~(oZ) U~z)]S(z) (43) 

is not  a canonical  solution [3]. I f  we let ~o(z)  denote a canonical  solution (with normal  
fo rm at  infinity) then 

cl,(z) = cl,0(z)p.(z ) (44) 

o r  

Oo(Z)  = [ z ( z  - x l ) ] - 2 O ( z ) P ( z ) .  (45) 

Here  P . ( z )  and P(z) are polynomials  and  

det P(z) oc z2(z - xl) 2. (46) 

Since Kriese, Chang  and Siewert [1] have shown that  the partial  indices for the 

considered Riemann-Hi lber t  p rob lem are both  unity, we can use the normalizat ion 

to deduce tha t  

P(z) = A + Bz + Cz 2 (48) 

with 

and 

C = 
v'2 u*(~) 

0 2 

[ E x )] V*(oo) = exp ( - 1 )  ~+1 ~ ~(x )  dX - ~(x)  dX �9 

(49) 

(5o) 



Vol. 31, 1980 An Analytical Solution to a Matrix Riemann-Hilbert Problem 

It is clear that the constants A and B must be such that 

q~(~:)P(() = 0, ~: = 0 and ~: = x~, 

and 

d 
d-~[@(~:)P(f)] = O, ~ : = 0  and f = &. 

We can now use Eqns. (43) and (48) in Eqns. (51) for ~ = 0 to deduce that 

and 

On considering Eqns. (51) for f = &, we find 

[J6 ~ 
and 

where 

and 

[,/o 
= - 2 x ~  0-2*(oo) 

a/6 
~, = - - - - g -  J R ( x 3  + x ,  = + ~1 

o ] 

0 ] 

V6 [2x a - 3xl ] 

Equations (52) and (53) can now be solved to yield 

al 1 a12 ] 
A = [ _  x / ~ a l l  - a /3a~2]  

and 

349 

(51a)  

(51b) 

(52a) 

(52b) 

(53a) 

(53b) 

(54) 

(55) 

(56) 

(57) 
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where 

and 

a l l  = _ _  _ _  

a 1 2  - -  _ _  

b l l  = 

3 V'~ 7__ ce LV 'z - ~ + 1 u*(oo), (58a) 

X/3 x~ [ /3x~ /3xl ](a + ~/])U.(oo), (58b) 
3 ~/~ 2_ ~ IX/{ - ~ + 1 + V/]------~-~ 

3 V ] - -  ~ Vx  - ~ + v*(oo) (58c) 

[ +2+ (58d) 
3 ~ / ~ - ~  ~/ ~ x-S V~+----~ 

Since the polynomial matrix P(z) is now established it is apparent that 

'~o(Z) = [ z ( z -  x~)l-2S-Z(z)U(z)S(z)P(z) (59) 

is an exact analytical solution, which is also canonical and of normal form at 
infinity, of the given matrix Riemann-Hilbert problem. In addition, since xz can be 
expressed in terms of inverse elliptic functions [7], we consider ~o(z) to be a closed- 
form solution�9 As CI, o(Z) is now established, and because we have imposed the normali- 
zation indicated by Eqn. (47), we have at once an exact analytical expression for the 
H matrix introduced by Kriese, Chang and Siewert [1], viz. 

H(z) = ~ff r (_  z)~ ' (0)  ' (60) 

o r  

It(z) = ~/hzs~(-  z)U- ~(-  z)S- ~ ( -  z)Z(z)O~(0) 

where 

(61) 

Z(z) = 
v/{[-a12 + b~2z +--~-U*(oo)z 2] 

-a12 + blzz - ~ U*(oo)z 2 

V'~(a~ - b~iz) 

all - bllz + a/~U*(oo)z z 
�9 ( 6 2 )  

We find that we can express ~o(0) as 

1 [ all U~(O)- d~l alzU~'!O)- (~z ] 
io(0)  = ~ _ a/a a~ U~'(O) - ~/z3c~ - a/~a~2U~(O) - "x/-~,~2J 

where 

(63) 

(~ = xlU*(O)[Z4al~ + x/~U*(oo)], (64a) 

,~2 = xlU*(O) [~4a12 + --74~/3 U~*(m)], 

U~(O)= x~(~)i/4exp [ f ; l  (2R~x) - -  -l),tXx ~5 fo~ ~(x) x dx] 

(64b) 

(65) 
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and 
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U" 0 - 2xl(~)z '2  (66) 
2( ) =  u~,(0) " 

In conclusion we note that Yuan [6] has numerically evaluated all of  the quantities 

required here to compute the matrix 

1 
L(t*) = 1 +----~ H(/z), IZ e [0, oo), (67) 

tabulated by Kriese, Chang and Siewert [1]. Since Yuan [6] was able to reproduce to 

six significant figures the mentioned tabulation [1] and to ten significant figures a 

tabulation by Thomas [8] we believe that a correct solution to the considered problem 

is established. 
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Abstract 

The matrix Riemann-Hilbert problem relevant to the BGK model in the kinetic theory of 
gases is solved analytically. 

Zusammenfassung 

Das Matrix-Riernann-Hilbert Problem, das in der kinetischen Theorie der Gase fiir das 
BGK-Modell auftritt, wird analytisch gel6st. 
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