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Abstract--Radiative transfer in plane-parallel inhomogeneous atmospheres is discussed from the points 
of view of the integral and the integro-differential forms of the equation of transfer. 

1. I N T R O D U C T I O N  

In the extensive literature devoted to the study of 
radiative transfer, particular attention has been given 
to models with phase functions for local scattering that 
are independent of the optical depth. The classical 
methods of Fourier transforms, singular integral equa- 
tions and invariance principles, for example, have all 
been used (Hopf, 1934; Case, 1960; Chandrasekhar, 
1950; Carlstedt and Mullikin, 1966) to deduce exact 
results. Here we use the integral and the integro- 
differential forms of the equation of transfer to 
develop a system of linear singular integral equations 
for the surface intensities basic to a class of phase 
functions that vary with optical depth. 

In order to simplify our presentation, we consider 
here a scalar equation of transfer and isotropic 
scattering. 

Z. L I N E A R  S I N G U L A R  I N T E G R A L  E Q U A T I O N S  

We consider for a plane-parallel atmosphere the 
steady-state boundary-value problem defined by 

8 1 f l  # ~  l(z,p) + l(r,/~) = ~co(z) l(z,/£)dff,  (1) 
- 1  

I(0,/2) = 2a(p - /20), P, Po > 0, (2a) 

and 

l ( a , - / 2 ) =  0, U >  0. (2b) 

Here the scattering is isotropic, but the 'albedo' for 
single scattering co (~) is allowed to vary with the optical 
variable z. 

From equations (1) and (2) we can readily deduce the 
familiar equation 

J(~:/2o) = e -~/~° 

1£ 
+ ~ El(Iz  - t[)co(t)J(t:/2o)dt (3) 

for the source function 

ill l (z,/~) dp. 
J ( " g : / g ° )  = 2 - 1  

We also find it convenient to consider 

J*(r:/2o) = e - ~ - ~ / ' °  

(4) 

+ ~ EI([z - t t)co(t)J*(t:po) dt, (5) 

I* (z,/2) d~ (6) 

where 

if, J*(~:/2o) = ~ -1 

and I* (r, p) is the solution of 

N I* (,,/2) + I* (,, ~) 

1 

= ½co(t) f_  I*(,,/29 d/2', (7) 
1 

I* (0,/2) ='0 ,  u > O, (8a) 

l*(a, -/2) = 2,~(/2 -/20), 

and 

/2,/20 > 0. (Sb) 

A well known (Hopf, 1934) result is: 

Theorem 1 

A sufficient condition for the unique solvability m 
LI(0, a) of equations (3) and (5) is that maxco(r) < 1 
for a < oo and max co(T) < 1 for a = oo. 

We note that for a < 0o we can extend the definition 
of #o, as used to establish equations (3) and (5), and 
consider J(z :P-o) and J* (z :/x0) now defined as solutions 
of equations (3) and (5) to be analytic functions of com- 
plex/20, except for #o = 0. Also, it is apparent that 

J* (z :#o) = e -a/g° J(z : --/20)" (9) 

We now define left and right transmission and reflection 
functions, physically meaningful for 0 < p,/z0 < 1 but  
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analytically extended to a l l / t  ¢: 0,/to ~ 0, by 

St(/t,/to) = o)(r) e -'/u J ( r  :/to) dr, (10a) 

S,(p,/to) = og('c)e-("-°/uJ*(z:/to)dr, (lOb) 

f; T,(/t,/to) = o)(~) e -("-°/u J(z :/to) d~ (10c) 

and 

f2 Tl(/t,/to) = (~ (~) e -  ~/" J* (r :/to) dT. 

We will subsequently use: 

Theorem 2 

The S and T functions satisfy the principles of 
reciprocity 

and 

Proof 

(lOd) 

S~(/t,/to) = S,(/to,/t), (1 la) 

S,(/t, m)  = S,(p~,/t), ( l ib )  

T,(/t,/to) = T~(/to,/t), (1 lc) 
T,(p,/to) = e-"/" St(-/A/to),  (1 ld) 

S,(/t,/to) = e-"/" Tt(-/t,/to)- (1 le) 

Equations ( l ld )  and ( l le)  follow from basic defi- 
nitions and equation (9). We illustrate the method of 
proof for equations ( l l a ) - ( l l c )  by establishing equa- 
tion (1 lc). Equation (3) can be rewritten as 

x/og(z) J(z:/to) = ~ e - ~ / u o  + 

x E l ( I v -  t ] ) ~ J ( t : / t o ) d t .  (12) 

Thus equations (3) and (5) yield the representations 

~ J ( ~ : / t o )  = (I - LP)=' ~ ) e  -'/"°) (13a) 

and 

,fl~ (z) J* (~:/to) 

= (I - 2~) - '  ( x / ~ e - ( " - ° / " ° ) ,  (13b) 

where £a denotes a linear integral operator that is self- 
adjoint in L 2 [0, a]. Using inner product notation, we 
write 

~ , / t o )  = ( , jL  e -(°-<>/', 

(I -- ~ )  1 ~ e- , /uo),  (14a) 

r( / t , / to )  = <(I - ~ ) - 1  N~ e-(a-O/#, 

e -~/"°) (14b) 
o r  

Td#, #o) = <ogJ*, e- ' /"°) ,  (14c) 

and thus 

T~(/t,/to) = T,(/to,/t). (14d) 
Equations (1 la) and (1 lb) are proven in a similar way. 

We now assume a special form for o~(~), viz. 

~o(~) = c(q) e -~/" dr/ (15) 

with c(q) such that 0 < co(z) < 1 for 0 < • < a. A 
more general class of e)(v) could be used in the follow- 
ing analysis, e.g. a Fourier representation 

co(r) = ~ 03(~) e -i '¢ d~ ; (16) 

however, we wish here to obtain equations based on 
real-valued functions for 0 < /t,/to < 1. 

We now state 

Theorem 3 

With e)(z) as shown in equation (15), the unique 
solutions J(~:/t) and J*(T:/t) to equations (3) and (5), 
with /to changed to /t, satisfy the singular integral 
equations 

i f  ° S(z:/t) = e - ' /"  + ~ c(rl)p 

fo' [ J h : ~ -  J(~ :cr) × 
(7 

J(z:p)  -- e -°/n J*(~:a)-] + p ~ _ ~ -  ]dac lq , |  (17) 

and 

l f )  J*(z:/t) = e -(a-')/u + } c(tl) q 

f j l e - " / " J * ( ~ : q ) - e  "/uJ(z:a) 
X 

q + ~  

+ e-. / .  [J*(z:q)q -- J*(T:a)]_] da  d .  

'fo ;o1{ + ~ c(q)q_ e -~/u 

[J(z :q_)  - J(T:o')] 
× 

q _  - - ( 7  

e -"/" J(z:q_) - e -"/" J*(z:o-)] 
+ q - + g  

x da  dr/ (18) 
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where, for 0 _</2 < 1, the second argument of J and J* 
is kept positive by using equation (9) and 

_ /a/ /2r//2, q -  = /2r/ (19) 
P /2 + r/' q - r / -  /2 - r/' 

[We observe that the variable z appears only as a 
parameter in equations (17) and (18).] 

Proof 

We write the solution of equation (3), with/2o changed 
to ~, as 

J(z.:/2) = (I - L) -1 e -*/" 

= e-  ~/" + (l - L)-1 L e-'/". (20) 

Equation (17) now follows directly from the observation 
that 

Le-'/" = 1 f f~  c(r/)p f0' [e-t~ - e ' / : -  -a 
- e-<°-<"°]  

+ p + a ] d a d r l  (21) 

and the use of equations (3) and (5). Equation (18) 
follows from equations (9) and (17). 

We can now use the definitions given by equations 
(10) to deduce: 

Corollary 

The functions Sl(/2,/~o) and T~(/2,/20) satisfy 

S t ( l l  , 12o) = O)(z.) e - r l (1) /"+( l ) i~° l  dz. 

lfo~ /o1[ s'(p'"°) - s'(a'/2°) _ 
+ 5 c(r/)p p a 

St(P, #o) - e-alP Tr(a ' /20)] 
+ J 
x da dr/ (22) 

and 

T,(/~/2o) = e -*/"° e -("-°/u ~(z-) dz. 

l f ;  + ~ c(r/)q 

folle-'V'lT,(q,/2o)-e-'VuSl(a, lXo) 
X q + a  

+ e-, / ,  [T'(q'/2°)q - -  ff(a,#o)]]  da dr/ 

lfo' + ~ c(r/)q_ 

fo I [ [St(q-,/20) - St(a,/2o)] 
X e - a/u 

L q_ a 

+ e-"l" St(q-,/2O)q_+a- e-"l" T,(a, ~o)] 

x da dr/. (23) 

Equations for S, and Tt are obtained from equations 
(22) and (23) by replacing S, by T,, Sl by Tl, 

f fco(Q - vu  - . i , . o  dz. e e 

by 

and 

by 

f ]  to(z.) e -~/~ e -(a-t)/u° dz. 

fi e-~1,o e-(O-o/u o~(z) dz 

o e  -~-°/"o e -(~-~)/~ to(z) dz.. 

Equations (17), (18), (22) and (23) are necessary con- 
ditions on the unique solutions to equations (3) and (5). 
This proves existence of solutions. We have only partial 
results concerning the sufficiency of these same equa- 
tions for the unique determination of the desired func- 
tions. Thus 

Theorem 4 

For a = oo the equation 

[ StY, #o) = o(r)  e -~t(1)/"+(1)/"°1 dz 

l f f  + ~ c(r/)p 

fo'[S,(P,/2o)-S,(a,m) X 
p a 

SI(P, /2o)] da dr/ (24) 
+ p + a ]  

has a unique solution if 

lfo~ r/ In ~l÷r/ 

ln(1 + 2r/) 1 c(r/)dr/ < 1. (25) + 

Proof 

This is an obvious extension of a result due to 
Martin (1971) for the special case c(r/) = o)0 6(r/ - s). 
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3. T H E  E L E M E N T A R Y  S O L U T I O N S  F O R  

H A L F - S P A C E  P R O B L E M S  

We now would like to discuss the construction of 
solutions to basic half-space problems directly from the 
integro-differential form of the equation of transfer 

& I(~, 1,) + I(T, ~) 

1 P 1 

e ~/~ j _  l(z, p') d#'. (26) 
2 ( D 0  1 

We seek a solution of equation (26) that vanishes as 
~ o~ such that 

l(0, p) = F(p), /t > 0, (27) 

where F(#) is considered prescribed. To find elementary 
solutions of equation (26) we consider 

l~(z, p) = F(v, p) e -  ~/P~) + G(v, p) e ~/", (28) 

where v, p(v), F(v, I~) and G(v, #) are to be determined. 
On substituting equation (28) into equation (26) and 
imposing the normalization conditions 

1 

f G(v,/~)dp = 1 (29a) 
- 1  

and 

we find 

S F(v,p) d# = 0, (29b) 
1 

1 
[p(v) - #IF(v, p)e -~/p(° + - p(v)(v - #) 

x G(v,/Oe - ' / '  = ½~op(v)e ,t(1)/,+(1)m 

Thus if we let 

and 

(30) 

VS 

p(v) - v + s' (31) 

(v - p)G(v,/~) = 0 (32) 

[p(v) - p] F(v, p) = ½coop(v ), (33) 

then equation (28) will be a solution of equation (26). 
Considering v e (0, 1), we can solve equations (32) and 
(33) subject to equations (29) to find 

= I 1 

- c~(v)6[p(v) - p] (34) 

G(v, ~) = 5 ( v -  U), (35) 

and 

with 
~(v) = e)op(v ) tanh 1 p(v). (36) 

Thus we can write a solution of equation (26) that 
vanishes as r ---, ~ as 

1 f ,  

l(r,  p) = Jo A(v)~(v,  #)e-~1~ dr, (37) 

where A(v) is to be determined from the boundary con- 
dition, equation (27), and 

~(v,,u) = e-~/~ F(v,p) + G(v,p). (38) 

In order to establish a convenient orthogonality re- 
lation concerning the generalized functions q~(~, #), we 
multiply equation (38), for v = ¢ ~ (0, 1) and with 
changed to - p, by p (~) + p to find 

I I  +p(~)]qb~ (~ , - ,u )  

- C°°e ~ -  - ~ 6 ( u +  ~). (39) 
2 s 

We can now multiply equation (39) by q~,(~',/~) and 
integrate over p to find 

f_  l + Y 4~(~', #) q~(~, - # )  dp 
1 

_ o)0 e -  ~ - ~ 4 V C  - O .  (4O) 
2 s 

If we interchange ~ and ~' in equation (40) and sub- 
tract the resulting equation from equation (40) we 
obtain 

f l /,tl~r(~', u) i~1 (~, -[~) d,u = O, 
- 1  

¢, ~' e (0, 1). (41) 

Thus we observe that equations (37) and (41) require 
that 

1 

f i t q ~ o ( ~ , # ) l ( 0 , - # ) d p = 0 ,  CE(0,1), (42) 
- 1  

o r  

1 

o ~¢o(~, ~)/(0, - ~ )  d~ 

1 

= fo Pq~o(~, - p ) F ( p )  dp, ¢ ~ (0, 1). (43) 

We now would like to use the FN method (Siewert 
and Benoist, 1979; Siewert, 1978) in order to establish 
some numerical results. Thus we introduce the approxi- 
mation 

N 

1(0, - ~ )  = y,  a J ,  ~ > o, (44) 
~- -0  
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into equation (43) for the case of isotropic incident 
radiation, F(p) = 1, to find 

~=oa~B~(~)= 1 - p ( ~ ) l n  1 + p ~  , 

where 

~ (0, 1), (45) 

and 

2~ 1 - P(Oln 1 + (46) 
B0(~) - toop(~) 

B~(~) = p(~)B,_  t ( ( )  - - -  
~ + 1  

2 + - -  
tDoS 

We now evaluate equation (45) at 

~'+~, ~ > 1. (47) 

~ = ~ p ,  fl = 0,1,2 . . . . .  N, 

where {(~} are the positive zeros of the Legendre poly- 
nomial P2tN+ ~)(~) to obtain the following system of 
linear algebraic equations that can readily be solved 
to establish the required constants {G} : 

a~,B~,(~a) = 1 - p ( ~ a ) l n  1 + 
~t=0 

fl = 0,1,2 . . . . .  N. (48) 

In Table 1 we list some results typical of those com- 
municated privately by R. D. M. Garcia for the albedo 

fO N aa c A* = 2 I ( 0 , - # ) #  d# = 2 ~. (49) 
~=oCt + 2" 

We include in Table l Monte Carlo and ANISN 
results communicated privately by W. L. Dunn and 
G. C. Pomraning, respectively. The 'exact' values shown 
in Table 1 are those deduced from FN calculations as 
N varied from 10 to 15. 

We have also considered half-space problems for 
F(/~) = 6(Ft - ~to), and the mentioned scheme was able 
to reproduce to four significant figures the results of 
Martin (1971)for I(0, -p) , /~  ~ (0, 1). 

4.  E L E M E N T A R Y  S O L U T I O N S  F O R  

F I N I T E  A T M O S P H E R E S  

For applications based on equation (26) in regard to 
finite atmospheres, r e [0, a], we require solutions in 
addition to those given by equation (28) for v e [0, 1]. 

First we observe that elementary solutions are given 
by equation (28) for v such that v e [ - 1 , 1 ]  and 
p(v)E [ - 1 ,  1]. Both these conditions are satisfied for 
ve  [0, 1] and v in the set V defined by 

S 
- < v < 0 ,  for 0 < s <  re, (50) 

s + l -  -- 

plus 
S 

- - -  if 0 < s < ½ .  (51) - l < v <  1 - s '  

Thus we now write 

l(r, ,u) = p)e  dv 

+ fvA(V)~(v,~)e-'/"dv. (52) 

After the change of variables 

~, = -p(q) ,  (53) 

we find that as v ranges over V, r/ranges over the set 
H defined by 

0_<q_<  1, for 0 < s < , ~ ,  (54) 

plus 
S 

_ _ - - -  i f  0 ~ s ~  ½. ( 5 5 )  - 1 < ~ <  l - s '  

This change of variables in equation (28) gives elemen- 
tary solutions 

where 

l_p~,)(z, p) = O,(~l, ,u) e '/p~"), (56) 

L z \ q  + # /  

- r/tanh ~q6(q + p)] 

+ 6 [p(,7) + ~]. (57) 

Table I. The half-space albedo for o 0 = 1.0 

s F5 F6 F7 'Exact' Monte Carlo ANISN 

0.5 0.1922 0.1921 0.1922 0.1922 0.192 0.1923 
1.0 0.2658 0.2659 0.2659 0.2659 0.266 0.2661 
1.5 0.3122 0.3122 0.3122 0.3122 0.312 0.3125 
2.0 013458 0.3458 0.3458 0.3458 0.346 0.3461 
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We write equation (52) as 

l(r,/~) = A(v)cI)~(v, #)e- ~/~ dv 

+ f,B(v)O (v, #)e ~/p(~) dr. (58) 

The functions A(v) and B(v) are to be determined from 
the boundary conditions 

I(0, p) = F,(/~), /~ > 0, (59) 

and 

l ( a , - p )  = F2(~), /~ > O. (60) 

The procedure used to establish equation (41) can 
now be used to deduce a similar result concerning the 
generalized functions 0~(¢, p), viz. 

1 

f p0~(¢', #)0,(4, - p )  d# = 0, 
- 1  

~, ~' e (0, 1). (61) 

In addition, we can use the explicit expressions for 
4~(~, #) and 0~(¢, #) to show that 

P 1 

A~(~, ~') = [ p~(¢,#)0,(¢', -p )  d/J, 
d - 1  

¢~(0,1),  ~ ' e H ,  (62) 

has the useful property 

e ~/m') A,(~, ¢') = e ~/¢ Ao(~, ~'), 

~E(0,1), ( ' ~ H .  (63) 

Thus if we change # to - /~  in equation (58), multiply 
by pq),(~, p), ~ ~ (0, 1), and integrate over/~ from - 1 to 
1 we find 

1 

f p~(~ ,  #)I(r,  - / t )  dp 
- 1  

= fnB(v)e'/P(V)A,(~, v) dr. (64) 

Considering now equation (64) for r = 0 and r = a 
and making use of equation (63), we deduce that 

1 

I #~o(~, #)I(0, - p )  d# 
- 1  

1 

= e -°/* [ #~Po(¢,P)l(a, - p )  d#, 
g - 1  

¢ ~ (0, I). (65) 

In a similar manner we find a second equation to be 
1 

f pO,(~, lOl(a, -IO dl~ 
- 1  

1 

= e -"/p(o ; #0o(~, #)I(0, -/~) d#, 
- 1  

¢ ~ n .  (66) 

We can write equations (65) and (66) as 
1 

o p4)o(~,/01(0, - p )  dp 

1 

+ e-"/~ fo pCI)a(~, -p)l(a,  #)d# = K~(O, 

~ (0, i), (67) 

and 

! 

o PO.(~, - p) I (a, #) d# 

1 

+ e-"/P(¢) fo P0o(~, p)l(0, - # ) d /~  = K2(~) , 

¢ e H, (68) 

where the two known functions are 

1 

g~(~) = fo #~o(~ , -p )F l (M)d~  

1 

+ e-"/¢ fo ] ' / ( i ~ a ( ~ ' / / ) F 2 ( / / )  dp (69a) 

and 

1 

K2(O = fo #0.(¢, p)f2(/~) d# 

1 

+ e-a/v(O fo //0°(~' --#)Fx(p)d#.  (69b) 

In the notation of Section 2, the unknowns pl  (0, - ~) 
and #I(a, #) in equations (67) and (68) are expressed by 

lfo' pl(O, --#) = pF2(#)e -"/u + ~ [S,(M, P o ) F , ( p o )  

+ Tt(/.t, #o)F2(#o)] dpo (70a) 

and 

'fo' #I(a,#) = pFdp)e -"/" + ~ [T,(/~, po)Fd#o) 

+ S,(/~,/1o)F2(/~o) ] d~u o. (70b) 

We note that equations (67) and (68) agree with those 
obtained .by using the Corollary of Section 2 in equa- 
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tion (70) for the special case 

c(r/) = Ogogi(r / - s). (71) 

As discussed in Section 2, we know that equations 
(67) and (68) can be solved; however to resolve the 
matter of uniqueness remains a challenging task. In 
carrying out some numerical experiments we have en- 
countered complications that are not fully understood. 
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