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1. Introduction

In the past two years the F,, method has been developed and utilized [1-5] for
many applications in neutron-transport theory and radiative transfer. Because the
method has proved efficient and accurate, we now would like to report the general-
izations that are required for the method to be applicable to problems in plane
geometry that do not have azimuthal symmetry. For example, an anisotropically
“scattering plane-parallel medium illuminated by parallel rays will, in general, have an
associated radiation field that is not azimuthally symmetric. We thus consider the
equation of transfer [6]

a W 1 2n
w1, p, @) +I(t, 1, @) = — J J plcos ®) (z, u', ¢") dy’ do’ (1)
ot 4n | . Jo

where w is the single scattering albedo, u is the direction cosine, as measured from
the positive 1 axis, of the propagating radiation and ¢ is the azimuthal angle measured
with respect to a reference angle ¢,. In addition © is the scattering angle, and we
consider phase functions that have a Legendre expansion of the form

plcos ®) = lio (2/ + 1)f,P,(cos ®), f,=1. (2)
Since we intend to use the analysis developed here for multi-region problems, we
consider boundary conditions of the form

I(L, y, @) ='Fy(u, ), u>0,9el0,2x], (3a)
and

IR, —p, @) = F5(u, ¢), p>0,9€[0,27], (3b)

where 7 = L and t = R refer respectively to the left and right (or upper and lower)
boundary surfaces and F, (i, ¢) and F,(u, ¢} are considered given. We note that here
I(z, u, @) is the complete intensity and not just the diffuse component. Following
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Chandrasekhar [6], we now express the intensity as

I, p,0) = ), Mz, p)cos m(p — @,) + I™(x, p) sin m(ep ~ ,)]

m=0
+ R(u, @) e™ )
where
2n
J R, ¢')plcos @) dp' =0, p,pu'e[—1,1], ¢ €e[0,2n]. (5)
¢}

We note that the form used in Eqn. (4) is a generalization of that used by
Chandrasekhar [6] and that it is convenient for separating the complete problem for
I(z, u, p)into aset of problems for the ¢ independent components I™(z, ) and I™(z, p).

If we use the addition theorem [7] for the Legendre polynomials we can write

L

plcos @) = 3. (2= do,) 3, (2 + D TPT(RPT(W) cos mp — o) (6)

m=0 l=m

and substitute Eqn. (4) into Eqn. (1) to deduce that
0 w L 1
po AMnp) + 1M p) =5 Y @+ DfTPru) f PP )I™(z, ) dy'. (7)
l=m -1

Here we use I™(t, p) for I™(z, 1) and/or I™(z, u), and P!(u) denotes the associated
Legendre function, i.e.

dm
Pi(p) = (1 — @y I Py(p), ®)
]
and
(-m!
W= ©)

Considering now the boundary conditions, we observe that if we take, for u > 0,

L

Riu, @) e™"" = Fi(w, ) = ¥, (L, p)cos m(o — ¢,)
+ I3, pysinm(p — ¢,)] (10a)

and
L
R(—p, @) e® = Fy(u, ) — Y, [I™R, —p)cos m(p — o,)
m=0
+I7(R, —p) sin m(e — ¢,)] (10b)

the components I™(t, u) do, in fact, decouple since they satisfy Eqn. (7) and the
boundary conditions

2-4 2=
I"(L, u)=< zno’"')J Fi(y, @){ }'n(fp @) do, p>0, (11a)

[o]
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and

2 - QOm n
I"(R, =) =< = > j Fz(u,w){zﬁf}m(w ~p)dp, w>0.  (i1b)

2n 0

In order to construct the complete solution I(t, u, ¢) we clearly must solve the prob-
lems defined by Eqns. (7) and (11) for m=0,1,2,..., L.

II. Analysis—The F, Method

Since the analysis here in regard to the F, method follows very closely that
reported earlier for the case m = 0, and since we also follow closely the work of
McCormick and Kus€er [8] concerning the elementary solutions of Eqn. (7) we can
be brief in our development here. Also we omit the index m except where it is essential.
We begin by writing a general solution [8] of Eqn. (7) as

k—1
I(t, p) = 520 LAGR@ (g, 1) e + A(=vg)p(— vy, 1) €]

1
+ J AW)p(v, p)e” ™ dv (12)
-1
where we have k + pairs of zeros (+vg) of
1 d
A@)=1+z J v - (13)
1 U—z
with
L
Y(u) =% Y QI+ D — gy PP (g (). (14)
I=m
Here the polynomials g}*(&) satisfy [6]
(—m+ gl (&) = mégi(€) — U+ m)(1 = b, )11 (E), [=m, (15a)
with
gn(&) = 2m — 1)L (15b)
In addition
1 L
@(vp, 1) = % Vﬁ( ) Y QL+ Df TP (r)gr(ve) (162)
vﬂ —H)i=m

and

v, 1) = % VPU(V i M) Y QU+ DfPPP(u)gl () + (L — v "2A(n)é(v — p)
I=m
(16b)
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where
1
) =1+ P f Wi -2, 17)
_ u—v
and
=02+ 1)1 — of). (18)

As for the case m = 0, there is a full-range orthogonality theorem [8] concernlng the
elementary solutions, i.e.

1
€ —-¢) j po(&, W&, p)du=0, & & =+vyore(—1,1), (19)
-1
and thus we can use the technique described earlier [3] to develop the following
singular integral equations and constraints concerning the desired surface intensities
I(L’ _ﬂ) and I(Rs .u)’ u> 0:

1 1

po(E, WI(L, —p)du + e f pe(—&, WIR, p)dp = Ly(&) (20a)

JO 0

and

fr1 1

po(&, IR, p)dp + e~ ** J po(—&, WL, —p) du = Ly(&). (20b)

0

JO

Here £€ P = {v;} U (0,1), A= R — L and the known terms are

1 1
Li(6) = f po(— & WL, p) dp + e‘“j po(&, IR, —p) du (21a)
0 0]
and
1 1
Ly(¢) = J po(—& WI(R, —p) du + e‘“f po(&, WI(L, p) dp. (21b)
0 0
If we now introduce the approximations
N
I(L, —p)= (1 =2y Y apu*, u>0, (22a)
=0
and
N
IR, p) = (1 — 2y % bu*, p>0, (22b)
a=0

into Egns. (20) we obtain the F,, equations:

N .
Y (B0 + e AN = 5 L@), EeP. (23a)

a=0
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and
‘éo [6,B.(&) + e ¥a,A ()] = w% L,(&), EeP, (23b)
where
2 1
A,8) = a)_fj w (=&, w1 — p? )" du (24a)
and
2 1
B,(&) = F J W, w1 — p?y" dp. (24b)
- Jo

We can now use the explicif expressions given by Eqns. (16) and (17) to derive a set
of recursive relations that is useful for computing the functions 4,(¢) and B,(¢). We
find

Ayor(E) = —EALE) + (1) z (1 + 1)(~ 1/ PgrE)A, (5a)
and
B, (&) = EB,(¢) Z Q1+ T, (25b)
with
Ay = Ll T (1= 2y PR (w) dp. (26)
For a = 0, we find
Bolé) = Ag(?) + %(M”: 1) o1
and
0= ¥ @+ @) - 2 evetog 1+ ) o8)

Here the polynomials IT}*(£) can be generated, for / > m, from

(21 + 1)EIE) = (= 1) 7" + DA, + (L = m + DI ()
+ (U + m)(1 = 6, 1 () (29a)

with
g(¢) =1 (29b)



Vol. 31, 1980 The Fy Method for Radiative Transfer Problems 597

and

Qo+ 11 2%

Mt 1(E) = o + 1)(1 — EHIIXE) + B At

(29¢)

It is important to note here that we have taken the definition given by Eqn. (8) to be
valid for all £e P, ie.
m 2ym/2 dm
Pr() = (1 = &4 —— Pi(&). (30)
dem
The explicit evaluation of the integral appearing in Eqn. (26) is given by Robin [9];
however, we prefer to use that result to deduce the following recursive relation

. I+24+m\(l+1+m\[l+a~1+m)\,
al+2 — Aa,l (31a)
I+2—mi\l+1-—m/\d+a+!+m
with
NL (2m)! (o + 1)!
A = 31b
I Ll S | (2t 2+ 2m (316)
2 ) 2 )
and
1 !
i JT @m+ 1)@+ 1) (310)

wmt 1= k2 o, oa+3+2m "
2/ 2 )

Since the functions A4,(¢) and B,(£) are now readily available we can select N + 1
values of £ € P at which to satisfy Eqns. (23); we thus can generate 2(N + 1) linear
algebraic equations that can be solved to establish the required constants a, and b,,
«a=0,1,2,...,N.

II1. Discrete Eigenvalues

From the foregoing analysis it is clear that the calculation of the discrete eigen-
values {v,} is essential to the Fy solution of the considered problem. In fact, because
the Fyy equations are so easy to generate and to solve, the computation of the discrete
eigenvalues is perhaps the most difficult aspect of the method. We thus would like to
report some explicit expressions, at least for the cases for which x < 3, that yield exact
results for the desired {v;}. We note that McCormick and Kuscer [8] have shown
that x < L — m + 1 and that Shultis [10] has argued that the discrete eigenvalues are,
for w < 1,simple and real. The upper bound L — m + 1 is very conservative, and thus
we use the argument principle [11] to establish k. Since A(z) is analytic in the

complex plane cut from —1 to 1 along the real axis, A(z) = A(—z), A(zZ) = A(z) and
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A(o0) # 0, then nk is the change in the argument of

lim At + ie) = AT () = A(t) + minp(t) (32)

£—=0

as t varies from zero to one; i.e.

1
= Ag [arg AT (2)]. (33)
We define
0(1) =arg A" (1) (34)
and write
L m(D)
0() = tan~! [ i } (35)

where 6(t) is defined to vary continuously from 0 to xn as ¢ varies from 0 to 1.

We note that A(z), as given by Eqn. (13), can readily be evaluated numerically
by using a quadrature scheme to compute the required integral (and for large values
of z we prefer this method). The integral in Eqn. (13) can also be evaluated analytically
to yield

1) t oz z @+ VP ETTE), (36)

Az) =1+ zy(z) 10g< N

where the polynomials I''(z) can be generated, for / > m, from

21+ 1)zl(z) = = 2"m1 6y + (L4 1 = m)I7 4 (2) + (L4 m)(L = 0,011 (2)

(37)

with

I[3(z)=0 (38a)
and

retiz) = Qa + 1)1 — 22)Iz) — 2*a! z. (38b)
Following now a previous work [12] based on the case m = 0, we write

A(00)=1—wli LT (39)
where

W= (D 0= ereprre du “0)
We find that

Q@I+ D)W =hWT, (1)
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with
Wa=1, _ (42)

so that Eqn. (39) can be expressed as [10]

L
= [T 0 - wf). (43)
I=m
We also deduce that
(z)~»A(oo)+—~+—+ , asz— o0, (44)
where
L 21+ 2 pm
—w Y K 21— @y PP (ugr(p) du = — o Z 4Bl (49)
I=m
and
= 21+ m/2 m
*wlZ - PP(u)gr(u) dp = —w Z SCT. (46)
=m I=m
Here
(+2+ml+2—m) ( + m)(l — m)
2/ + 1)B} | = B m_ > TN ) pm
@I+ DB =hBr + — o Sarr s MW a—1
(47)
with
1
B = om 3 (48)
and
T+ 2+mi+2—m) ( + m)(l — m)
204+ 1)CP = hCT + m_ Y TN T m
( JC¥: s Q1+ 3)2I + 5) T A—1 Lo
(49)
with
L [(0+34+m+3—m) (+2+m+2—-m)
r=5 21+5[ A+ 7 * 2A+3 ]Wl G0)
and
3
Cr = . (51)

Cm + 3)2m + 5)
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A Wiener-Hopf factorization of A(z) is given by

K

A(z) = A(00)X(2)X(—2) H (52)
where
1 1 (1 dt
= — > 5
X() = oy o <n f (1) — Z) (53)
and thus the results given previously for m = 0 [12] can be used here; for x = 1
1 2 dt
vy = Ao) exp( - J. (z) ) (54)
and
2 w =
=1-0, + —— B 55
Vo 1 +A(oo) z=szl ! (55)
where
2 1
0,=— f £0(t) dr. (56)
T Jo
For x = 2 we have
= A+ (42 - B)!2 (57a)
and
vZ=A— (4% - B)!/? (57b)
where
1 w =
A=1-30, +5—— By (58)
2Y1 ZA(OO) Izzm.fl 1
and
1 2 (* dr
A(oo)eXp( nL ”z) G9)
When x = 3, we write
1 2 [t dr
V(Z)V%V% = W €xXp ('—; J‘O 0([) 7) » (608)

w

By 60b
A0 2 f (60b)

|M1~.

i+ vi+vi=3-0,+
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and

vivi +v3vi +vIvi=3(1—0,) + 6, +46? + 3 - 0,) A(CU)Zme
I=m

A(oo) IZ SCT. (60c)

Equations (60) clearly can be solved to yield v, v? and v2.

We have explicit results here clearly when x < 3; however, when x > 3 various
(arbitrary) values of z can be used in Eqn. (52) to generate x equations that can be
solved iteratively to find {v,}.

IV. Numerical Results

In order to demonstrate the ¥, method for a basic problem without azimuthal
symmetry we consider now a beam incident on the surface 1 = L. We thus write

Fip, ¢} = no(u — po)d(e — @o) (61a)
and

Fy(p, ) =0. (61b)

If we now take ¢, = ¢, then the terms involving I™(z, u) in Eqn. (4) will not be
required. For our sample calculation we use the scattering law given in Table I. The

Table I

The scattering law.
/ 21+ 1
0 1

1 2.00916

2 1.56339

3 0.67407

4 0.22215

5 0.04725

6 0.00671

7 0.00068

8 0.00005
Table II
Eigenvalues for o
=0.95.

m {vg}

0 44036458255

1.0000526893
1 1.1322065380
28 —
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law is based on the Mie theory-for spherical particles and corresponds to that used
previously [13] for « = 2 and m = 1.33, where « is the size parameter and m is the
index of refraction. In Table II we list the discrete eigenvalues as computed from the
exact expressions given in the foregoing section and refined by using a Newton-
Raphson method for finding the zeros of A(z).

Of course the approximation given by Eqn. (22b) must be modified here since
I(R, 1) has a component that is a generalized function. We therefore write

N

L, —p) =0 =@y Y au’, u>0, (62a)
=0
and
R, p) =1 (R, 1) + 32 = 80,m)0pt — o) €™, 1 >0, (62b)
where
N
LR, p)y= (1 — @2y Y bu*, u>0. (62c)
a=0

To find the constants a, and b, we now must solve the F, equations

N
Z (aacBa(éj) + e;A/EjbaAa(&fj))

a=0

= (2= G b0 = @(— s o)1 — 40 1] (63a)

1
wi;
and

T BB + e A ) = @ Sono - p(E po)e = e,

(63b)

1
w¢;

Here £;e P, and to have a simple scheme of selecting the points we use Ep= v,
B=0,1,2,...,k—1l,and {;, =2+ 1 - 2k)/[2IN—x+ 1)), B=x,x +1,..., N.
It is clear that once the constants a, and b, are determined the complete angular in-
tensity is readily available from Eqns. (4) and (62). We therefore list in Tables I1I and
IV the exit distributions I(L, — ) and I (R, u), g > 0, deduced from F, calculations
as N varied from 10 to 15. We believe the ‘converged’ results shown in Tables III and
IV are accurate to +1 in the last digit reported.

Finally we note that McCormick and Sanchez [14] have communicated some
preliminary work that relies on the F,, method to generate solutions in order to study
the effect of experimental errors on a reported solution of the inverse problem [15].
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Abstract

The formalism required to solve by the F, method radiative transfer problems lacking azimuthal
symmetry is developed, and numerical results are given.

Zusammenfassung

Es wird der Formalismus entwickelt der zur Losung von Strahlungsproblemen mit der Fy-Methode
bendtigt wird, falls keine azimutale Symmetrie vorliegt. Numerische Ergebnisse werden gegeben.
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