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By C. Devaux, Laboratoire d'Optique Atmosph~rique, Universit6 des Sciences et 
Techniques de Lille, Villeneuve d'Ascq, France, and C. E. Siewert, Nuclear Engineer- 

ing Dept., North Carolina State University, Raleigh, North Carolina U.S.A. 

I. Introduction 

In the past two years the F s method has been developed and utilized [1-5] for 
many applications in neutron-transport theory and radiative transfer. Because the 
method has proved efficient and accurate, we now would like to report the general- 
izations that are required for the method to be applicable to problems in plane 
geometry that do not have azimuthal symmetry. For example, an anisotropically 
scattering plane-parallel medium illuminated by parallel rays will, in general, have an 
associated radiation field that is not azimuthally symmetric. We thus consider the 
equation of transfer [6] 

p(cos | )I (z, p', (p') d#' do '  (1) ~ 1(,, ~, ~o) + I(~,/~, ~0) = U~ _~ .  o 

where co is the single scattering albedo, # is the direction cosine, as measured from 
the positive r axis, of the propagating radiation and 9 is the azimuthal angle measured 
with respect to a reference angle q),. In addition | is the scattering angle, and we 
consider phase functions that have a Legendre expansion of the form 

L 

p(cos | = ~ (2l + 1)flPl(cos | fo = 1. (2) 
1 = 0  

Since we intend to use the analysis developed here for multi-region problems, we 
consider boundary conditions of the form 

and 

I (L ,  I~, (p) ='FI(/~, q)), # > 0, ~0s [0, 2~], (3a) 

I (R ,  - # ,  (p) = F2( #, q~), kt > 0, 9 e [0, 2re], (3b) 

where z = L and z -- R refer respectively to the left and right (or upper and lower) 
boundary surfaces and F l(p, 9) and F2(/~, (p) are considered given. We note that here 
I('c,/1, q~) is the complete intensity and not just the diffuse component. Following 
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Chandrasekhar [6], we now express the intensity as 

L 

l(z,/~, go) = ~ [I?(~, p) cos re(go -gor) + I~'(z, #) sin m(go - go,)] 
m = O  

+ R(#, go) e-~/~, 
where 

(4) 

~" R(p', go')p(cos O) dgo' = 0, p, #' ~ [ -  1, 1], go ~ [0, 2~]. (5) 

We note that the form used in Eqn. (4) is a generalization of that used by 
Chandrasekhar [6] and that it is convenient for separating the complete problem for 
I (z, #, go) into a set of problems for the go independent components I~(7, #) and I~(7, p). 

If  we use the addition theorem [7] for the Legendre polynomials we can write 

L L 

p(cos | = ~ (2 - 6o,m) ~. (2l + 1)fT'nT'(p)n'F(#' ) cos m(go - go') (6) 
m = O  l=rn 

and substitute Eqn. (4) into Eqn. (1) to deduce that 

8 co L ('1 
# ~ I " ( 7 , / ~ ) + I " ( 7 , # ) = ~ -  Z (2 /+  1)fTPT'(#) J P'r(#')I"(r,#')dp'. (7) 

l = m  - 1  

Here we use Ira(z, #) for 1"(7, #) and/or 1]Y(~, #), and PT'(#) denotes the associated 
Legendre function, i.e. 

PT'(#) = (1 - #2),./2 d" dl#~ Pl(#), (8) 

and 
(l - m)! 

f~" = f l  (l + m)~ (9) 

Considering now the boundary conditions, we observe that if we take, for kL > 0, 

L 

R(#, go) e -L/u = FI(#, go) - ~ [I7(L , #) cos rn(go - got) 
m = O  

+ I'~(L, #) sin m(go - go,)] (10a) 
and 

L 

R ( - # ,  go) e R/u = F2(#, go) --  E [/y(R, - p )  cos m(go -- go,) 
m = 0  

+ I~'(R, - p )  sin m(go - got)] (10b) 

the components 1"(7,/t) do, in fact, decouple since they satisfy Eqn. (7) and the 
boundary conditions 

ira(L, # ) =  (2--60,m'~ f f~ go)~ m(go- 
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and 
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C  o. fo { os t 2~r / F2(/~,q~) sin m((~  # > 0 .  ( l l b )  

In order  to construct  the complete solution I(z,  #, q~) we clearly must solve the prob-  
lems defined by Eqns. (7) and (11) for m = 0, 1, 2 , . . . ,  L. 

II. Analysis--The FN Method 

Since the analysis here in regard to the F N method  follows very closely that 

reported earlier for  the case m = 0, and since we also follow closely the work of  
McCormick  and Kug6er [8] concerning the elementary solutions of  Eqn. (7) we can 

be brief  in our  development  here. Also we omit the index m except where it is essential. 
We begin by writing a general solution [8] o f  Eqn. (7) as 

n--1 

I(r,  #) = ~ [A(vp)(o(v~, #) e -~/vB + A( - vr v~, ~) e ~/r 
/~=0 

fx + A(v)(o(v, #) e -~/~ dv (12) 
- 1  

where we have ~c + pairs of  zeros ( +  v~) of  

f A(z) = 1 + z ~ b ( # ) - -  (13) 
- 1  / ~ - - Z  

with 

L 

~-- ~ ( 2 / +  1)f7'(1 - 1~2)"/2PT'(l~)gT'(#). (14) 
(p(/l) = 2 l=,, 

Here the polynomials  gT'(~) satisfy [6] 

(l - m + 1)g~+l(~ ) = hzr - (l + m)(1 - (~m,t)glm_l(~), l >_ m, (15a) 

with 

g~(r = (2m -- 1)! !. (15b) 

In addit ion 

v 1 L 
(o(vt~, ~u) = ~- ~ ~ ( 2 / +  1)f'~P'F(#)g'F(va) (16a) 

l=??t 

and 

o) [ 1 \ ~  
~(v, ~) = --  v P v / - - 1  )~ ( 2 / +  1)f~P~(#)g~(v) + (1 - v2)-~/22(v)5(v - #) 

2 \ v  - #.] t=m 
(16b) 
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where 

and 

2(v) = 1 + vP f~  1 I/1(I,1) 12-- , (17) 

h, = ( 2 / +  1)(1 - (of). (18) 

As for the case m = 0 ,  there is a full-range orthogonali ty theorem [-8] concerning the 
elementary solutions, i . e .  

- -  ~ ' )  11 12~o(~,12)q)(4',/~)d12 = O, {, 4 ' =  __+va or S (--1, 1), (4 (19) 
3 -  1 

and thus we can use the technique described earlier [3] to develop the following 
singular integral equations and constraints concerning the desired surface intensities 

I(L, -12) and I(R, 12), 12 > O: 

; fo I~q)(4, I~)I(L, -12) d~ + e A/e ~ o ( -  4, I~)I(R, #) d/~ = La(4) (20a) 

and 

fo p~o(~,It)I(R,~)d# + e -A/r 12~o(-4,12)I(L, --12) d12 = L2(~). 
do 

Here 4 e P = {v~} u (0, 1), A = R - L and the known terms are 

and 

F fx L1 (4) = #(,0(- 4, 12)I(L, 12) dp + e -Ale kt(p(4, p)I(R, -12) d12 
dO 

Lz(4) = 12(P(- 4, 12)I(R, - ,u) d12 + e -A/r 12q~(4, I2)I(L, 12) d12. 

If  we now introduce the approximations 

N 

I(L, --12) = (1 - 122),,/2 ~ a=bz~, 12 > 0, 
c~=0 

and 

N 

I ( R ,  12) - -  (1 - 122)m/2 Z ba12~' 12 > O, 
a = 0  

into Eqns. (20) we obtain the F u equations : 

u 2 
[afl~(4) + e-A/~b fl~(4)] = ~-~ L1(4), ~. EP,  

(20b) 

(21a) 

(21b) 

(22a) 

(22b) 

(23a) 
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and 

N 

E 
~ = 0  

where 

and 
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2 
[b=B~({) + e-a/r = ~ Lz(r ~ ~ P, (23b) 

coq 

2 11 ]/=+1q0(_~,//)(1 _ ]/2)rn/2 d// = 

Jo  
(24a) 

2; 
B.(~) = ~ #~+ lq)(~,/~)(1 - #2),./2 d#. (24b) 

We can now use the explicit expressions given by Eqns. (16) and (17) to derive a set 
of  recursive relations that  is useful for  comput ing  the functions A~(~) and B,(~). We 

find 

and 

with 

L 

A= + 1(~) ---- -- ~A~(~) + ( -  1) m ~, ( 2 / +  1 ) ( -  1)~/~' "g~m (~)A~,~m 
l = m  

(25a) 

L 

B~+ ~(~) = ~B~(~) - Y' ( 2 / +  1)f~mg~'(~)A~,t (25b) 
Z = m  

A~m~ = /2 ~ + 1(1 - #2),,/zp,l,(p) dp. (26) 

For  c~ = 0, we find 

B~ = A~ + co \ 2 m  + 1/1 

and 

Here the polynomials  II~"(~) can be generated, for  l > m, f rom 

( 2 / +  1)~YIT'(~) = ( - 1 ) ' - m ( 2 l  + 1)A~'z + (l - m + 1)[I~'+ 1(~) 

+ (l + m)(1 - 51,m)YIt"_ 1 (~) 

with 

n o ~  = 1 

(27) 

(28) 

(29a) 

(29b) 
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and 

c~+a l-I~+ 1(~ ) = (2~ + 1)(1 - ~2)FI:(s + 
(2~ + 1)!! 2%~! 

- - -  (29c) 
2(c~ + 1) 2~ + 3" 

It is important to note here that we have taken the definition given by Eqn. (8) to be 
valid for all ~ e P, i.e. 

P~'(~) = (1 - s d" P,(~). (30) 

The explicit evaluation of the integral appearing in Eqn. (26) is given by Robin [9] ; 
however, we prefer to use that result to deduce the following recursive relation 

( ~ +  2 + ~ ) ( ~ +  1 + ~ ) ( ~  + ~ - / + ~ ) A "  (31a) 

with 

AT, .~  - 

and 

~/Tz (2m)! (c~ + 1)! 

2 2rn)! 
(31b) 

x/r~ (2m + 1)! (~ + 1)! 
A~"+a =2~+m+z (2)"  ( ' + 3 + 2 m 2  ),. (31c) 

Since the functions A~(~) and B~(ff) are now readily available we can select N + 1 
values of  ~ e P at which to satisfy Eqns. (23); we thus can generate 2(N + 1) linear 
algebraic equations that can be solved to establish the required constants a~ and b~, 
~ = 0, 1 , 2 , . . . , N .  

IlL Discrete Eigenvalues 

From the foregoing analysis it is clear that the calculation of the discrete eigen- 
values {v~} is essential to the F s solution of the considered problem. In fact, because 
the Fo equations are so easy to generate and to solve, the computation of  the discrete 
eigenvalues is perhaps the most difficult aspect of  the method. We thus would like to 
report some explicit expressions, at least for the cases for which ~c _< 3, that yield exact 
results for the desired {va}. We note that McCormick and Ku~6er [8] have shown 
that ~c _< L - m + 1 and that Shultis [10] has argued that the discrete eigenvalues are, 
for co < 1, simple and real. The upper bound L - m + 1 is very conservative, and thus 
we use the argument principle [11] to establish ~c. Since A(z) is analytic in the 

complex plane cut from - 1  to 1 along the real axis, A(z) -= A ( - z ) ,  A(~) = A(z) and 
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A(oo) r 0, then ~z~c is the change in the a rgument  of  

lira A(t + it) = A + (t) = 2(t) + nitO(t) (32) 
~ 0  

as t varies f rom zero to one;  i.e. 

1 
~c = - Ao, 1 [arg A ~ (t)]. (33) 

7"C 

We define 

O(t) = arg A + (t) (34) 

and write 

O(t) = t a n - 1  [_ 2 ~ - j  (35) 

where O(t) is defined to vary  cont inuously  f rom 0 to ~ as t varies f rom 0 to 1. 
We note  that  A(z), as given by Eqn. (13), can readily be evaluated numerical ly 

by using a quadra tu re  scheme to compute  the required integral (and for  large values 

o f z  we prefer this method) .  The integral in Eqn. (13) can also be evaluated analytically 

to yield 

/ /  '~ Z - - 1  L 
A ( z ) =  1 +zO(z)log|~, ,}+coz ~ ( 2 / +  1)fT'gT'(z)FT'(z), (36) 

\ z ~ l /  l = m  

where the polynomials  F~"(z) can be generated,  for  l _> m, f rom 

( 2 / +  1)zF~'(z) = - 2 " r n !  6z,,. + (l + 1 - m)FT~l(z ) + (1 + m)(1 - 6~,,.)Fz~_ 1 (z) 
(37) 

with 

Fo~ : 0 (38a) 

and 

F~+l(z) = (2~ + 1)(1 - zZ)F~(z) - 2=e! z. (38b) 

Fol lowing now a previous work  [-12] based on the case m = 0, we write 

L 

A(oo) = 1 - co ~ fW'r (39) 
l = m  

where 

WT' - (~m)!m).i - -  , (1 - 1~2)ml2P'~(Ix)g'F(l~) d#. 

We find that  

(40) 

( 2 / +  1 ) W ~ 1  = h~W'~, (41) 
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with 

W~ = 1, 

so tha t  Eqn. (39) can be expressed as [10] 

(42) 

L 

A(oo) = [ I  ( 1 -  ~of). 
l = m  

We also deduce tha t  

(43) 

a2 a4 A ( z l - - A ( o o ) + ~ + ~ a - + . - . ,  a s z - + o o ,  (44) 

where 

a 2 = - ~ o  ? Jzz(1 - #2)ml2p'~(Ix)g~'(lOd# = -~o  ~, fB~ '  
l = m  1 l = m  

(45) 

and 

a 4 = - c o  # ' (1  - #2)mlZpr(kt)g~(#) d~ = - c o  Z fC 'p .  
l = m  1 l = m  

Here 

(46) 

1 " =h~B'ff+ (21 + )Bl+ 1 

with 

(l + 2 + m)(l  + 2 - m) (I + m ) ( l -  m) 
W "  ( 2 / +  3 ) ( 2 / +  5) ht W~" - 21 - 1 z- 1, 

(47) 

1 
B~- 

2m + 3  (48) 

and 

1 " = h t C '  i f +  (21+ )Ct+a 
(l + 2 + m)(l  + 2 -  m) (1 + m ) ( 1 -  m) 

(21 + 3)(2l + 5) h~T'ff - 21 - 1 Tt 'n- 1, 

(49) 

with 

1 r ( l + 3  + m ) ( l + 3 - - m )  
T'F = B'p + ~ L 2l + 7 

+ (l~ + 2 + 2l+m)(l 3 + 2 - m ! q w ,  p (50) 

and 

C~ = (2m + 3)(2m + 5) (51) 
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A W i e n e r - H o p f  factor izat ion of  A(z) is given by 

A ( z )  = A(oo)X(z)X(-z) [I v2 ( ~ 1 - z2)  (52)  
c~=1 

where 

X(z) - (1 z ) - -  ~ exp O ( t ) ~ _ z  , (53) 

and thus the results given previously for  m = 0 [12] can be used here;  for ~c = 1 

vg A ( o e ) e x p ( - 2 f 2 0 ( t )  (54) 

and 

L o9 
v 2 = 1 - 01 + A ~ )  • fBT' (55) 

l=m 

where 

O~ = -~ t:O(t) dt. (56) 

For  ~c = 2 we have 

v~ = A + (A 2 - B )  1/2 (57a) 

and 

v 2 = A - (A 2 - B )  1/2 (57b) 

where 

L O9 
_ _  B m A = 1 - 101 -t- 1 A(oO) l~=m it l (58) 

and 

B - A(oo) exp - - ~  O(t) �9 (59) 

When  1< -~ 3, we write 

2"2"2 -  1 ( 2fO" ~ )  ovlv2 n(oo) exp - - ~  Off) , (60a) 

L O9 
vg + v~ + v~= 3 - O  1 + A ~  2 fB ' r  (60b) 

l=m 
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and 

L 
2 2 2 2 2 2 3(1 01)-~-0 3 1 2 (D --~m m = - + 3 0 1 + ( 3  01)k-   ' vovl + roy 2 + VlV 2 - f B  l 

L 
(39 

A ( ~ )  ~ f C ' f .  (60c) 
l = m  

Equations (60) clearly can be solved to yield v~, v~ and v~. 

We have explicit results here clearly when x _< 3; however, when re > 3 various 
(arbitrary) values of z can be used in Eqn. (52) to generate x equations that can be 
solved iteratively to find {v~}. 

IV. Numerical Results 

In order to demonstrate the FN method for a basic problem without azimuthal 
symmetry we consider now a beam incident on the surface z = L. We thus write 

Fx(#,  cp) = ~ 5 ( p  - po)5(q~ - CPo) (61a) 

and 

F2( #, ~o) = 0. (61b) 

If  we now take qS~ = q~o then the terms involving Ira(Z, ,U) in Eqn. (4) will not be 
required. For  our sample calculation we use the scattering law given in Table I. The 

Table I 
The scattering law. 

t (2t + 1)f, 

0 1 
1 2.00916 
2 1.56339 
3 0.67407 
4 0.22215 
5 0.04725 
6 0.00671 
7 0.00068 
8 0.00005 

Table II 
Eigenvalues for co 
= 0.95. 

m {~A 

0 4.4036458255 
1.0000526893 

1 1.1322065380 
2-8 
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law is based on the Mie t h e o r y f o r  spherical particles and cor responds  to that  used 

previously  [13] for  c~ = 2 and m = 1.33, where c~ is the size pa rame te r  and m is the 
index of  refract ion.  In  Table  I I  we list the discrete eigenvalues as compu ted  f rom the 
exact expressions given in the foregoing section and refined by using a Newton-  
R a p h s o n  me thod  for  finding the zeros of  A(z). 

O f  course the approx ima t ion  given by Eqn. (22b) must  be modified here since 

I(R, #) has a c o m p o n e n t  that  is a generalized function.  We therefore write 

N 

I(L, - # )  = (1 - #2),~/2 ~ a~/t~, /z > 0, (62a) 
~ = 0  

and 

I(R, p) = I,(R, #) + �89 -- do,m)6(# -- #o) e-a/u, /a > O, (62b) 

where 
N 

I,(R,/~) = (1 - p2)m/Z ~ b jz , ,  # > O. (62c) 
~ = 0  

To find the constants  a~ and b~ we now must  solve the F N equat ions  

N 

~x=0 

1 
= (2 - 6o,,,)p o ~ go(- ~j, #0)[1 - e-a(1/r + 1/.0)] (63a) 

and 

U 1 
(b~B:(~j) + e-A/~Ja~A~(~j)) = (2 - 50,m)PO ~ ~0(~,/%)[e-6/r -- e-A/~o]. 

cz=O 

(63b) 

Here  ~j s P, and to have a simple scheme of  selecting the points  we use ~p = v~, 

17 = 0, 1, 2 . . . .  , ~c - 1, and  ~/~ = (217 + 1 - 2x) / [2 (N - ~c + 1)], 17 = K, x + 1 . . . . .  N. 

It  is clear that  once the constants  a n and b, are determined the complete  angular  in- 
tensity is readily available f rom Eqns. (4) and (62). We therefore  list in Tables  I I I  and 

IV the exit dis tr ibut ions I(L, -~ )  and I , ( R ,  p),/~ > 0, deduced f rom F~ calculations 

as N varied f rom 10 to 15. We believe the ' converged '  results shown in Tables I I I  and 
IV are accurate  to _+ 1 in the last digit repor ted .  

Final ly we note  that  M c C o r m i c k  and Sanchez [14] have communica ted  some 
pre l iminary  work  that  relies on the F N method  to genera te  solutions in order  to s tudy 
the effect o f  exper imenta l  errors  on a repor ted  solut ion of  the inverse p rob lem [15]. 
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Abstract 

The formalism required to solve by the F N method radiative transfer problems lacking azimuthal 
symmetry is developed, and numerical results are given. 

Zusammenfassung 

Es wird der Formalismus entwickelt der zur L6sung von Strahlungsproblemen mit der FN-Methode 
ben6tigt wird, falls keine azimutale Symmetrie vorliegt. Numerische Ergebnisse werden gegeben. 
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