J. Quant. Spectrosc. Radiat. Transfer Vol. 25, pp. 277-283 0022-4073/81/0301-0277/$02.00/0
Pergamon Press Ltd., 1981. Printed in Great Britain

RADIATIVE TRANSFER IN INHOMOGENEOUS
ATMOSPHERES—NUMERICAL RESULTS

R. D. M. Garcia and C. E. SIEWERT

Departments of Mathematics and Nuclear Engineering, North Carolina State University, Raleigh,
NC 27650, U.S.A.

and

Laboratoire d’Optique Atmosphérique, Université des Sciences et Techniques de Lille, Villeneuve d’Ascq,
France

(Received 30 June 1980)

Abstract—The Fy method is used to establish accurate numerical resuits flor the atbedo and the e.xit
distribution of radiation relevant to an illuminated semi-infinite half space with an exponentially varying
albedo for single scattering.

1. INTRODUCTION
We consider here the radiative transfer problem defined by

w0+ 1) =) [ T ) d )

with
10, ) = F(u), n >0, (2a)

and
m I(r, p) <. (2b)

Here 7 € [0, ) is the optical variable, u € [~1, 1] is the direction cosine of the propagating
radiation, I(r, w) is the radiation intensity, and we consider an albedo for single scattering of
the form

o(r)= wye™™, 3)

where 0 <wy <=1 and s > 0. In addition, we consider F(u) to be the given incident distribution
of radiation, and we seek the albedo

A= [ Fwman]” [ 10~wn du @

and the exit distribution of radiation 1(0,—~u), u > 0.

In a recent paper' Mullikin and Siewert established some elementary solutions of Eq. (1) and
reported, for wy=1.0 and s =0.5, 1.0, 1.5, and 2.0, numerical results that were obtained by
using the Fy method™’. A subsequent numerical study* by Larsen, Pomraning, and Badham has
shown that the numerical scheme used by Mullikin and Siewert does not yield satisfactory
results for wy~1 and, at the same time, large values of s, say s=10. We report here an
improved version of the Fy method that allows us to compute A* and I(0,—u), >0, to at
least five significant figures for essentially all values of w, and s.

27



278 R. D. M. Garcia and C. E. SIEWERT

2. ANALYSIS

We begin by expressing I(7, ) in terms of the elementary solutions reported by Mullikin
and Siewert'

i
I('r,p,)=f AW, (v, n)ye ™ du, (5)
0
where
O (v, 1) = %wop(v) e [Pv(p(v)l_ M) “2tanh! p(»)8(p(v) - #]] Fov-pw)  (6)
and
p(v)=wsl(s + v). (7)

In order to demonstrate that Eq. (5) is a sufficiently general solution for the considered
half-space applications we must show that

1
F(u):j AW)Oy(v, ) duv, u >0, (8)
0

can be solved, for a class of boundary conditions represented by F(u), to yield the expansion
coefficient A(»). Pomraning and Larsen’® have, from a physical point-of-view, suggested that for
sufficiently large values of s there should be some discrete solutions in addition to the solution
given by Eq. (5). On the other hand, Larsen, Pomraning and Badham* have, in the manner of
Martin,® shown that Eq. (8) can be solved uniquely for some values of w, and s, and Mullikin’
has argued that I{r, i) can be expressed as in Eq. (5) for all 0 < wy <1 and 0 < s <. However,
to the authors’ knowledge, proof that Eq. (8) can be solved uniquely, for 0 <w,<1 and
0 < s <=, has not been reported.

If A(») could be found from Eq. (8), then clearly Eq. (5) would yield the radiation intensity
for all 7 and all w; however, since we are concerned here with computing only the surface
result 1(0,—u), 1 >0, we use the orthogonality relation'

i
f uw®. (v, W)@ (v~ p)du =0,v.v'€ (0, 1) 9
-1

to deduce from Eq. (5) that

1
f pw®o(v, W) (0,—p)dp =0, v € (0, 1), (10)
-1
or
f] Dy, )0~y dpe = & (V)f F—3-— L e ()
Ol olV, L TR AR 2(1)0p ()/J‘ lip(y)+“~ s b

If we now let £ = p(v) we can write Eq. (11) as

2W(E)

.dL_ : e ' e
oot 0= W@+ 410, g)Pf P | ul0, m“_g—f " (u) SEEEE

(12)
where £ € E £ € (0, 5/[s +1]) and

W(€) = sél(s - £). (13)
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We note that for the case of a homogeneous atmosphere, s =, Bowden and Bullard® have
used a direct numerical technique to solve an appropriate version of Eq. (12). A study
concerning the possibility of using that method for 0 < s <= is currently being carried out by
Bowden.? We prefer to use the Fy method. Noting that Eq. (5) yields

10~ =0 [ AP 85— >0, (14
we introduce the approximation
10w =00 3 () (5= ). >0, (15
a=0 p(v.)+p
where v, a=0, 1, 2,--+, N, are selected points contained in the interval (0, 1) and the

constants {a,} are to be determined. We can also write Eq. (15) as

10.-w) =1 wozaa;,(“#), >0, (16)

where 7, € E. We can now substitute Eq. (16) into Eq. (12) and evaluate the integrals to obtain

N
S al@-¢ [ wrws gex (1

where

M@= & [ -3 (g ) [elosa+ o+ g 10 || 09)

On considering Eq. (17) for N +1 values of & say &, we generate the following N +1 linear
algebraic equations that can readily be solved to yield the desired constants {a,}:

N _ 1 du =
S ar)=6 [ wFuw ez (19)

3. NUMERICAL RESULTS

In order to simplify matters we in general take {5 =&, B =0, 1,2, - - N; for our scheme «
of choosing the collocation points we define

= ZB+1 —s—— = . e
§B_2(N+1)(s+l>’ B=0,1,2,3---,N. 20

We note that we can obtain I(0,~-u), from Eq. (16), for the case s = » if we simply let s > in
Eq. (18) and use the following scheme d of choosing the collocation points: & = v, and

28-1
=51 B=123 N, el

where v, Is the discrete eigenvalue relevant to a homogeneous atmosphere, i.e. v, is the positive
zero of

I S 7
A(z)=1 +2woz f-l -7 (22)

Clearly once we have specified a scheme for choosing the points {£;} and have solved Eq. (19)
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for the constants {a,} then the exit distribution of radiation and the albedo are given, in our
approximation, by

[0~ =2y 0t (—1—) 5>0 23)
’ 2 a=0 o §17+# ’ )
and
1 'Il N
= [ wPde | Jou X adi[1- g top 12| 4
0 a=0

In our study of the computational merit of our solution we have considered incident
distributions of the forms

F(u)=u'1=0,1,and 2, (25a)

and
F(p)=8(u— o). po=110, 1=1,2.3---10. (25b)
For wy<0.7 and s < 10° we have found that scheme a yields excellent numerical results; see,
for example, the case wy=10.7 listed in Tables 1 and 2. For all @, and s = = we have also found
that scheme d yields excellent results. In fact, for the cases considered (apparent) convergence

to seven significant figures was achieved for N typically between 4 and 185,
For w,>0.7 and 10 < 5 < 10° we have found that scheme a, though apparently convergent.

Table 1. The albedo for F(p)=1.

wg § Scheme Fy F, F, F Converged

1 a 0.14516  0.15515  0.15524  0.15524  0.1552404

10 a 0.21641  0.23408  0.23536  0.23542  0.2354182

0.7 107 a 0.22943 025095  0.25368  0.25404  0.2540444
10 a 0.23086  0.25289  0.25586  0.25630  0.2562999

10 a 0.23102 025310  0.25610  0.25655  0.2565564

x d 0.25430 025647  0.25655  0.25656  0.2565566

1 a 0.20587  0.22416  0.22431  0.22431  0.2243149

10 a 033198  0.38693  0.39476  0.39544  0.395445]
0.9 10

a 045918 046373 046417 046436  0.4645445

10 b 0.47459  0.47592 047616 047635  0.4765388

10° b 0.47634  0.47741 047764  0.47784  0.4780230

x d 0.47720  0.47799 047802  0.47802  0.4780245

1 0.23747 026127 026147  (.26148  0.2614794

10 039994 049335 051226  0.51465  0.5146519

0.99 107 0.68294  0.69427  0.69581  0.69602  0.6960620

071430 077229  0.77426  0.77433  (.7743447
071792 0.78714  0.79435  0.79452  0.7945376
0.79448  0.79456  0.79456  0.79456  0.7945637

—_
(=}
™
AT

1 a 0.24080  0.26523  0.26544  0.26545  0.2654478

10 a 040746  0.50611  0.52684  0.52957  0.5295672

0999 107 b 0.71430  0.73459  0.73681  0.73705  0.7370920
10 b 0.74835  0.84690  0.85755  0.85755  0.8575570

106 ¢ 0.92905 092938 092940 092940  0.9294084

» d 092970 09297t 092971 092971  0.9297133

1 a 024117 0.26567  0.26588  0.26589  0.2658917

10 a 0.40830  0.50755  0.52850  0.53127  0.5312681

1.0 102 b 071792 0.73950  0.74180  0.74204  0.7420819
10 b 0.75230  0.85695  0.86982  0.86983  0.8698366

104 ¢ 0.96747 098422 098608  0.98609  0.9860854

x d 1.00000  1.00000  1.00000  1.00000  1.0000000
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Table 2. The albedo for F(u) = 8(x —0.9).

@y s Scheme F, F F Fs  Converged
1 a 0.10560  0.11858  0.11885  0.11885  0.1188532

10 a 0.16949  0.19464  0.19687  0.19699  0.1969850

0.7 102 a 0.18159  0.21193  0.21620 0.21679  0.2167861
10 a 0.18292  0.21393  0.21853  0.21924  0.2192390

10 a 0.18306  0.21416  0.21879  0.21952  0.2195188

L d 0.22220  0.2195¢  0.21952  0.21952  0.2195191

1 a 0.14977  0.17216  0.17262  0.17262  0.1726166

10 a 0.26001  0.32825  0.33924  0.34028  0.3402779

0.9 107 a 0.28356 037657 040471 041516  0.4153221
10° b 0.43278 043067 042998 (.42936  0.4288527

10¢ b 0.43438  0.43234 043166  0.43103  0.4305394

® d 0.43356  0.43057  0.43055  0.43054  0.4305411

1 a 0.17276 020113 0.20172  0.20171  0.2017128

10 a 031324  0.42303  0.44742  0.45067  0.4506724

0.99 10? b 0.62278  0.64550  0.64955  0.65051  0.6502452
10 b 0.65137  0.74101  0.74107  0.74077  0.7406130

106 b 0.65468  0.75963  0.76385  0.76442  0.7642752

kS d 076575 0.76432  0.76431  0.76431  0.7643058

1 a 0.17518  0.20423  0.20483  0.20483  0.2048259

10 a 031913 043445 046100 0.46466  0.4646644

0999 107 b 0.65137 0.68741  0.69262  0.69362  0.6933447
10° b 0.68243  0.82528  0.83282 0.83288  (.8328052

108 c 091856 091805 091790 091780  0.9173692

® d 091824 091773 091773 091773  0.9177295

1 a 0.17545 020457  0.20518  0.20517  0.2051743

10 a 031979 043575  0.46254  0.46626  0.4662623

1.0 10? b 0.65468  0.69254  0.69789  0.69888  0.6986115
10° b 0.68602 0.83676  0.84644  0.84663  0.8465626

10 ¢ 095654  0.98301 098349 0.98362  0.9835482

© d 1.00000  1.00000  1.00000  1.00000  1.0000000

does not always yield sufficiently accurate results, and therefore we have found it convenient to
use a different strategy for defining the collocation points for these values of w, and s. We note
that we can readily extend, by way of Eq. (5), the definition of 1(0,~¢) to all £ [—1,0], and
therefore Eq. (12) can also be readily extended to all ¢ £ [—1,0]. We note that Mullikin’ has
used the integral form of Eq. (1), with Eqs. (2), and Fourier transform techniques to derive a
form of Eq. (12) that is also valid for an extended domain of £ Thus for larger values of w, and
s we use our scheme b given by

&=p+2, B=0,1,2,---min(9, N) (26a)
plus
286-19

to define the collocation and basis points. Finally, if w,= 1 and s is very large but bounded, say
wo=1.0 and s = 10°, we use the following scheme c¢ to define the collocation and basis points:

&=108+2), B=0,1,2,---min(9,N) (27a)
plus
~28-19( s _ -
b =35 (757): B=10.11, N (27b)
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Table 3. The exit anguiar distribution for we= 1.0 and F(u) = 1.

I s=1 s=10 s=100  s=10F s=10° s=x

0.05 0.58966  0.76085  0.87190  0.93580  0.99315  1.00000
0.1 053112 0.73402  0.85895  0.92949  0.99248  1.00000
02 044328 068637 083529 091793 099126  1.00000
03 038031 064424 081318 090701  0.99010  1.00000
04 033296 0.60654 0.79211  0.89645  0.98898  1.00000
0.5 029609 057264 0.77191  0.88613  0.98787  1.00000
0.6  0.26656 054205  0.75250  0.87600  0.98678  1.00000
0.7 024239 051435  0.73384  0.86604  0.98570  1.00000
08 022223 048919 071588  0.85623  0.98462  1.00000
09 020517 046626 0.69861  0.84656  0.98355  1.00000
1.0 0.19055  0.44530  0.68201  0.83704  0.98248  1.00000

Table 4. The exit angular distribution for wy= 1.0 and F(x) = §(u —0.9).

m s=1 s=10 s=100  s=100 s=100 s=x

0.05 069801 098407 1.20114 133392 145551  1.47009
0.1 065651 099353 123673  1.38317 151670  1.53270
02 057637 098484  1.27462  1.44609 160153 1.62013
03 050955 096002 1.28991 148469  1.66083  1.68189
04 045523 092864 129262  1.50941 170558  1.72904
0.5 041078 0.89488 128748 152504  1.74078  1.76659
0.6 037396 086082 127715  1.53431 1.76925  1.79738
0.7 034304 0.82752 1.26334  1.53892 1.79272  1.82316
08 031676  0.79553  1.24715  1.54000 181237  1.84510
09 029416  0.76511  1.22937  1.53837  1.82901  1.86403
1.0 027454 (.73634 121056  1.53462 184325  1.88053

It is apparent from the results of Tables 1 and 2 (and from other cases we have considered)
that the strategy defined here for selecting the collocation and basis points is an effective one.
For essentially all cases that we considered we were able to obtain final results that appear to
be accurate to seven significant figures. We note the Pomraning'® has confirmed selected results
for wy<1, generally to three significant figures, with the code ANISN. However, for the
interesting case of wy,= 1.0 and s = 10° the ANISN code yielded only one significant figure. We
note also that for selected values of s and wy,=0.99 we agree to four or five significant figures
with numerical results obtained from a different basis and collocation scheme by Mullikin.” In
Tables 3 and 4 we report some converged results for the exit distribution of radiation.

Though there are clearly many unresolved mathematical questions concerning the solution
of the considered problem, we believe we have here reported an especially concise and
accurate method for computing the desired solution. We note, for example, that the matrix
elements

$ I 1
Lig)= 66 (s r i eg 1o (g |6 oe 016 - grtop 1+ g || 29

i

used in Eq. (19) are very easy to evaluate.
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