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Abstract-The FN method is used to establish accurate numerical results for the albedo and the exit 
distribution of radiation relevant to an illuminated semi-infinite half space with an exponentially varying 
albedo for single scattering. 

1. INTRODUCTION 

We consider here the radiative transfer problem defined by 

with 

and 

(1) 

W 

lim Z(7, CL) < m. 
T--M (2b) 

Here T E [O, m) is the optical variable, p E [-1, 11 is the direction cosine of the propagating 
radiation, Z(T, p) is the radiation intensity, and we consider an albedo for single scattering of 
the form 

O(T) = cd0 em+, (3) 

where 0 < w. I 1 and s > 0. In addition, we consider F(p) to be the given incident distribution 
of radiation, and we seek the albedo 

-I 1 

Qb dp If ItO, -CL)/J dp 
0 

(4) 

and the exit distribution of radiation Z(0, -p), ZJ > 0. 
In a recent paper’ Mullikin and Siewert established some elementary solutions of Eq. (1) and 

reported, for o. = 1.0 and s = 0.5, 1.0, 1.5, and 2.0, numerical results that were obtained by 
using the F,,, method2s3 . A subsequent numerical study4 by Larsen, Pomraning, and Badham has 
shown that the numerical scheme used by Mullikin and Siewert does not yield satisfactory 
results for w - o - 1 and, at the same time, large values of s, say s 2 10. We report here an 
improved version of the FN method that allows us to compute A* and Z(O,-CL), ZJ > 0, to at 
least five significant figures for essentially all values of w. and s. 
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2. ANALYSIS 

We begin by expressing Z(T, CL) in terms of the elementary solutions reported by Mullikin 
and Siewert’ 

Z(T, p) = 1 
I 

A(v)@,( v, g) em”” dv, 
0 

(5) 

where 

1 
@Jv,F)= -oo~(v) 2 

em “‘[PV(~)-?tanh-‘p(v)6[p(v)-pl]+S(v-iiI (6) 

and 

p(v) = vs/(s + v). (7) 

In order to demonstrate that Eq. (5) is a sufficiently general solution for the considered 
half-space applications we must show that 

(8) 

can be solved, for a class of boundary conditions represented by F(p), to yield the expansion 
coefficient A(u). Pomraning and Larsen’ have, from a physical point-of-view, suggested that for 
sufficiently large values of s there should be some discrete solutions in addition to the solution 
given by Eq. (5). On the other hand, Larsen, Pomraning and Badham have, in the manner of 
Martin,6 shown that Eq. (8) can be solved uniquely for some values of w. and s, and Mullikin’ 
has argued that 1(~, CL) can be expressed as in Eq. (5) for all 0 < w. < I and 0 < s < m. However, 
to the authors’ knowledge, proof that Eq. (8) can be solved uniquely, for 0 < w(, 5 I and 
0 < s < I;, has not been reported. 

If A(v) could be found from Eq. (8) then clearly Eq. (5) would yield the radiation intensity 
for all T and all CL; however, since we are concerned here with computing only the surface 
result I(0, -F), p > 0, we use the orthogonality relation’ 

I’ ~@,(v’,I*)@,(v.-~)~cL =O. V. v’E (0, I) 
-I 

to deduce from Eq. (5) that 

I’ P@O(K PVKJ-CL) dp = 0, v E (0, I). 
-I 

or 

(9) 

(IO) 

(II) 

If we now let 5 = p(v) we can write Eq. (11) as 

where 5 E 3 3 5 E (0, s/[s t 11) and 

WC.0 = s5/(s - 0. (13) 
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We note that for the case of a homogeneous atmosphere, s = ~0, Bowden and Bullard’ have 
used a direct numerical technique to solve an appropriate version of Eq. (12). A study 
concerning the possibility of using that method for 0 < s < 33 is currently being carried out by 
Bowden.’ We prefer to use the FN method. Noting that Eq. (5) yields 

I(O,-r)=~wo~‘A(u)p(u)~,g>O, (14) 

we introduce the approximation 

I(o,-p)=lwo~~~a,p(~~)(p(u,t+p)’ F.00, (15) 

where v,, a=O, 1, 2;.., N, are selected points contained in the interval (0,l) and the 
constants {a,} are to be determined. We can also write Eq. (15) as 

,O,-,,=~~D$~~~~(~~, IJ >O, (16) 
a 

where &, E Z. We can now substitute Eq. (16) into Eq. (12) and evaluate the integrals to obtain 

$ aJ,(I) = 5 I,’ ~0) j$ 5 E Z (17) 

where 

r”(~)=~~u{,(5+$)-~~~-fWO ,$+t (‘)[~log(l+1/5)+Llog(l+llL)]). (18) 

On considering Eq. (17) for N t 1 values of 5, say &, we generate the following N t 1 linear 
algebraic equations that can readily be solved to yield the desired constants {a,}: 

so aJ&) = 5s I,’ CL&J) $9 50 E Z (19) 

3. NUMERICAL RESULTS 

In order to simplify matters we in general take ,& = &, p = 0, 1, 2, * . . N; for our scheme u 
of choosing the collocation points we define 

We note that we can obtain 1(0,--p), from Eq. 

p=O, 1,2,3;..,N. (20) 

(16), for the case s = ~0 if we simply let s +m in 
Eq. (18) and use the following scheme d of choosing the collocation points: to = v. and 

5 =2/3-l 
B - /3=1,2,3;+.,N, 

2N ’ 
(21) 

where v. is the discrete eigenvalue relevant to a homogeneous atmosphere, i.e. v;, is the positive 
zero of 

A(z) = 1 t ;,,z 
I 

’ dp - 
_, p - z’ 

(22) 

Clearly once we have specified a scheme for choosing the points {&} and have solved Eq. (19) 
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for the constants {a,} then the exit distribution of radiation and the albedo are given, in our 
approximation, by 

and 

(23) 

(24) 

In our study of the computational merit of our solution we have considered incident 
distributions of the forms 

F(p) = CL’, I = 0, 1, and 2, (2Sa) 

and 

F(p)=@-p(J). /kj=1/10, 1=1.2,3~“,10. (2Sb) 

For ~~~0.7 and s 5 lo6 we have found that scheme LI yields excellent numerical results; see, 
for example, the case o0 = 0.7 listed in Tables 1 and 2. For all w. and s = m we have also found 
that scheme d yields excellent results. In fact, for the cases considered (apparent) convergence 
to seven significant figures was achieved for N typically between 4 and 15. 

For w,>O.7 and 10~ s < lo6 we have found that scheme u. though apparently convergent, 

Table 1. The albedo for F(p)= I. 

wo s Scheme F0 F, F? F, Converged 

I a 0.20587 0.22416 0.22431 0.22431 0.2243149 
10 u 0.33198 0.38693 0.39476 0.39544 0.3954451 

0.9 102 
6" 

0.45918 0.46373 0.46417 0.46436 0.4645445 
lo) 0.47459 0.47592 0.47616 0.47635 0.4765388 
IO" b 0.47634 0.47741 0.47764 0.47784 0.4780230 
x d 0.47720 0.47799 0.47802 0.47802 0.4780245 

0.14516 0.15515 0.15524 0.15524 0.1552404 
0.21641 0.23408 0.23536 0.23542 0.2354182 
0.22943 0.25095 0.25368 0.25404 0.2540444 
0.23086 0.25289 0.25586 0.25630 0.2562999 
0.23102 0.25310 0.25610 0.25655 0.2565564 
0.25430 0.25647 0.25655 0.25656 0.2565566 

I ll 0.23747 0.26127 0.26147 0.26148 0.2614794 
IO 

;: 
0.39994 0.49335 0.51226 0.51465 0.5146519 

0.99 I@ 0.68294 0.69427 0.69581 0.69602 0.6960620 
IO' b 0.71430 0.77229 0.77426 0.77433 0.7743447 
106 b 0.71792 0.78714 0.79435 0.79452 0.7945376 
x d 0.79448 0.79456 0.79456 0.79456 0.7945637 

1 ll 0.24080 0.26523 0.26544 0.26545 0.2654478 
IO 

i 
0.40746 0.50611 0.52684 0.52957 0.5295672 

0.999 102 0.71430 0.73459 0.73681 0.73705 0.7370920 
103 b 0.74835 0.84690 0.85755 0.85755 0.8575570 
106 

ii 
0.92905 0.92938 0.92940 0.92940 0.9294084 

zc 0.92970 0.92971 0.92971 0.92971 0.9297133 

I u 0.24117 0.26567 0.26588 0.26589 0.2658917 
IO 

1.0 lo2 ;: 
0.40830 0.50755 0.52850 0.53127 0.5312681 
0.71792 0.73950 0.74180 0.74204 0.7420819 

is 1 b 

i 

0.%747 0.75230 0.85695 0.98422 0.86982 0.98608 0.98609 0.86983 0.9860854 0.8698366 

* 1.OOOOa l.OOoOO l.ONQo 1.OOOQo l.OCQOOOO 



Radiative transfer in inhomogeneous atmospheres-numerical results 

Table 2. The albedo for F(p) = S(k -0.9). 

281 

00 

0.7 

s Scheme F. 

1 a 0.10560 
10 a 0.16949 
102 a 0.18159 
IO’ a 0.18292 
106 0.18306 
a : 0.22220 

6 6 Converged 

0.11858 0.11885 0.11885 0.1188532 
0.19464 0.1%87 0.19699 0. I%9850 
0.21193 0.21620 0.21679 0.2167861 
0.21393 0.21853 0.21924 0.2192390 
0.21416 0.21879 0.21952 0.2195188 
0.21956 0.21952 0.21952 0.2195191 

I a 0.14977 0.17216 0.17262 0.17262 0.1726166 

1: 
a 0.26001 0.32825 0.33924 0.34028 0.3402779 

0.9 0.28356 0.37657 0.40471 0.41516 0.4153221 
lo-’ ; 0.43278 0.43067 0.42998 0.42936 0.4288527 
lo6 b 0.43438 0.43234 0.43166 0.43103 0.4305394 
P d 0.43356 0.43057 0.43055 0.43054 0.430541 I 

I a 0.17276 0.20113 0.20172 0.20171 0.2017128 
IO 

0.99 102 % 
0.31324 0.42303 0.44742 0.45067 0.4506724 
0.62278 0.64550 0.64955 0.65051 0.6502452 

!: 3 b b 0.65137 0.65468 0.74101 0.75963 0.74107 0.76385 0.74077 0.76442 0.7406130 0.7642752 
P d 0.76575 0.76432 0.76431 0.76431 0.7643058 

1 a 0.17518 0.20423 0.20483 0.20483 0.2048259 
IO 

; 
0.31913 0.43445 0.46100 0.46466 0.4646644 

0.999 IO2 0.65137 0.68741 0.69262 0.69362 0.6933447 
10’ b 0.68243 0.82528 0.83282 0.83288 0.8328052 
IO6 

; 
0.91856 0.91805 0.91790 0.91780 0.9173692 

P 0.91824 0.91773 0.91773 0.91773 0.9177295 

I a 0.17545 0.20457 0.20518 0.20517 0.2051743 
10 

: 
0.31979 0.43575 0.46254 0.46626 0.4662623 

1.0 IO2 0.65468 0.69254 0.69789 0.69888 0.6986115 
10’ b 0.68602 0.83676 0.84644 0.84663 0.8465626 
106 0.95654 0.98301 0.98349 0.98362 0.9835482 
m : l.OOOOo 1.OOOOO 1.OOOOO l.OOOOO l.OOOOOOO 

does not always yield sufficiently accurate results, and therefore we have found it convenient to 
use a different strategy for defining the collocation points for these values of w. and s. We note 
that we can readily extend, by way of Eq. (5), the definition of 1(0,--t) to all [& [-l,O], and 
therefore Eq. (12) can also be readily extended to all t& [-l,O]. We note that Mullikin’ has 
used the integral form of Eq. (I), with Eqs. (2), and Fourier transform techniques to derive a 
form of Eq. (12) that is also valid for an extended domain of 6 Thus for larger values of w. and 
s we use our scheme 6 given by 

&=p+2, @=0,1,2;~~min(9,N) (26a) 

plus 

(26b) 

to define the collocation and basis points. Finally, if o. = 1 and s is very large but bounded, say 
o. = 1.0 and s = 106, we use the following scheme c to define the collocation and basis points: 

&=10@+2), p=0,1,2;**min(9,N) (27a) 

plus 

p=10,11;**,iY (27b) 



282 R. D. M. GARCIA and C. E. SIEWERT 

Table 3. The exit angular distribution for w0 = I.0 and I+) = I 

0.05 0.58966 0.76085 0.87190 0.93580 0.99315 1.00000 
0.1 0.53112 0.73402 0.85895 0.92949 0.99248 l.OOOOil 
0.2 0.44328 0.68637 0.83529 0.91793 0.99126 l.OOOoO 
0.3 0.38031 0.64424 0.81318 0.90701 0.99010 l.OOOc@ 
0.4 0.33296 0.60654 0.792 I I 0.8964s 0.98898 l.OOO+U 
0.5 0.29609 0.57264 0.77191 0.88613 0.98787 l.OtXtOO 
0.6 0.26656 0.54205 0.75250 0.87600 0.98678 l.OOOOO 
0.7 0.24239 0.51435 0.73384 0.86604 0.98570 l.OC000 
0.8 0.22223 0.48919 0.71588 0.85623 0.98462 l.OQOOO 
0.9 0.20517 0.46626 0.6986 I 0.84656 0.98355 l.OOOOil 
1.0 0.19055 0.44530 0.68201 0.83704 0.98248 l.OOGQO 

Table 4. The exit angular distribution for w0 = I.0 and F(p) = ri(w - 0.9). 

/J ., = I .\ = IO s = 10’ .\ = lo’ \ = IOh ,s = * 

0.05 0.69801 0.98407 I.201 I4 

0.1 0.65651 0.99353 I .23673 
0.2 0.57637 0.98484 I .27462 
0.3 0.50955 0.96002 I .2899l 

0.4 0.45523 0.92864 I .29262 
0.5 0.41078 0.89488 I .28748 
0.6 0.37396 0.86082 I.27715 

0.7 0.34304 0.82752 I .26334 

0.8 0.31676 0.79553 1.24715 
0.9 0.29416 0.765 I I I .22937 
I.0 0.27454 0.73634 I.21056 

I .33392 
1.38317 

I.44609 
I .48469 

1.50941 
I .52504 
I.53431 
I .5389? 
1.54000 
1.53837 
I .53462 

I.45551 
I.51670 

1.60153 
I .66083 
I .70558 
I .74078 
I .76925 
I .79272 
I.81237 
I .829Ol 
I .84325 

I .47009 
I .53270 
1.62013 
I.68189 
I .72904 
I .76659 
I .79738 
1.82316 
I.84510 
I .86403 
I .88053 

It is apparent from the results of Tables I and 2 (and from other cases we have considered) 
that the strategy defined here for selecting the collocation and busis points is an effective one. 
For essentially all cases that we considered we were able to obtain final results that appear to 
be accurate to seven significant figures. We note the Pomraning”’ has confirmed selected results 
for w. < 1, generally to three significant figures, with the code ANISN. However, for the 
interesting case of w. = 1.0 and s = 10’ the ANISN code yielded only one significant figure. We 
note also that for selected values of s and o. = 0.99 we agree to four or five significant figures 
with numerical results obtained from a different basis and collocation scheme by Mullikin.’ In 
Tables 3 and 4 we report some converged results for the exit distribution of radiation. 

Though there are clearly many unresolved mathematical questions concerning the solution 
of the considered problem, we believe we have here reported an especially concise and 
accurate method for computing the desired solution. We note, for example, that the matrix 
elements 

used in Eq. (19) are very easy to evaluate. 
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