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Multigroup Transport Theory.
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The special case of a triangular transfer matrix relevant to multigroup neu tron-transport
theory is discussed. The theory developed for the slowing down of neutrons (or photons)
reduces the multigroup problem to a sequence of one-group problems. Thus, in contrast
to strictly numerical techniques, a method for multigroup theory that does not require
increased computational time for thick slabs is made available.

I. INTRODUCTION

We consider here the multigroup neutron-trans-
port equation written in the form!

0 1 1 , '
Has Uz + ZU (2 = 5 2 f_l Y(z,u)dy , (1)

where the M-vector ¥(z,u) has the group angular
fluxes ¥y(z,u), Yo(z,u), . .. and Yy (z,u) as elements.
In addition T = diagi{o,, 0, ..., o)y} has the group
total cross sections as elements, the transfer matrix
Z; has elements o;;, z is the space variable, and u is
the direction cosine of the neutron-velocity vector.
Since we are interested here in the “slowing down”
problem, we consider the groups to be ordered such
that the transfer matrix Z; is lower triangular, and
thus in scalar notation Eq. (1) is

U % Yi(z,u) + 0;9,(z,u)

i-1
= % 0ii j:ll Vi(z,u)du' + % Z)l 0ij¢i(2) »  (2)
i
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wherei=1,2,..., M and the flux for group j is

8= [y mdn . 3)

We are concerned here with a subcritical, 0;; < o0,
slab z € [L,R], and thus we seek a solution to Eq. (1)
subject to the boundary conditions

Y(L,u)=L(u) , u>0, (4a)
and
Y(R,~u)=R(un) , u>0,

where L(u) and R(u) are considered given.

(4b)

II. ANALYSIS

We note that Larsen and Zweifel> have in-
vestigated the Wiener-Hopf factorization for the
dispersion matrix relevant to the case of a triangular
transfer matrix; however, here we seek to establish
the desired solution by using scalar theory3™ to solve
a sequence of one-group problems. Thus, for the first
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group we write3
Yi(z,m) = Ao (v1,1) exp(—0,z/vy)
+ A(-vy) ¢1(—v1,1) exp(0,2/vy)

+ [ 40)6,0.0) expCorz)dy L (5)

where the elementary solutions are, in general,

1 1
¢i(vi, ) = 5 ¢iv; (m) (62)
and
_1 1
¢i(v,p) =5 civPo |\ =g
+ (1 —¢jvtanh™W)8(v — ) . (6b)
Here ¢; = 0;;/0; and v; is the positive zero of
—1 4+l '
Al'(Z)—1+2C,'Z L n-z - @)

We can now use the full-range orthogonality condi-
tion®

E-8) [ soEmaE mau=0,  (®)

where t§, £ € P, =p; U [0,1] to deduce’ the follow-
ing singular integral equations and constraints for
Y1(L,—u) and Y (R, ), u > 0:

Ll udi(2E, 1) [ Y1 (L, 1)

- exp(iAI/S) wl(Ra#)]d“’ = 0 5

where, in general, A; =
Eq. (9) as

S 1016 UL, ) d + exp-A,8)

EEPI s (9)

0;(R — L). We can rewrite

X [ bR mAR=UE  (100)

and

I 1016 Ui (R ) + exp(-1/8)

X [ uoiEm ¥l mdu= Vi@, (100)

where § € P; and the known inhomogeneous terms
are, in general,

1
U® = [ udi-EmLiwadp

+exp(-AH) [ usEwRWdn (1)
and
1
Vi) = [ ui-EwRw)du
+exp(-ai/8) [ uoiEu)Liwdu . (11b)
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We consider now that Egs. (10a) and (10b)
can be solved, for example, by using the theory of
Muskhelishvili® to obtain Fredholm integral equations
or by the Fy method,® and thus we go on to the
second group. Here we write

Vaz,1) = AW3) o(va, 1) exp(—022/v3)
+ A(—3)po(—v2, 1) exp(0,2/v;)

+ [ 406,00, 1) exp(-052/v)dv

1
+ 5 021¢>2k1(z>#) ) (12)
where Y¥(z,u) is used to denote a particular solution
of

1 Yz ) + 020z 1)

1 1 ] !
=3on [ Ve T2, (3)
and ¢,(z) is the (now considered) known flux relevant
to the first group. We can use the orthogonality
condition given by Eq. (8) and the solution for the
second group, as expressed by Eq. (12), to deduce
that

[ 11 podo(£E,w) [ Yo (L, 1) — exp(£A,/8) Yr(R, u)]du

=L W28 | (14)
where £ €P, =, U [0,1] and
Wa(®) = [ uoaE) (WAL W)
- exp(Ag/)YER WL . (I5)

It is clear that ¥ (z,u) can be expressed in terms
of the infinite-medium Green’s function basic to
Eq. (13). Thus we write

R
Vhew= [ Gazo> 3mei(z0dze . (16)
where,” in general, for z > z,
1
Gi(zo~>z;m) = N ¢i(vi,m) expl-0;(z = zo)/vi]
R L
L N[(V) ¢,‘(V,/.L)

Xexpl—-o0;(z — zg)/vldv , (17a)
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. and forz < z,

Gi(zo—= z; ) =~ 7\/7(1—? ¢i(—vi,m) exploi(z — zo)/v;]

o1
- J Moy Him)

Xexploj(z — zg)/vldv . (17b)
In addition,
1 Ci 1
Nwy =5 el (75 ) (182)
and
Ni(v)=v [(1 - ¢c;v tanh™1p)? + % wzvzc,-z] . (18b)

We now substitute Eqgs. (16) and (17) into Eq. (15)
to find

R
Wa(®) = ~exp(-02L[8) [ 0:(2) exp(opz/o)dz , (19)
so that we can write Eq. (14) as

fo 1 Mp(&, 1) Yo L, ~p)du

+exp(-0g/8) [ 10a(~E1) V(R W) dn

= Us(§) + 3 021 La(®) (20a)
and
L 16205, ¥2(R
+exp(-Agft) [ uda-£0) Yol L, w)du
= Va(§) + 5 Eom n(®) (20b)
where £ € P,,

E(D) = exp(oaL [8) [ 6:(2) exp(-0,2/)dz  (21a)

and

EIu(®) = exp(-0:R1E) [ 6,(2) exp(oz2/)dz

(21b)

It is apparent that the right sides of Eqs. (20) will be
known once we have solved the considered problem
for the first group. However, we seek a theory that
first yields the desired solution at the boundaries,
z = L and z = R, and thus we would like to express
151(§) and Jy (%) in terms of yy(L,u) and Yy(R,u),
u € [-1,1]. If we write Eq. (2), for the first group, as

U 5% [Y1(z,m) exp(o;z/w)]

= %011 exp(o,z/u)¢,(z) , (22)

then we can integrate Eq. (22) to find, for & €
[0,02/041,

(9 = 2 (32) (4( L0180

—R(0,&/0,) exp(-A,/8)]  (23a)

and

I® = 5 (52) tws(R.018/02)

— L(0,¢/0,) exp(—A,/8)] . (23b)

Equations (23) clearly express /,;(¢) and J,(¥) in
terms of the boundary fluxes ¢(L,u) and ¢(R,u);
however, Egs. (23a) and (23b) are not sufficiently
general since Egs. (20a) and (20b) require [,,(§)
and J,,(§) for all § € P,. It is clear that we can for-

mally solve Eq. (22) for y;(z,u) and then integrate
to find

1 R ! ! ) ’
w(D=Ki+3ou [ aiEEIz -2z
(24)
where F,(x) is the exponential integral function and,
in general,

K@= [ 1L(w) expl-o;z - L)fu)

+ Rj(n) exp[—0;(R — z)/ull du . (25)

Multiplying Eq. (24) by exp(-z/s), integrating over z
and using Egs. (21) and (23), we find

A(01E/0) 1 (8)
= [T HIUL) ~ Ya(R ) exp(-4/8)]

du
— 2
TR (262)

and

Al(Uls/Oz)le(E)
= [11 plY1(R,1) — ¥i(L,p) exp(—A,/§)]

_dw

Ok~ 0,4
for all ¢ & [—0,/0,, 0,/0,]. Equations (23) and (26)
clearly provide the expressions sought for the right
sides of Egs. (20a) and (20b).

We now wish to extend the foregoing to the i’th
group. We thus write

(26b)
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Vi(z,m) = AW) ¢i(vi,u) exp(-0;z/v;)
+ A(—;) ¢i(—v;, 1) exp(o;z/v;)

1
+ [ A 8i(0,m) exp(-o;z/v)dv

i-1

2 DIX AN @7
j=1
where
i = [ G~ modzn . (28)
It is thus apparent that for the i’th group Egs. (20a)
and (20b) are replaced by
S 10w (L) + expC-AifE)
1
X f. w6 (£ ViR W) dp
i-1
= Ui®) + 5 £ 2 oyliy(®) (29a)
j=1
and
[ 1010 WiCR ) + exp(-Ai/E)
1
X [ uoi-Em Yil L,
i-1
=Vi®) + 58 2 oyy(®) (29b)
j=1
where £ € P;,
R
E1y(5) = exp(oiL18) [ ¢i(2) exp(-0;z/f)dz  (302)
and
R
£1(8) = exp(-0iR1E) [ ¢(2) exp(o;2/§)dz . (30b)

Considering now the j’th group, we write

exp(G,Z/u) Z) 0k dk(2)

k=1

[tl/,(z w) exp(ojz/m)] =

(€29)

and integrate to find the desired generalizations of
Egs. (23) to be, for £ € [0,1/s5],

- j-1
Lij(§) = 0]] Xij(&) - 2, Ujink(Eﬂ (32a)
k=1 4
and
T R SN
Jij(®) =5 |Yu® = 25 o) (32b)
L k=1 ..
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where s;; = 0j/0;,

Xij(§) = 2531 Y; (L, ~s;j8) — Rj(s:;§) exp(=4Ai/8)]
(33a)

and

Yii(8) = 253 [ Wj(R,s178) — Li(si8) exp(=4;/8)] . (33b)

Now Eq. (31) yields

j
4(2) = Ki(2) + %E e " o Eolz -2z

(34)

which we can multiply by exp(-z/s) and integrate to
find, for all £ & [-1/s;;, 1/s57],

A6 = [ R ~ Yy (Rop) exp(-A,/8)]

du
oiut o

j-1
- (% Asi§) 25 ojrdin(®)
! k=1

(35a)
and

AT = [ kIR = Yy (L) exp(-Ai/E))

d[.l 1 j-1
X o - o 0j Alsi€) kE=1 0jkJir(§)
(35b)
where A;(z) is given by Eq. (7) and

It is clear that Egs. (32) and (35), along with
Egs. (11a) and (11b), provide the right sides of
Egs. (29). It follows that to find W¥(L,—-u) and
Y(R,u), » > 0, we need only consider a sequence of
one-group problems involving angular fluxes at the
boundaries. In the following paper,® the Fy method%?®
is used to develop concise approximate solutions to
Egs. (29a) and (29b) and to establish numerical
results for two basic problems.
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