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Abstract-Particular solutions corresponding to various forms for the inhomogeneous source term are 
established for the equation of transfer with Lth order anisotropic scattering. 

1. INTRODUCTION 

Some years ago particular solutions relevant to several forms for the inhomogeneous source 
term were reported’ for a model of the equation of transfer that was limited to linear 
anisotropic scattering. Here we consider the general case of Lth order anisotropic scattering, 
and thus we seek particular solutions of 

+(s CL)+~(T, II) = $$(21+ l)f,P,(p) P,(P’)~(T, p’)dp’+ S(r) 

for 1 - ofi# 0 and various prescribed source terms S(T). 

2. POLYNOMIAL SOURCE 

We consider first source terms of the form 

S,(T) = TU (2) 

and note that Devaux and Siewert’ have expressed the desired solution, for (Y = 0, 1, 2, and 3, 
in the form 

I,(% CL) = (+--) 2 (21+ l)v(T)P/(CL), (3) 

where the polynomials Tp(T), of degree (Y - 1, are listed in Table 1. We use the definition 

h, = (21+ l)( 1 - wf,). (4) 

Table 1. The polynomials V(T). 
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Since 
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S,+,(r) = (a + 1) 
I 

' S,Wdt, 
0 

we can readily deduce that Eq. (3) is a general form and further that 

and, for I= 0, 1,2,. . . , a, that 

(5) 

TP+l(r)=KP+‘+(~+l) (7) 

where the constants KP+‘, I = 0, 1,2,. . . , a + 1, are to be determined. It is apparent that K:“, 
K:?:, Ku+-' (I 5,. . . are all zero. Thus if we assume that Zo_,(~, CL) has been obtained, then I,(T, CL) 
will be available from Eq. (3) and 

I 
7 

TP(T) = KP + (~(1 - a,,,) T?-‘(t) dt 
0 

(8) 

once we establish the [l t o/2] constants K,", K:+ K:_4 . . . . If we now substitute Eq. (3) into Eq. 
(l), with S(r) = S,(r), set T = 0 in the resulting equation and use Eq. (8), we find the constants 
required in Eq. (8) to be 

2 

@a) 

and, for j = 1,2,3. . . , 

K”._2i=-fi [((u - 2j)KEI!_, t (a - 2j + l)K”,;f_,j]. 
u 21 

(9b) 

To conclude this section, we note that 

is the desired particular solution corresponding to 

3.EXPONENTIALSOURCE 

We consider now a source term of the form 

S(7:v)=eedv,v E (-l,l), 

and, upon substituting 

Z(7, p : v) = F(v, Jo) em+ 

into Eq. (I), with S(r) = S(r : v), we find 

(10) 

(11) 

(12) 

(13) 

(14) 



Particular solutions of the equation of transfer 

where j$ = (21+ l)fr and 

Fl(v) = 1’ P,(p)&, cL) dp 
-1 

can, from Eq. (14), readily be seen to satisfy, for 1~ 0, 

vh,Fl(v)=(I+l)F,+,(v)+I~,-l(v)+2vSo,r. 

We can therefore solve Eq. (14) to find 

where 

If we let 

we may write Eq. (17) as 

where FO(v) is to be fixed so that 

1+; A /3,P,(u)Ff(v) = 0. 
E 

We let 

F,(V) = -27r,(v)--& 2 M(vMv) 

with m,(v) = 0. Here the polynomials satisfy, for 12 0, 

v&(v) = (1 + Ug,+dv) + k,-,(v) 

with go(v) = 1. On substituting Eq. (22) into Eq. (21), we find 

1 
M(v) R(V) = - [ 1 - OJ fi P,mMv)], 

where 

R(u)= ‘ A PP/bM4. = 

Entering Eq. (22) into Eq. (16), we find, for 12 1, 

&h) = (I+ 1)7r/+1(V) + h-*(v) 
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and T,(V) = Y. Thus the desired particular solution can be expressed as 

I(T, p : V) = F( V, CL) emdV 

with 

(27) 

where 

o(v) = - 3f(u) - 2v g BdoaW + M(vk,(Y)lr,(v). (2% 

Here the polynomials r,(u) satisfy, for 12 1, 

with T,(v) = 1. 

(21+ ~)~r,(~) = (I+ ~)r~+,(~) + Irr-,(v) (30) 

Having found the desired solution corresponding to the exponential source given by Eq. 
(12), we now consider 

S(7 : 5) = e@, 4 $Z [ - 1, 11. (31) 

Here 

A(5) f 0, (32) 

where the dispersion function, the zeroes of which are the discrete eigenvalues relevant to the 
homogeneous version of Eq. (l), is given by 

I 
I 

A(z) = 1+ I WP) L-!fL 
-1 k-2 

(33) 

with 

(34) 

On writing 

1(7, CL : 5) = F(Z, P) e+, 

we find that we can express F(r, p) as 

(35) 

+ wtkl(5)1M5~ CL), 

where 

(36) 

(37) 
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It is apparent that Eq. (36) is not valid if A(t) = 0 and thus, for that case, a modification as 
discussed previously3 for the case L = 1, would be required. In concluding this section, we note 
also that Eq. (28) is not valid if R(v) = 0; nor is Eq. (36) valid if R(t) = 0. 

4. ADDITONAL RESULTS 

It is clear that we can take linear combinations of the solutions given by Eqs. (13) and (35) to 
establish particular solutions corresponding to source terms of the form 

for all real 4’ such that A([) # 0 and R(l) # 0 and 

(38) 

(39) 

for all real 5 such that A(i[) # 0 and R(i[) # 0. It is also apparent that a particular solution 
corresponding to a source term of the form 

S(7) = 1-1 A(v) e-“” dv W-N 

is readily available, when R(v) f 0, from Eqs. (7) and (28); we find 

In conclusion we note that the infinite-medium Green’s function? or perhaps the method 
discussed by Mendelson and Congdon? could be used to generate particular solutions ap- 
propriate to source terms not considered here. 
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