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Strong evaporation into a half space 

By C.E. Siewert and J.R. Thomas, Jr., Mathematics and Nuclear Eng. 
Depts., North Carolina State University, Raleigh, and Nuclear Engineering 
Group, Virginia Polytechnic Institute and State University, Blacksburg, USA 

I. Introduction 

The fact that the kinetic theory of vapors close to interphase boundaries 
has attracted considerable attention from theorists in recent years reflects the 
importance of this area of physics to basic engineering problems (in addition 
to the intrinsic mathematical interest). Most early work on this subject 
focused on near-equilibrium processes [1-5] which can be approached via 

linearized analysis. More recently the problem of arbitrarily strong evapora- 
tion into a low-pressure region has been of concern. This is basically a non- 
linear problem as reflected in the work of Kogan and Makashev [6], 
Murakami and Oshima [7] and Yen and Akai [8], all of whom computed 
numerical solutions of the Boltzmann equation or appropriate non-linear 
model equations. Ytrehus [9] has recently studied the problem by solving the 
four moment equations of Lees and Liu [10]. A common prediction of the 
non-linear studies is the existence of a limiting pressure ratio or downstream 
speed ratio beyond which no steady-state solution exists. 

It has, however, been pointed out by Cercignani [l l] that the strong 
evaporation problem can be approached through linear analysis simply by 
linearizing the distribution function about a downstream Maxwell distribu- 
tion containing a drift speed v~. In particular, Cercignani [1 1] conjectured 
that the limiting speed ratio discovered in the non-linear analysis would be 
manifested in the linear case through a failure of the singular eigenmodes 
[12, 13] of the linearized equation to possess the usual completeness 
properties. This conjecture was subsequently investigated by Arthur and 
Cercignani [14] who used the resolvent integration method [15] to study the 
linearized BGK equation [16] with one degree of freedom [17]. 

In the present work the strong evaporation problem is solved, for the 
linear case, by the method of elementary solutions introduced for neutron- 
transport theory by Case [12] and subsequently used by Cercignani [13] for 
problems in the kinetic theory of gases. 

We consider a liquid evaporating at the plane x = 0 into a vacuum which 
occupies the region x > 0. The state of the gas is described by the BGK 
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model, with one degree of freedom, which we write as 

~--~xf (X, ~) = v[@ (x, ~) - f (x, ~)], (1) 

where f ( x ,  ~) is the distribution function, ~ is the molecular velocity in the 
x direction, v is an appropriate collision frequency and 05 (x, ~) is a local 
Maxwell distribution 

O(x) exp,/ [~2RT(x)- v(x)]2 ~(x,  ~) = VZ~ RT(x) l" (2) 

We note that Weitzner [17] has studied sound-wave propagation on the basis 
of this one-dimensional model. Here the density, mass velocity and tempera- 
ture are defined by 

O(x)= ~ f ( x ,~ )d~  (3a) 

O(x) V(x) = ~ ~f(x ,  ~) d~ (3b) 

and o o  
O(x) RT(x) = ~ [ -V(x)]~f(x,  ~) d~ (3c) 

We assume that far downstream the gas relaxes to an equilibrium distribution 
characterized by steady drift velocity v~, density 0o~ and temperature To~ ; i.e. 

x-~oolim q) (x, ~) = f~  (4) - 2]/2~nRT~ exp - 2RT~ / " (4) 

We now follow Arthur and Cercignani [14] and linearize f (x ,  ~) and 4~(x, ~) 
about fo~ (~). Introducing the shifted variable 

c = (5) 

we write, with an obvious change in notation concerning the dependent 
variable, 

f ( x ,  c) =f~ (c)[1 + h (x, c)] (6a) 

where 

foo ( c ) -  ~ R T ~  exp 2RToo " (6b) 

After substituting Eq. (6a) into Eq. (1) and linearizing q) (x, 3) about foo (3), 
we find 

+ h a) + h a) 

= 1 + 2 (e~ -  ~) ~ --~) + 2e~]  e-U~h(2,/~) @ (7) 
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where  

2 = v x (2 RT~)  -~/2 , (8 a) 

g = c(2RT~) -vz  ' (8b)  

and 

u = v~ (2RT~)  -v2  . (8c) 

No te  that  u is the normalized downst ream drift velocity. 
At  s = 0 we equate  the dis t r ibut ion function to some specified distribu- 

tion 

f (O,  8) =fo  (e), e > - u ,  (9 a) 

which means 

fo (e) - f ~  (e) 
a(0, a ) -  f~(a) , e > - u .  (9b) 

As ~ -+ 0% f (2 ,  g) relaxes to f ~  (g) and thus 

l i m h  (2, e) = 0 .  (10) 
3~ -+  OO 

Equat ions  (7), (9b)  and (10) constitute the mathemat ica l  formulat ion of  the 
p rob lem we consider. 

II. Elementary solutions 

W e  

the e lementary  solutions o f  the l inearized B G K  equat ion  

.)_2_ (c+ axh(X'C)+h(x'c) 

Thus if  we subst i tute 

h (x, c: q) = ~0 (r/, c) e - x/("+~*) (12) 

into Eq. (11) we find 
1 

(~-  c) (p(~, c) = 5 - ~  (~ + ") q(c) e -"2 (13) 
V --  

w h e r e  

q(c)= l - 2 u  c + 2 ( u 2 - 2 )  ( c ' - I  ) . (14) 

now suppress the overbar notation and seek to establish, for u > 0, 
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Here  we have normal ized {o (t/, c) such that 

oo 

{0 (~/, c) e -  ~ dc = e -  "~ 
- - 0 0  

with the consequence that 

oo 

j" q) (t], c) c e -e2 dc = - u e -"2 
- - 0 0  

and 
{}o 

s ~o (t/, c ) (c  2 - -}) e-~2 dc = (u 2 - -~) e -"~ . 
- - 0 0  

For  r /~ ( - o o ,  oo) we express the solution to Eq. (13), 
normal izat ion of  Eq. (15 a), as 

{o(~,c)=--~(,j+u)q(c)Pv e-"~ +,~ (~) ~ (~ -  c) 

where  Pv  denotes the principal-value opera tor  and 
{x} 

, ~ ( q ) - - l + ( ~ + u ) e  S~,(/0 d~ 
_~ # - q  

with 
1 

(~) = - ~ -  q (~) e-"~. 

For  q = ~ r ( -  o0, oc) Eqs. (13) and (15a) can be  solved to yield 

~(& c) = - ~ -  (~ + .) q r  e -~  

where  ~ must  be a zero of  

d/~ 
A (~) = 1 + (z + ~) .f ~(~) ~ _ .  
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subject  

(15 a) 

(15b) 

(15c) 

to the 

(16) 

(17) 

(18) 

09) 

(20) 

(23) 

(22) 

(21) 

finite plane. However ,  since, as I z] ~ ~ ,  

1 1 3 

we find that Eq. (11) admits  the solutions 

ha(x, c) = c a ,  e =  0, 1 and 2 ,  

plus, if  u 2 = 3/2, 

ha (x, c) = (x - u - c) q (c) .  

W e  can use the argument  principle [18] to show that A (z) has no zeros in the 
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Having  found the desired e lementary solutions, we now express the general 
solut ion to Eq. (11) as 

)r oo 

h ( x ,  c) = ~'~A~ h a ( x ,  c) + SA (t/) (aQT, c) e -x/c~ dr/,  (24) 

where z = 2 for u 2 4= 3/2 and z = 3 if  u s = 3/2. In addit ion,  the constants A~, 
o~= 0, 1 , . . . ,  z, and A(r/) are expansion coefficients to be determined from 
the boundary  condit ions imposed  on h (x, c). 

III. Boundary-value problem 

As discussed in Section II, we now seek a solut ion of  Eq. (1 I) subject  to 
the bounda ry  condit ions 

lim h (x, c) = 0 (25 a) 
g ~ O 0  

and, for c > - u, 
fo (C)  

h (0, c) = ~-  (c) 1,  (25 b) 
foo (c) 

where  fo (c) is considered given and 

0oo - e  -e~.  (26) 
fo~ (c) = ]/2 re R To, 

In order that h ( x ,  c) vanish at infinity, as prescribed by Eq. (25a), we take 
A~ = 0, a = 0, 1, . . . ,  z, and A (r/) = 0, r /<  - u, in Eq. (24) and therefore write, 
for all x _- 0 and - oo < c < 0% 

o0 

h (x, c) = 5 A (r/) 9)(r/, c) e -x/(n+u) dr/. (27) 

To satisfy Eq. (25 b) we clearly must  de termine  A (I/) such that, for c > - u, 
co 

Y- (c) = S A (r/) ~0 (r/, c) d v . (28) 

We consider  for the momen t  that  J (c) is known and we write Eq. (28) as 

1 ~ dr/ 
.Y- (c) = A (c) 2 (c) + - ~ -  q (c) P 5 A (11) (11 + u) e-n2 (29) 

- u  r/--C 

Thus, following Muskhelishvil i  [19], we int roduce the sectionally analytic 
function 

dr/ 
1 f A ( r / ) ( r / + u )  e - " z -  (30) 

N (z)  = 2 ~z i _ ~ r/ - z ' 
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with limiting values, for c ~ ( -  u, oo), 

1 
N• = - ~  t. P S A(~/) ( r /+ u) e -"2 

- - U  

and use 

A• (c) -- 2(c) _+ rc i(c + u) ~#(c) 

d~l + _ l A ( c ) ( c + u ) e _ C 2  ' ( 3 1 )  
r / - c  2 

(32) 

to rewrite Eq. (29) in the form of  a R iemann-Hi lbe r t  problem, i.e. 

(c + u) e -  c2 y , N + (c) = a - 1  (c) N -  (c) ~ (c) 
A + (c) 

where  
A+(c) 

G(c) =A-(c---~)" 
If  we now let 

(33) 

(34) 

O (z) = arg A + (z),  (35) 

with O ( -  u) = 0, we can write the solution of  Eq. (33) as [19] 

1 ~ dc 
N(z) ~ K ( c ) Y ( c ) - - ,  (36) 

2~r i X(z) - u C - - Z  

where  
, X + ( c )  

K(c) = (c + u ) ~ e  -d  (37) 

and, for u 2 < 3/2, 

1 ~ dz } 
1 exp l - -  ~ [O (z) - 2 re] (38 a) J r ( z )  = (z + u) ~ t ~ _~  r -  z 

and, for u 2 _-__ 3/2, 

X (z) (z + u) ~ exp -u~ [O (z) - 3 re] ~ . (38 b) 

F rom Eq. (30) we see that  N(z) vanishes as 1/z as Iz l -+  oo, and thus in 
order  for Eq. (36) to yield the correct N(z) we impose  on Y ( c )  the conditions 

oo 

~K(c) Y ( c )  c ~ d c =  0 ,  (39) 

where  ~ =  0 and 1 for u 2 < 3/2 and 0~= 0, 1 and 2 for u 2-> 3/2. W e  can use 
Eq. (25 b) to rewrite Eq. (39) as 

= (So(C) 1 K (c) c ~ dc = ~ K(c)  c ~ d c ,  (40) 
if| (c)l - - U  - - ~  

where  again e -- 0 and 1 for u 2 < 3/2 and ~ = 0, 1 and 2 for u 2 >= 3/2. 
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IV. Factorization ofA (z) 
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We now wish to factor the dispersion function A (z) in the manner  

A(z )  = k X ( z )  Y ( z ) ,  (41) 

where  k is a constant and the sectionally analytic function Y(z)  is analytic in 
the plane cut from - o o  to - u  along the real axis. We can readily deduce  
f rom Eq. (41) that the l imiting values of  Y(z)  satisfy, for ~ 6 ( -  oo, - u), 

Y+ (T) = G (r) Y- (r) (42) 

and thus we can write the canonical solution [19], for u ~ _-< 3/2, as 

{ 1 - u  dVz} Y ( z ) =  1 exp ~[O('c)+~z] (43a) 
Z- I -U  -oo ~c -  

and, for u 2 > 3/2, as 

Y(z)  = e x p  ) ? ( r )  ~ - ~ _  z / .  (43b) 

We can now let ]z I ~ oo in Eq. (41) and use Eqs. (21), (38) and (43) to 
establish that 

k -  3 U2 - -~, = 3 /2 ,  (44a) 

and 

k = -  u(u  2 - - ~ ) ,  u 2 * 3/2 .  (44b) 

Since X ( z )  vanishes at infinity and is analytic in the plane cut along the real 
axis from - u to oo we can use Cauchy 's  integral formula  to write 

X ( z )  = 1 y [X+(c) - X - ( c ) ] - - d c  (45) 
2~zi -u  c - z  

or, after we use Eqs. (32) and (41), 

1 ~ ( c +  u) ~(c) dc 
X ( z )  = --~ -u  Y(c) c - z (46) 

In a similar manner  we can deduce  that 

Y ( z ) =  Y ( o O ) + k - ~  ~ ( r + u )  qJ(r) d~ (47) 
_ ~ X ( r )  r - z 

where  g(oo)  = 0 if u 2 = 3/2 and Y(oo) = I for u 2 > 3/2. F rom Eqs. (37) and 
(41) we see that, for c ~ ( -  u, oo), 

(c + u) -c2 
K(c)  k Y(c) e (48) 
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and thus if we let 

1 
Y(c) ' VK 

and 
1 

~(~)  - V ~ X ( r ) '  

c e ( - u ,  oo), 

r e ( -  o o , - u ) ,  

then we can write Eqs. (46) and (47) as 

1 = J" ~ (c )  r  (c) dc + (r + u) ~ ~u(c) (/}1 (c) dc 
r  -u -u c - r '  

for z e ( -  0% - u), and 

e l  (c) 

- - U  - - U  

= ~ Y(oo) + ~ V(T) q~2(T) d r +  (c + u) ~ q,'(r) q~2(r) dr 
T - - C  

for c e ( -  u, oo). It is clear that @1 ( -  U) q52 ( -  u) = 1 and that  

- -  - ~ ~,(c) @1 (c) dc 
- - g  

- - U  

S w(r) a,~ (r) & .  

1 
~2 ( -  u) 

and 
1 

~1 ( -  u) - -  = 1/T y(oo) + 

We therefore define 

(49 a) 

(49b) 

(5Oa) 

, ( 50b)  

(51 a) 

(51 b) 

H1 (c) = ~1 (c) r  u) 

and 

(52a) 

H2(r) = q52(r) @1(- u) 

and write Eqs. (50) as 
oo 

H z ( - r ) = l + ( r - u ) H 2 ( - T  ) ~ ( c )  H~(c) dc 
c + r  

- - U  

for r s (u, oo), and 
dr  

H1 (c) = 1 + (c + u) H1 (c) ~ ~ ( -  ~) H2 ( -  r) - -  
~ + c  u 

(52b) 

(53 a) 

(53 b) 

for c ~ ( -  u, Go). If  we now extend the domain  of H1 (c) and H2 (r) by, for 
example, Eqs. (49) or (53), we can write Eq. (41) as 

A (z) H1 (z) H2 (z) -- 1. (54) 

To conclude this section we note that Eqs. (51) yield the identities 
oo 

~u(e) H1 (c) de = 1 (55) 
- - U  
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and 
oo 

~u(- r) H , ( -  r) d r  = 1, u 2 _-< 3 / 2 ,  
u 

while f rom Eqs. (38) and (46) we can deduce  that  

~9 

(c + u) gt(c) H1 (c) dc = 0 
- -U 

and 
o~ 

~ c(c  + u) ~,(c) H l  (c) dc = O , u '  ~ 3 /2  . 
- - U  
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(56) 

(57) 

(58) 

V. Final results 

Returning now to the boundary-va lue  prob lem considered in section III, 
we note that 

11 (x, c) = ~ A (rl) ~o (q, c) e -  x/(,+u) dr/, (59) 
- -U 

where  A(r/) can be found from Eqs. (30) and (36) once the condit ions 
prescr ibed by Eqs. (40) are satisfied. We  rewrite these condit ions here as 

 lJo(.) } 
__ ~/. [ ~ ' - )  1 (C -~- ~t) H 1 (C) e - c '  c ' dc  = 0 ( 6 0 )  

where  e =  0 and 1 for u 2 < 3/2 and ~ =  0, 1 and 2 for u 2__-> 3/2. N o w  if we 
consider  )c o (4) to be a Maxwell ian dis t r ibut ion and linearize abou t  f ~  (~) we 
find that 

f~ = 1  + A ~ + 2 C ( U o - U ) + ( c 2 - @ ) A T ,  (61) 
foo (c) 

where  

A~ = ~ o -  ~ , (62a) 
0~ 

ST= ro-r  
To~ (62b)  

and Uo is the drift  speed at the boundary .  It is apparen t  that  for u 2 < 3/2 we 
can enter Eq. (61) into Eqs. (60), for ~ = 0 and 1, and determine  AQ and 4 T 
for prescr ibed values of  uo - u. In this way  we deduce  that  

1 1 (H1,1 q- u H1, 0) A O -t2 [ H 1 ,  3 - 2 H1,1 -[- ~/(H~ 2 - ~ H1, o) ] z /T 

= 2(u  - uo) (H1,2 + u H i , 0  (63a) 
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1 1 
(H1,2 q- u H~,I) AQ + [H1,4 - ~ H1,2 -b u (H1,3 - ~ H1,1)] AT 

= 2 (u - u0) (H1, 3 + u H1, z) (63 b) 

where we have used 

HI,~ = ~ Ha (c) e -c2 c" dc (64) 
- - U  

to denote moments of H a(c). Assuming that Eqs. (63) are linearly indepen- 
dent, we can readily solve them to find A~ and AT. We note that Eq. (31) 
yields 

(r/+ u) e -"2 A (q) = N + (r) - N -  (r) (65) 

and thus we can deduce from Eq. (36) that 

H e + 2 C ( . o - U ) +  c2-  
- - U  

�9 Ha (c) ~o t (r/, c) dc (66) 
where 

~ot (r, c) = (c + u) ~u(c) P v (  q l~_ c ) + 2(r) 5 ( r -  c) . (67) 

From Eqs. (53) and (54) we can establish that, for r ~ ( -  u, ~ ) ,  

�9 ~(r) Ha(r) = P ~ (c + u) ~u(c) Ha(c) dc (68) 
- u  C - - r  

so that Eq. (66) can be written as 

AT 
A(r) = A+(r)A-(r) Ha(r) ~c(c + u) ~(c) H~(c) dc. (69) 

Finally to compute the density, temperature and speed perturbations we use 
Eqs. (3), (6) and (27) to deduce that 

A T(x) = 2(u ~ - ~) Ao(x) (70a) 

and 

A V (x) : - A ~ (x) (70 b) 

where 

1 ;? e_~2_x/l~+u) A0(x) = - ~ - _  (~/) d r .  (71) 

Thus for u 2 < 3/2 Eqs. (63), (69), (70) and (71) yield the desired solution. 
We have used the L functions discussed in the Appendix to compute, for 
selected values of u 2 ~ (0, 3/2), H~ (c) and HH(- z). In Table 1 we compare 
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Table 1. Density and temperature perturbations 
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u ~/~o r:/r0 

Present work Ytrehus [9] Present work Ytrehus [9] 

0.0 1,0 1.0 1.0 1.0 
0.1 0.8812 0.8494 0,9195 0.9567 
0.2 0.7961 0.7283 0.8421 0.9152 
0.3 0,7322 0.6303 0.7695 0.8756 
0.4 0.6824 0.5501 0.7024 0.8378 
0.5 0.6427 0.4841 0.6407 0,8016 
0.6 0.6104 0.4292 0.5845 0.7671 
0.7 0.5838 0.3834 0.5334 0.7342 
0.8 0.5616 0.3447 0.4870 0.7028 
0.9 0.5429 0,3120 0.4449 0.6729 
1,0 0.5271 0.4068 
1.1 0.5138 0.3722 
1.2 0.5025 0.3407 

our numerical results (for u 0 = 0) for the density and temperature perturba- 
tions with those based on a non-linear model and computed by Ytrehus [9]. It 
is clear that the considered linearized one-dimensional model yields only 
qualitative agreement with Ytrehus. The extension of this analysis to the 
three-dimensional BGK model is thus the subject of continuing work on this 
problem. 

For u2>= 3 /2  the considered problem has no meaningful solution. Note, 
for example, that Eqs. (60) would represent three linear algebraic equations 
for the two considered unknowns AQ and A T. We also observe that Eqs. (58) 
and (69) require, for u 2 ~= 3/2,  A (17) =- O. 

Acknowledgements 

The authors wish to express their gratitude to C. Cercignani, who 
suggested this work, S. K. Loyalka and T.S. Storvick for several helpful 
discussions concerning the formulation of the problem solved here. This 
work was supported in part by the National Science Foundation through 
grant CPE-8016775. 

Appendix: The L equations 

In trying to solve Eqs. (53), written here for c e ( -  u, oo) and r e (u, oo) as 

1 = ~ _ _ d c  (A. 1 a) 
H2(_r)  1 - ( r - u )  ~f f (c )  H l ( c  ) c +  T 

- - U  
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and 

1 _ l _ ( c + u )  ~ ( - - T )  H2(--T) d____f_r, (a.  lb)  
H 1 (c) u r + c 

numerically we have found that an iterative procedure based on Eqs. (A.I) 
converges very slowly, and thus we now wish to extend our previous studies 
[20, 21], concerning H-function calculations in order to establish a rapidly 
converging method for computing Ha(c ) and H 2 ( - r ) .  We introduce, for 
u 2 < 3/2, 

H~ (c) = (c + 1 + u) La (c) (A.2 a) 

and 

g 2 ( -  r) = (v+ 1 - u) 2 L2( -  r) (A.2b) 

and substitute Eq. (A.2 a) into Eq. (A. 1 b) to find, after we use Eq. (56), 

1 ~ dr 
- 1 +(c+u) ~u( -v ) (T-  1 -  u) H 2 ( -  O - -  

L 1 (c) u r + c 

In a similar manner we substitute Eq. (A.2b) 
Eqs. (55) and (57) to obtain 

OO 

1 1 - - ( T - - U )  S ~ , ( C ) ( C - - I + u )  zHa(c)  de 
L 2 ( -  T) - u C + T 

(A.3) 

into Eq. (A.la)  and use 

(A.4) 

If we now use Eqs. (A.2) in Eqs. (A.3) and (A.4) we find the desired 
L equations: 

l__~=l+(c+u) S ~ u ( _ r ) ( r _ l _ u ) ( r + l _ u y L 2 ( _  0 dr (a.5 a) 
L1 (c) u r + c 

and 
1 ~o dc (A.5 b) 

L2(_z) 1 (T--U) ~N(C)(C l+u)~(c+l+u)La(c) C+T 
- - U  

We have found that a numerical solution of Eqs. (A.5), by an iterative 
procedure, converges rapidly, and thus we were able to establish L 1 (c) and 
L2 ( -T)  and subsequently, by way of Eqs. (A.2), also t o  deduce numerical 
results for Hi(c) and / /2( -T) .  To establish confidence in our computed 
values of Hi(c) and / / 2 ( - r )  we verified Eqs. (55), (56) and (57) and the 
identity 

)(;: ) ~U(--z) H2(--T)(T--u)dT (c) g~(c)(c+u)2dc =u(u2-3/2) (A.6) 
~ U  

to at least ten significant figures. 
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Abstract 

Evaporation of a liquid into a vacuum occupying a half space is investigated on the basis of 
the one-dimensional BGK model linearized about a drifting Maxwellian distribution. A unique 
solution is shown to exist if the downstream speed remains subsonic. Exact analysis is used, and 
numerical results are given. 

Zusammenfassung 

Auf der Basis eines eindimensionalen BGK-Modells, das fiber eine driftende Maxwell- 
Verteilung linearisiert ist, wird die Verdampfung einer Flfissigkeit in ein einen Halbraum 
ausffillendes Vakuum untersucht. Es wird gezeigt, dab nur eine einzige LSsung existiert, wenn 
die Geschwindigkeit im Unterschallbereich bleibt. Exakte Analysis wird verwendet und nume- 
rische Resultate angegeben. 
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