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The matrix Riemann-Hilbert problem relevant to the scattering of polarized light 

is solved up to the resolution of two existence questions. The solution obtained is 

used to establish an explicit expression for the related H matrix. and evidence that 

the mentioned existence questions can be answered in the affirmative is provided by 

a numerical evaluation of the final result. 

I. INTRODUCTION 

Basic to exact analysis [ 1 ] of the equation of transfer 

~aI(r,ii)+r(r.~)=~~QOI) 1" Q'C,u')I(s.p')dp (1) 
I 

formulated by Chandrasekhar [2] to describe the scattering of polarized light 
is the solution to the Riemann-Hilbert problem defined by 

@‘cp) = GCu) @-cu), p E (0, 1). 

Here, for Rayleigh scattering, 

(2) 

(3) 

and we use I(r,p), with components I,(r,p) and I,(s,,L), to denote the 
intensity vector. Also, w E (0, 1) is the albedo for single scattering, r is the 
optical variable and ,U is the direction cosine of the propagating radiation. 
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Given [ 1 ] that the G matrix in Eq. (2) can be expressed as 

G(a) = A+@)[~-(a)]-‘. (4) 

where 

A(z)=I+z 1-l Y@)& 
-I z (5) 

and 

‘W) = %Q’W QCUL (6) 

we seek a 2 x 2 matrix Q(z) that is analytic in the complex plane cut from 0 
to 1 along the real axis such that det Q(z) # 0 and such that the limiting 
values of O(z), say @ *(,u), as z approaches the cut from above (+) and 
below (-) satisfy Eq. (2). 

II. ANALYSIS 

,z) can be expressed as We note first of all that A( 

A(z 

where 

) = n(z) +f(z) Y(z). 

f(z)=z (I -!c 
.-I P--z 

and 

I-I(z)=I+$wz2 1 + - 3z? 32:) fi(2 Jz( 6z2- 2 - 3z?) 10 I ’ 

(7) 

(8) 

(9) 

It is clear that 

(1-z2)‘A(~)Y-‘(~)=(1-~Z)2f(~)I+(1-~~)2~(~)Y~’(z) (10) 

can be diagonalized by a similarity transformation involving at worst R(z) = 
h(z), where q(z) is a polynomial. This idea of diagonalizing a matrix 
Riemann-Hilbert problem with nonanalytic functions was used by Darrozes 
[3 ] whose solution, for a problem in rarefied gasdynamics, unfortunately is 
not of the correct form at infinity. Cercignani [4] was able to correct the 
solution of Darrozes, and Siewert and Kelley [5] used a solution similar to 
that reported by Cercignani to develop a canonical solution and to compute 
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the associated H matrix. We note that Cercignani [6] has also discussed this 
diagonalization idea in the context of neutron transport theory. 

We find that 

r /;;,. \ 
S( 

1 -v L( 

V/L(I -W)Z2 +[Riz) +P(z)l 
1 -z2 

z) = K’l - z2) $w -P(Z)1 
(1 -o)z? 1 ’ 

(11) 
where 

p(z) = (1 - (0) zJ + (3w - 4) z? + 1 (12) 

and 

q(z) = 9( 1 - w)’ zB + 6( 1 - w)(3w - 4) zh + (130’ - 380~ + 26) zJ 

+ 2(3w - 4) z2 + 1, (13) 

is such that 

S(z) 3(1 - z2)2 A(z) Q-‘(z) Q-‘(z) S-‘(z) = i-k(z). (14) 

Here 

a(z) = diag[a,(z), R?(Z)], 

Q,(z) = 3( 1 - z2)2 A,(z) + 2( 1 - co) z? + (-1)” R(z) 

(15) 

(16) 

and 

(17) 

We note that q(z) has no real zeros, and thus we write 

q(z)=9(1 -w)Z ;I (z-ZJ(Z-FZ,) (18) 
n=l 

and let f, denote the straight-line path connecting -I;, and z,. Then we 
consider that branch of R(z) that is analytic in the complex plane cut along 
r = f, U TZ U fj U r,, . We now express the desired solution as 

O(z) = s - ‘(z) U(z) S(z) (19) 

and require that 

‘D+(p) = GCp) @-ip), ,uE (0, l), (20) 
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and 

@f(r) = W(r), r E 1-. 

Thus the sectionally analytic U(z) must satisfy 

U+(p) = G,Cu) U-CUL P E (0, 11% 

and 

U+(r) T(s) = T(r) U-(r), r E I-. 

Here 

and 

T(r)=-S’(r)lS-(r)]-‘= 

As before [ 5 1, we write 

U(z) = diaglU,(z). UZ(z)], 

let 

e(z) = exp t&J,’ 1 arg B(x) - (- 1)” z [ arg A(x) 

- 4n i kjAj(x) - . 
j-l 

Here the kj are integers and 

A,(x) = 1, +lT E (xj.O 3 -yi. I )* 

=o otherwise. 

(21) 

(22) 

(23 1 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

We use here continuous values of arg A(x) and arg B(X). with arg A(O)= 
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arg B(0) = 0. Now since R(z) + zJ as IzI + co1 it is apparent that U:(z) will 
not have finite degree at infinity unless we impose the conditions 

at-g A(s) - 4n \‘ kjAj(x) 
,T, 

p = I,2 and 3. 

(32) 

We write 

y,(-y) = pw’, (33) 

with 

3( 1 -x2)2 7colK 

6(1 -x*)~&,(.~)+4(1-o)~‘+2(-1)~R(x) 
(34) 

and 

Thus 

&J-u) = 1 - CL)S tanh- ’ x. (35) 

arg A(x) = 2[6,(x) - S+)] = 20(s). (36) 

arg B(x) = 2[6,(x) + 6,(x)] = 2$(x) (37) 

and Eq. (32) can be written as 

We note that B(x) E [0, x] and 4(x) E [0, 2~1 for x E [0, 1) and that we can 
now write Eq. (30) as 

Now, to be specific, we take kj = (- 1 )j+ ‘, xjqO = ,yj and xj., = 1, for j = 1, 2 
and 3, and thus we write Eq. (38) as 

F(x, , x,, x3) = 0 (40) 
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and 

F(I,.-~,,.K,)=!:~,~ 
.x1 1 

w(x) d-K - ./I? R(x) -W(x)d.u-Y, (41) 

1 
W(x) = .K ) I I x2 

(42) 

(43) 

We have found that the Newton-Raphson method can be used to generate. 
in a few iterations, numerical solutions of Eq. (40), and thus we list in 
Table I some typical results. We now write Eq. (39) as 

-- ’ 
(44) 

and to remove the singularities at z = .K, , .Y> and xj we write our final results 
as 

lIlai, = (z - x,)(z - .K?)(Z - x3) U,*(z). (45) 

We note that 

det Q(z) = U,(z) U?(z) (46) 

TABLE I 

Computed Values of x,. .Y: and x, 

w -VI S? -t. 1 

0.1 0.55291413 0.59939422 0.95359687 
0.8 0.56344797 0.62574817 0.95366355 
0.9 0.57739222 0.66130656 0.95908892 
0.99 0.60303665 0.71781370 0.9837696 I 
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Or 

where 

det Q(z) = (1 - z)(z - x,)‘(z - X#(Z - xl)’ X(z) (47) 

X(z) + exp - 
Z ( 1 

i .‘I 46) -&) 
0 

(48) 

is a canonical [ 7 1 solution of 

det a’@) = det G@) det W(L). ,u E (0, 1). (49) 

It is thus apparent that 

aqz) = s- ‘(z) U(z) S(z) (50) 

is not a canonical solution of Eq. (2). If we let so(z) denote such a canonical 
solution (with normal form at infinity), then [7] 

Q(z) = @o(z) P*(z). (51) 

where P*(z) is a matrix of polynomials with 

det P*(z) CC (I - I)(Z - .u,)‘(z - x?)‘(z - x~)‘. (52) 

Since we wish to establish the H matrix [I]. i.e., 

H(z) = @,‘(-z) D -‘(-z) @g(O). (53) 

D(z) = 
1 0 

0 vi ‘(‘lo - z) I 

and q. > 1 is the positive zero of 

A(z) = det A(z), 

we write Eq. (51) as 

@o(z) D(z) ,p, 
0 

(54) 

(55) 

= f( 1 - z& - x,)‘(z - xJ2(z - “Yj)2] - ’ al(z) P(z), (56) 



516 SIEWERT, KELLEY. AND GARCIA 

where P(z) is a matrix of polynomials. We note that Siewert and Burniston 
[I ] have shown that 

a+... P -+ . . . 
Z 

@o(z) - 

I I 

6 ’ 
/z/+ 03,cdfP~. 

)I+... -+... 
z 

so that from Eq. (56) we can establish that 

P(z) = A + Bz f Cz2 + Dz’ + EzJ, 

where 

E=f 
L 

U300) + ZU~(m) Jz[U::(co) - Uf(oo)l 

“qu;“(e - W(~jl UT(a) + xq(oof 1 
We can now use the fact [ 11 that 

H’(z) A(z) H(-z) = I 

to deduce that 

M’(vo) %(ao) Wo) = 0, 

where M(q,,) is a null-vector of A(qO). i.e., 

Nrlo) M(vo) = 0. 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

and thus the required constants A, B, C and D can be determined from 

MFOd @(vo) P(rlo) = 0, (63a) 

W) Wj = 0. 4;=x,,.xI.x1and 1. (63bf 

and 

Equations (63) clearly are 16 linear algebraic equations to be solved for the 
16 required elements of A, B, C and D. We find, however, that the inversion 
of a single 8 x 8 matrix A is sufficient to develop the solution to Eqs. (63). 

Finally we write the desired H matrix as 

H(z) = s;x;s~2v, + zj S’(z) u-7-j s-‘(z) =‘(z1 QF(0), (64) 
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where 

E(z) = (q. + z)( 1 + z)(z + x&z + .G)‘(z + X$ P-r(-z) Ar. (65) 

Since we can readily show that 

q(oo)=exp 
( 
(-1)“3(1-m) &J.‘&R(“)di 

[ 

- (( f)&dK]). o 
. I, 

U,*(O) = 
1 

yy [(I - o)(ll- $J),r;J exp ( 
(-l)a+’ .’ 19(x) dx 

2n -In R(I)7 

(66) 

(67) 

and 

O(0) = -x,x2q 
[ 
u;(o) 0 o 

1 UXO) ’ (68) 

we can solve the mentioned linear algebraic equations to find A, B, C and D. 
and thus we can compute H(L). ,L E [O, I]. from Eq. (64). To establish 
confidence in our final result. we have, for the cases shown in Table I, 
evaluated H(J) from Eq. (64) and obtained results that agree to nine 
significant figures with a numerical solution, by iteration, of the nonlinear H 
equation [ I]. 

Though the mentioned numerical verification is evidence that our solution 
for the H matrix is correct, there are two matters that deserve further 
attention. First of all, proof of the existence of a solution to Eq. (40) is 
desired. We note, in fact, that although we were able to establish a solution 
numerically for the choice kj= (-1)“‘. we were able to demonstrate, again 
numerically, that there is no solution for k, = k, = k, = 1. Clearly then the 
existence of a solution to Eq. (40) will inherently depend on the particular 
choice of k,, k2 and k,. Second. although we encountered no numerical 
difficulties in computing the constants A. B, C and D. to be sure that we can 
solve Eqs. (63) proof that det A # 0 is required. 
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