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Several problems in one-speed neutron transport theory for spherically symmetrical systems are
discussed. The singular eigenfunction expansion technique is used to construct a solution for a specific
finite-slab Green’s function. This slab solution is then used to construct the finite-medium spherical
Green’s function by extending the point-to-plane transformation concept. For the general case, the
expansion coefficients are shown to obey a Fredholm equation, and first-order solutions are obtained;
however, in the infinite-medium limit the solution is represented in closed form. In addition, the solution
for the angular density in an infinite-medium due to an isotropic point source is developed directly from
the set of normal modes of the transport equation. A proof that the result so obtained obeys the proper

source condition at the origin is given.

I. INTRODUCTION

The singular eigenfunction expansion technique that
was introduced by Case has been used extensively to
develop exact solutions for many problems in neutron
transport theory.!~® In addition, several applications
of the method have been made in the field of
radiative transfer in stellar atmospheres.>~# Although
the class of problems for which the Case method has
been used is a broad one, the major limitation appears
to be the restriction to plane geometries. The purpose
of this paper is to present an extension of this method
in order to solve for the Green’s function in spherical
geometry and thus to establish a procedure by which
rigorous solutions for such problems can be obtained.

It has been shown that the integral form of the
homogeneous Boltzmann equation in spherical geom-
etry can be related to the integral equation for a
corresponding problem in slab geometry.®1% An
extension of this technique to include inhomogeneous
source terms is described in this paper. Thus,
several problems in spherical geometry can be solved
by inspection once the slab solution is known.®-10-11
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equation, Davison also found a set of solutions to the
homogeneous version of the differential transport
equation.®® In a more recent work, Mitsis found two
classes of eigensolutions of the transport equation in
spherical geometry: one regular and the other highly
singular at the origin.!2

In Sec. II we solve the problem of a spherical-shell
source in a finite medium by solving the integral
equation that defines the density. Several limiting
situations are investigated ; and we obtain, as a special
case, the density due to an isotropic point source in a
finite sphere. For the finite-medium Green’s function,
one must solve a Fredholm equation for the expansion
coefficients; hence an approximate solution, in the
spirit of the ‘“wide slab,” is obtained.®* In the
infinite-medium limit the solution is expressed in
closed form.

Although the integral equation approach is con-
venient for obtaining the density in the single-region
problems considered here, finding the angular density,
the current, or the higher moments requires further
work. In order to illustrate a procedure by which the
angular density can be obtained directly from the
normal modes of the spherical transport equation,
Sec. 1II is devoted to the solution of the infinite-
medium point source problem. Thus, by making
expansions in terms of the normal modes of the
homogeneous equation and by properly determining
the expansion coefficients from the boundary condi-
tions, we are able to solve for the angular density in a
manner analogous to that used in plane geometry.
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82 R. C. ERDMANN AND C. E. SIEWERT

The current and higher moments can then be obtained
easily by integration. This procedure has additional
merit since it may be a more useful way in which to
approach the solution for multiregion problems where
the integral equation approach becomes unmanage-
able.15.16

II. SOLUTION IN A FINITE SPHERE
CONTAINING A SPHERICAL-SHELL SOURCE

A. Integral Equation in Spherical Geometry

We consider a single region of radius R in which a
source of neutrons has been placed. The medium
scatters neutrons isotropically in the laboratory
system and no energy degradation of the neutrons is
permitted. The source is taken to be spherically
symmetric and has an isotropic emission character.
Thus, we write the integral equation for the steady
state neutron density as

R pr 2w
p(ro; 1) =f f f r'*dr’ sin @' d6’ do’
0 Jo JO

c S eIrrl
X |—plro; )+ — 0(r' — R
[4" p(ro; ') 41"3 ( ro)} Ir— 1"12
0<r, <R (1)

The total source strength in Eq. (1) is S and dis-
tances are measured in units of mean free paths. In
addition, the mean number of secondary neutrons per
collision is denoted by c. It is possible to relax the
requirement of an isotropic emission character for the
source by treating the first collision neutrons as
the source in Eq. (1) and then adding in the uncol-
lided source neutrons.*” The point source at the center
of a sphere is a limiting case of Eq. (1).

The technique used to solve Eq. (1) was suggested
by Davison and has been used by Mitsis for solving
critical problems.1%12 Its basis lies in the similarity of a
modified form of Eq. (1) and the integral transport
equation in slab geometry. Since solutions to the
latter are readily obtained, one need only determine
the relationship between spherical and planar prob-
lems in order to obtain an explicit solution to Eq.
(1).** To cast Eq. (1) into a more appropriate form, we
perform the two angular integrations. This yields

rp(ry; r) = ngr’p(ro; r)
x {E\(Ir = r'|) = E(|r + r'])} dr

+ f;— (EIr = rol) — Ex(Ir + rol)},
’ 0<r, ro<R, (2

15 The problem of a point source in one of two dissimilar half-
spaces was solved in Ref. 16; however, the total cross section was
taken to be the same in the two regions.

16 R. C. Erdmann, Trans. Am. Nucl. Soc. 9, 443 (1966).

17 K. M. Case, F. de Hoffmann, and G. Placzek, Introduction to the
Theory of Neutron Diffusion (United States Government Printing
Office, Washington, 1953), Vol. 1.

where
—x/u

1 e
E\(x) =f dy.
oy

(3

Extending the range of 7 to —R < r < Rand demand-
ing that p(ry; —r) = p(ry; r) permits us to write

R
roroin) = £ j 1ol DE(Ir — o) de

+ 2 {Eilr = nl) = Eilr + o)},
Ty

0<rp<R, —R<r<R (4

In the limit as r, approaches zero, Eq. (4) yields, for a
centrally located point source,

R ~Ir]
00 = f tp(0: OE(r — ) di + Ser ,

—R<r<R. (5

Thus, by solving Eq. (4), we can obtain the point
source solution by taking the limit used to construct
Eq. (5).18:10

In the finite slab, —R <r < R, the integral
equation that describes the neutron density resulting
from a unit plane isotropic source at r, > 0 is

¢ R

$rin =5 f $(ro; DE(r — i) dt + Ey(Ir — ral).
R

©)

Hence, a linear combination of slab solutions can be
used to construct an integral equation identical in
form to Eq. (4), i.e.,

[¢(ro; 1) — $(—ro5 7)]
_c (¥ ;D) — d(—ro; DIE(Jr — t]) dt
=3 f_R[d’("m 1) — ¢(—ro; DIE,

+ E(Jr — rol) — E{jr + o). ()

Equating the dependent variables of Eqs. (4) and (7)
and taking into account the source normalization, we
obtain

rp(ro; r) = (S/2r)[$(ro; 1) — $(—ro; 1)) (8)

We note from Eq. (6) that ¢(—ro;r) = (re; ~1);
this allows us to write Eq. (8) in the alternate form

p(ro; r) = (S[2rgr)[$(ro; r) — $(ro; —r)ls

0<r, <R (9

This result contains the point-to-plane transformation

18 The solution to the point source problem in a finite sphere has

been obtained independently by Smith (Ref. 19). He used a

transform technique similar to that used by Muitsis (Ref. 12).
12 Q. J. Smith (private communication).
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ONE-SPEED TRANPSORT EQUATION 83

for the infinite medium as a special case®:
o0;1) = = 2L 401, R0 (10)
rdr

For finite R, correction terms can be added to Eq. (10)
to account for the additional leakage.

B. General Solution for p(ry; r)

An expression for p(ro;r) can be obtained once
$(ro; r) is determined; this, in turn, is found by using
the method suggested by Case.! Since this development
parallels previous work, the discussion of it is brief
and will be presented mainly as an aid in defining the
notation.1

The finite-slab Green’s function is defined by

0
1z 5;‘1”(?0; row) + Y(ro; r, 1)

1
= -C?: W(re; r, ') dy' + 6(r — 1),
-1

r0>0s —R_<_7'SR, (11)
with
Y(re; £R, u) =0, u s 0. (12)
The neutron density is
1
B = [ Wi di (13)

The general solution to Eq. (11) is

W(re; r, 1)
= (A, £ K)d, (e + (A_ F K )p_(w)e’™

1
+ f BIAG) £ KO (e™, 12 . (14)
—1
Here,4
e:|:?‘o/v°
K, = , 15
£ 2N, (15a)
Koy = =2 15b
T ONG) (15b)
cvy 1
() = 20— 15
‘l’_t(,“) 2w Fu (15¢)
P
$(w) =S —— + 2000 — ), (15d)
2y—u
M) =1 — cvtanh™ », (15€)
1 — cvgtanh™ 1y = 0, (156)
cY C‘V2
N, =& (2o _ ), 15
and
c27r2,v2
N(») = v[z%) + =5 } (15h)

20K, M. Case and P. F. Zweifel, An Introduction to Linear
Transport Theory (Addison-Wesley Publishing Company, Inc.,
Reading, Mass., 1967).

To determine the coefficients A, and A(»), we apply
the boundary conditions at £ R. Hence

0 = (4, + K)$, (e R + (A F K )e**"¢_(u)
+ fl[A(v) + KO) (e dv, p$0. (16)

The conditions given by Eq. (16) are sufficient to
specify uniquely all of the unknown expansion
coefficients; however, they are not expressible in
closed form. We defer a further discussion on the
evaluation of A, and A(») to Sec. 1IC.

Since ¢..(x) and ¢,(u) are normalized to unity, the
expression for the density is obtained immediately
from Eq. (14):
b(ro; 1) = (A, £ K)e™™ + (A F K )™

1
+f [A(») £ K01 dv, rZ 1. (A7)
-1

Substituting Eq. (17) into Eq. (9), we obtain the
solution for the density in the finite sphere:

p(ro; 1)
S .
== [(AH — A,)sinh r[v,
rro
4L {Smh (r_w) _ sink Ir_—_rol}
2N, Yo Yo

+ L 1{[A(—v) — A()] sinh rfv

4 l:sinh (’ + r“) — sink "———"0']} dv}
2N(v) v y

0<r, r,<R. (18)

C. First-Order Solution for the Expansion
Coefficients

The two expressions for A, and A(») given by
Eq. (16) can be simplified by using the half-range
orthogonality theorem proved by Kusger, McCormick,
and Summerfield, i.e.,?

L (v — (W (W bolw) i = O,

v#£ v, v >0 (19)
Here,

(vo — Wy(p) = cu2(1 — )(vo + W) X(—p), (20a2)

1
exp [—1 f arg Aﬂmﬂ—], (20b)
m Jo u—z

1
X(z) =
(2) N

and -
A=) = Up) £ i(mep(2). (20c)

21} Kuger, N. J. McCormick, and G. C. Summerfield, Ann.
Phys. (New York) 30, 411 (1964).
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To use directly the results for the various normaliza-
tion integrals and cross products given by Kus&er,
McCormick, and Summerfield, we make several
changes of variables in Eq. (16) to obtain the two
equations (one associated with the upper signs and
one with the lower signs)

_ f dve BIG_ () A(%2) + K(£)]
=(A; K+)¢4:(/")eq:R/v° +(A_ F K—)d’i(/")eimvo
+Lmﬁ%mm4¥ﬂiKﬁﬂLy>o.QU

If we now multiply Eq. (21) by (v, — w)y(w)é.(n),
integrate over u from 0 to 1, and make use of Egs.
(A2), (A4), and (AS) of Ref. 21, we find

e—(R+2b)/vo

voX(—v)

X fle“R/"vX(—v)[A(:i:v) + K(+v)]dv. (22a)

A=F —_ K; — (A:l: + Ki)e—2(R+6)/vo _

In a similar manner, we take the scalar product of
Eq. (21) with ¢,(w), »" > 0, and use Egs. (Al),
(A3), and (A6) of Ref. 21, to obtain

24, + K.)
A(Fr) = FK(Fy) — 2oz T 22
(F) = FKE) = =R owo
X e T RN (—y)b ()b, (3)

v 2 e—R/v 1
(Z)V(V)N(v) 0
x [A(£v) + K(£v)]

dvve—R/v’

V(v + v)X(—7)
(v + v )(v — V,) ’
v > 0. (22b)

Here,

X(=%) — 2%

X(v) @)

The quantity 0 is the extrapolation distance z,(c) as
defined in Ref. 17.

It is not possible to solve Eqgs. (22) explicitly for the
coefficients 4, and A(»). However, one can reduce
these expressions to a Fredholm equation for A(%);
this suggests that an iterative type solution could be
obtained.? Since an iterative approach has been
used successfully for similar problems, we proceed in
this manner,12-13

Firstly, we neglect terms of order e~E in Eq. (22b)
to obtain A(Fv) = FK(F»). This result is then
substituted into Eq. (22a) to give 4 accurate to first
order in e~E. Finally, when this expression is entered
back into Eq. (22b), we find A(£%) correct to first

22 The coefficients 4 1 could then be found in terms of A(»).

order. Thus

A:I: — [1 — e—4(R+6)/vo]—1{K:t(1 + e—4(R+6)/vo)

1
_ 2K;e~2(R+J)/v° +f dve‘R/"vX(—v)
0

2e—R/Vo
X ,::FK(:FV) F K(:hv)e—z(R+é)/voJ;
o X(v0)
(24a)
and
A(Fv) = FK(Fr) — [I — e 1B+ o1
X [Ki — K:Fe-Z(R+6)/vo][1 _ C]
X [Mﬂ,@ X(_,,o)e—R/ve_R/vo} (24b)
N@)

When Eqs. (24) are substituted into Eq. (18), we find
that the first-order solution for the neutron density
becomes

p(ro; 1)
_ S [sinh (R 4+ 6 — rg)/vo)
h rro[ N, sinh (R + 6)/v,)
Y dy

—— & sinh rfv
o N(»)

sinh rfv,

e&/vo

+ 1dv X(=) e B
voX (%) sinh ((R + 8)/%,) Jo N®)

X {sinh Tosinh L + sinh "0 sinh I}:l,

v Yo Yo v
0<r<ry<R. (25

The result for p(ry;r), r > ry, is obtained from Eq.
(25) by interchanging r and r,.

An estimate of the accuracy of this “wide-sphere”
result can be obtained from comparisons with similar
approximation procedures. Mendelson solves several
plane geometry problems in the “wide-slab” approxi-
mation and shows that for slab widths greater than
two mean free paths, the exact and wide-slab solutions
are not discernible.!® Since most spheres are at least
four mean free paths in diameter, the “wide-sphere”
analysis presented here should yield very accurate
descriptions of the density.

D. Special Cases

The results described by Eq. (25) contain essentially
all of the physics for solutions of the one-speed
Boltzmann equation in spherical geometry.

Interchanging r and r¢ in Eq. (25) and taking the
limit as ry approaches zero, we find the finite-medium
solution (to first order) for a centrally located point
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sourcell; thus

sinh (R + 6 — r)/vy)
[voN sinh (R + 9)/vy)

6/vo

1 —r/v
d
+LvN(v) y
e Ly X(—v)e B

* v X(¥o) sinh ((R + 0)/vo) Jo N(»)
X {l smh + - smh I dv}.
Yo

Y v

p(0; 1) =

(26)

Taking the limit as R approaches infinity (¢ < 1)
in Eq. (25), we find

S [e"sinh rfv
i S (£
rry N,
1 e sinh rfy
—dv], , (27a
+f, Ry ) < @
and

S (e sinh ry/v,
pulros 1) = = (o
rry N,

Le"Vsinh rofv
+| — dv), r>ry. (27b
L= o (270

If one considers only the discrete part of Eq. (25),
it is found to satisfy the Helmholtz equation

V2P("o; r)

— Lty = — =28 — 1), (2®)
Yo

oN+ 0
and the boundary condition
p(re; R + 6) = 0. (29)
This is just the equation one would solve in the
diffusion theory approximation to the Boltzmann
equation, 232428
For a medium with no absorption (¢ = 1), Eq. (25)

reduces to
1 1 e—rn/ v

3 3 N
;r)=8|- - —— 4+ — sinh - d
plrai 1) [ro R+  rryJo N(») n y Y
_ J‘ rX(—v)e B
R+dJ)o N®)

X (l sinh 2 + I sinh E) dv:|,
v

ro v o r

0<r<ry<R (30

We note, also, that Eq. (25) can be used to describe
the density in a multiplying sphere (¢ > 1) provided,
of course, that the sphere is subcritical. Taking

. - . A
cognizance of the fact that v, is imaginary (7, = [7])

23 It should be noted, however, that the diffusion parameters are
improvements to the usual ones (Refs. 24 and 25).

2 R. L. Murray, Nuclear Reactor Physics (Prentice-Hall. Engle-
wood Cliffs, N.J. 1957).

25 A. M. Weinberg and E. P. Wigner, The Physical Theory of
Neutron Chain Reactors (University of Chicago Press, Chicago,
1958).

for ¢ > 1, we write Eq. (25) as

pro; 1) = — |:Sm (R+ 46— ro)[mo) sin (r/no)
°’ rry IN,|sin (R + 8)/no)
+ f L inh D d
o N(v) v

ea/Vo

+ Ly X(—v)e B
10X (¥g) sin (R + 8)/no) Jo N(»)
X {sinh "ogin L + sin 22 sinh I} dv],
v Mo "o v
0<r<r, <R (3

Again, the results for r > r, are obtained by inter-
changing r and r, in Egs. (30) and (31).

III. INFINITE-MEDIUM GREEN’S FUNCTION
AS OBTAINED FROM THE SPHERICAL
NORMAL MODES

A. General Analysis

In the previous section the solution for a spherical-
shell source in a finite medium was obtained. The
procedure there was to solve the integral equation for
the density; the angular density was then available
by integration over free-flight paths. This approach
obviously has merit since it generates solutions for the
classical single-region problems in spherical geometry.
However, it would be satisfying to be able to construct
solutions directly from the normal modes of the
transport equation. Then, by applying the proper
boundary conditions, one would attempt to determine
the expansion coefficients, perhaps in a manner
analogous to the Case technique that has been used in
plane geometry. If such a procedure could be estab-
lished, multidimensional problems or problems with
more than one mean free path might become amenable
to solution.!

With the above philosophy in mind, we prescribe a
method by which the infinite-medium Green’s function
can be obtained from the normal modes of the
homogeneous transport equation in spherical geom-
etry. The Green’s function considered here is the
solution of

b ) + )a W(r, 1) + ¥, )

o)

~S[(woman+ 29 @

subject to the constraint that r2¥(r, u) must vanish as r
increases without bound.2® In the usual manner, we
replace the source term in Eq. (32) by an equivalent

26 Obviously, the medium must be nonmultiplying (¢ < 1).
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boundary condition, i.e.,*

lim 47 (r, u) = 8(1 — p).

r—0

(33)

Thus the density and current satisfy, respectively, the
following:

lim 47rfp(r) = 1, (34a)
70
lim 47r%(r) = 1. (34b)
r—0

A set of normal modes for the homogeneous spher-
ical transport equation was obtained by Davison.?
Mitsis, in a more recent study, discussed this same
set.’? There are several interesting aspects to the
manner in which Mitsis obtained his results; we
simply state the results by expanding ¥'(r, u) in terms
of this basis set. Thus, we write

Y(r, )
_ éﬁ(zm 2+ 1) P ()

x {con,,.(vo)[A+km(r/vo) + (=1)"B.in(rf30)]
+ f (/0 () + AW)Pu()]

X [AWkn(rfv) + (=D"B@)iy(r/v)]dvi. (35)

Here A,, B,, A(»), and B(») are the arbitrary
expansion coefficients; P,,(«) and Q,,(») are, respec-
tively, Legendre polynomials and the Legendre
functions of the second kind. Also,

ko (x) = (m)2x)EK i3 (x) (36a)

and

i (x) = (=20, 4(x). (36b)
Following the notation of Watson, we have used K,
and I,,,, to denote the modified Bessel functions.?®
The fact that 1,4(x) diverges at infinity leads us
immediately to equate B, and B(¥) to zero. Thus

e

W) =3 3Q2m + I)Pm(u){A+conm(vo)km(r/vo)

m=0
+ f A v ) + AGIP ) Ven(r]) dv}. @7)

The expression for ¥'(r, u) given by Eq. (37) has the
correct behavior at infinity. The expansion coefficients,
A, and A(»), must be determined, therefore, so that
the boundary condition at the origin, Eq. (33), is
satisfied. For the sake of brevity, we introduce the

27 One of the authors (C. E. S.) is indebted to Dr. Z. Akcasu and
Dr. G. C. Summerfield for a discussion of this point.

28 G. N. Watson, 4 Treatise on the Theory of Bessel Functions
(Cambridge University Press, Cambridge, 1945).

notation
Su(r) = A,croQn(ro)en(rvo)
+ [[40N0u0) + 1PAOknlr) . (38)
Thus,
W) = 3 30m + DPu@S.0); (39)
the source condition can be stated, therefore, as

lim 47r%S,,(r) = 1.

r—0

(40)

There are several interesting aspects of Eq. (40).
We note that the expression must be true for all m.
Since k,(r) diverges as r~™~1in the limit of r tending to
zero, it is not obvious how r2S,,(r) could exist in that
limit. There must be, therefore, a very subtle inter-
relation between A4, and A4(»).2® The procedure we use
here is firstly to determine A4, and A(») such that
Eq. (40) is satisfied for the particular choice of m = 1.
This insures that the angular density will satisfy the
“weak” or current boundary condition, i.e.,

lim 47r%i(r) = 1;

r—0
however, the complete boundary condition is stated
by Eq. (33). Thus the m = 1 condition is necessary but
not sufficient. In order to prove that the expansion
coefficients, as determined from the “weak” boundary
condition, are the correct ones (i.e., that Eq. (40) is
valid for all m) is a formidable task; we prefer to
devote section I1IB to this proof.

For the case m = 1, we must satisfy

— Asionu(v) +Jf AW 00) + 2A(3)] d.
41)

The form of Eq. (41) is suggestive of an expansion in
terms of the eigenfunctions used by Case for problems
in plane geometry.! We pursue the point further by
considering the following full-range expansion:

1
2

1
27t

= A2, (1) — $_(W)]

+ ﬁ AP b 0) — @l dv, pel—1,1]
42)

The validity of this expansion follows from the full-
range completeness theorem proved by Case.! Since
Eq. (42) is a valid expansion, the coefficients, 4, and

28 That this is true can be seen immediately by considering the
cases m =0, 1, and 2.
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A(»), can be determined immediately by taking full-
range scalar products.2 We find

1

A, =——— 43a
* 27N, (432)
and
1

A@) = Py g(c, v), (43b)

where

1

glc, ) = (44)

() + (dovm)®
If one multiplies Eq. (42) by x and integrates over u
from —1 to 1, the following results:

1 1 1
= A ) du+ [ AGW* [ ) e
27T -1 0 -1
(45)
this is identical with Eq. (41), and thus Eqgs. (43) do,
in fact, satisfy the weak boundary condition.
Since the expansion coefficients have been deter-
mined (with the proviso that the necessary rigor is to

be given in Sec. IIIB), the solution is complete; it can
be written as

¥ = 3, () [Pk ()

m=o\ 4m* N, Vo

v, v

+ L 1g(c, NevQ u(») + AW)P(M)k (r) 431} (46)

The density and current can be obtained from Eq. (46)
by inspection; we find

1 1 1
o) = [ et ﬁ g(e, H)e™ ?] (47a)
0
and "
joy ==~ [—1— (1 + ﬁ) e’
4mr LN, T

+ fo o, w)(l + 5) el -‘i—”] (47b)

In addition, the higher moments of ¥(r, u), if so
desired, are obtained trivially from Eq. (46).

It is interesting to note the form of W'(r, ) in the
limit as ¢ tends to zero. It is a simple matter to obtain

lim W(r, 1) = ¥o(r, )
¢~ 0

Ll g (m+1
_27121”2:0( 2 )P m()G (1), (48)

where
1
Gm(r) éf km (Z) Pm(v) d_: *
) ) Y

The integral above has been evaluated by Harrington,

(49)

Siewert, and Murray.*® They found
T
G (r)=—¢€e".
) 2r?
Note that G, (r) is independent of m. When Eq. (50)

is substituted into Eq. (48), we obtain the usual result,
ie.,’?

(50)

er
(1 — w).
e 1-w

Wolr, p) = (5D
This, of course, represents the uncollided angular
density.

B. Boundary Condition at the Origin

The expansion coefficients 4, and A(v) were
determined in the previous work by mnoting the
similarity between the current boundary condition
and a suitably chosen full-range expansion in terms
of the eigenfunctions ¢,(u). We would like now to
discuss further the analysis of the source condition
and to prove that Eqs. (43) are the correct solutions
for the expansion coefficients.

We have shown that 4, and A(») are such that the
“weak” boundary condition is satisfied, i.e., these
expansion coefficients are solutions to Eq. (41);
however, they are not the only possible solutions to
Eq. (41). This equation obviously has no unique
solution. We must keep in mind, however, that Eq.
(41) is only one in an infinite set of conditions that
must be satisfied (i.e., we must consider all m).

The necessary and sufficient condition that the
complete boundary condition at the origin, viz.,

lim 47r*%¥ (r, u) = 6(1 — ), (52)
r—+0
be satisfied is that
lim 47r%S,,(r) = 1, (53)
r—=0
where
A r 1 r
Sulr) £ A, T, 0k, (—) + f AG)T, )k () &.
Y [ v
(54)

We have written Eq. (54) in the more tractable form
by defining!?

T(¥0) = 900 (%) (55)

and
T(?) = cv0,,(») + AB)P, (). (56)

Here T,(x) are mth degree polynomials of x; they
satisfy the same recursion relation as the Legendre

30'W. J. Harrington, C. E. Siewert, and R. L. Murray (to be
published).

Downloaded 14 May 2006 to 152.1.79.104. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



88 R. C. ERDMANN AND C. E. SIEWERT

polynomials, i.e.,
me(x) = (2m - I)XTm—l(x) - (m - I)Tm—2(x);

(7
they begin differently, however:

To(x) =1, Ty(x)=x(1 — o). (58)

We note that the T,,(x) reduce to the P,(x) as ¢
vanishes.

The method used to prove Eq. (53) is that of mathe-
matical induction. We verify the validity of this
condition for m = 0, 1, assume it to be true for
m=k —1, k — 2, and then deduce that it must be
true for k = m. Firstly then, we must prove them = 0
condition; this takes the form

1
lim 272 f A(ywe™™ dv = 1, (59)
0

r—0
where

A(®) = g(c, v)[27%°, (60)

For g(c, v) we use the power series given by Case,
de Hoffmann, and Plazcek, i.e.,!?

gle,v) =1+ > Tp* (61)
B=1
Thus Eq. (59) can be written as
lim rl:Eo(r) +3 I‘,,Ez,,(r):' =1, (62
r—0 p=1

where E, (r) denotes the exponential integral function.'’?
Clearly, Eq. (62) is satisfied. The m = 1 condition
takes the form

1
lim |:2712v8(1 — A, + 27%(1 — c)f A(v)y® dv] = 1.
=0 0
(63)

If we substitute the expressions for the expansion
coefficients into Eq. (63), we find

1
f glc,v)dv =
) 1

L _ %, (64)

N,

This result is given explicitly by Case et al.; Eq. (63)
is thus valid.

The condition to be proved, Eq. (53), has been
verified for m = 0, 1; we proceed, therefore, with the
inductive proof for arbitrary m. If we utilize the
recursion and differentiation formulas for the k,,(x),
viz.,®

km(ﬁ) =@ = ¥k, (i) + ks (i) (65a)

—C

31 M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathe-
matical Functions (U.S. Department of Commerce, National
Bureau of Standards, Washington, 1964), Appl. Math. Ser. 55, Chap.
10.

and

m-+1
i |:rm+1km (_t):l = — r km_l (1)’ (65b)
dr X X X

as well as Eq. (57), we obtain
m L [ 0]
dr

= —(m — )L s, ()] = @m — e
dr

X Spa(r) + 2m — D(m — 1)r"S,,_o(r). (66)
Integrating Eq. (66) from 0 to », we find®?

mr™S, (r) — C,,

= —(m — Dr™*1S,, o(r) — lim r™*S,,_(r)
r=0

—@2m -1 f ™S, (1) dt
0

+@2m — 1)(m — 1) L "ms,_(Odt. (67)

We now make the inductive assumption that for all
k,0OL<k<m—1,m2>2,

lim 47r?S,(r) = 1. (68)
r—0

Thus the limit term in Eq. (67) is zero. The quantity
C,, is a constant of integration and, as will be proved,
must also be zero. We write, therefore, Eq. (67) as

mr’S,(r) = —(m — 1)r*S,,_4(r)

f t™18,, (1) dt
—Cm=-1=

rm—l

f ™S, (1) dt

0
rm—l

+Q@2m—-1)(m—1) (69)

If, in Eq. (69), we take the limit as r approaches zero
and apply L’Hospital’s rule to evaluate the two
indeterminate forms,

f S, (0 dt
0 = 0

lim n (70a)
r—0 rm-
and
-
f t"S,._o(t) dt .
lim = , 70b
r=0 rml 47(m — 1) (70b)
we obtain the desired result, viz.,
lim 47r2S,,(r) = 1. (1)

r=0

32 This approach was suggested by W. J. Harrington.

Downloaded 14 May 2006 to 152.1.79.104. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



ONE-SPEED TRANSPORT EQUATION 89

The proof that the integration constant C,, is zero
provides the bridge for the saltus used to develop
Eq. (71). This proof not only is necessary, but has the
additional merit that it removes the ambiguity associ-
ated with the uniqueness of the method used in Sec.
IITA to determine 4, and A(»). We note from Eq. (67)
that

C,, = mlim r™"S, (r).

r—0
Returning to the definition of §,(r), Eq. (54), and
using the explicit form of the Bessel functions, i.e.,?

(72)

kr) = =3 Wrr,

2r «=0

(73)

we note that Eq. (72) can be written as

1
C=mW2 7 [A+vg"+1Tm(vo) + f AGW™T, (3) dv]-
(1]

(74)
To show that C,, is zero, we must prove that the term
in brackets on the right-hand side of Eq. (74) vanishes.
Thus, multiplying Eq. (42) by u™'P, (1) and inte-
grating over all x, we obtain (after a change of
variables)

1 3 prl
5 [ dumtpay = 4, SB[y 720
47" J 2 Ja Vo — W
1 1
+ [[ o [ dum P . 79)

The left-hand side of Eq. (75) is zero obviously
(m > 1). Noting that

m—1

7
B =7

m—1
— /4""2 + VO/‘m_B + v&u"‘—‘i 4o Yo ,
="

(76)

we rewrite Eq. (75) as

m—1

o v

2 Ja

+ [ dra® [ ey = 0. @

Ay dﬂ[—u’H —pu™ " — e 4 }Pm(u)

Vo — U

The continuum term in Eq. (77) also can be decom-
posed in the manner indicated by Eq. (76). Since to
do so only complicates the notation, we do not
explicitly write it out. The fact that the Legendre
polynomials are orthogonal can be used again to
reduce Eq. (77) to

m+2 Ll P
-1 Vo — U

+ j A f_ldMPm(ﬂ)¢v(u) ~0. (18)

The final result is thus obtained, viz.,

1
ApgtT,(v) + f A(w™ 1T, (v)dv =0, (79)
0

or

C,=0. (80)
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