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Strong evaporation into a half space. 
II. The three-dimensional BGK model 

By C. E. Siewert * and J. R. Thomas, Jr. **, Istituto Matematico 
del Politecnico di Milano e Laboratorio di Ingegneria Nucleare 
della Universit/t di Bologna, Italy 

I. Introduction 

In a recent paper [1], hereafter referred to as I, the method of elementary 
solutions [2, 3] was used to solve a strong-evaporation problem based on the 
one-dimensional BGK model that was formulated and solved by Arthur and 
Cercignani [4]. Here in order to improve the physical model we use the BGK 
equation for a three-dimensional gas. Since the aim of this work is to present 
the analysis required to establish the desired exact solution and to report 
relevant numerical results, we assume that I and the work of Arthur and 
Cercignani [4] are available, and thus we abbreviate here the formulation of 
the problem to be solved. If we consider a liquid evaporating at x = 0 into a 
vacuum which occupies the region x > 0 and linearize the distribution 
function f ( x ,  ~) and the local Maxwellian distribution r  ~) about the 
downstream equilibrium condition, we find we must solve 

(u+cs h(x,c) + h(x,c) 

[ 3)( 3)] 
=~-3/2 ~ h ( x , e ' )  l + 2 e ' e  c ' 2 -  c 2 -  e-C'~d~c ' ,  (1) 

where h (x ,e )  is the perturbation from the downstream equilibrium distribu- 
tion and, in dimensionless units, x is the position and e, with components 
cz, cy c~ and magnitude c, is the velocity. We thus seek a solution of Eq. (1) 
such that 

lim h (x, e) = 0 (2 a) 

h ( O , e ) = 2 c x ( U o - U ) + A o +  c 2 -  AT,  c x > - u ,  (2b) 

* Mathematics Dept., North Carolina State University, Raleigh, N.C., USA. 
** Nuclear Eng. Group, Virginia Polytechnic Institute and State University, Blaeksburg, 
V~, USA. 



Vol. 33, 1982 Strong evaporation into a half space. II 203 

where u o is the mass speed at the surface, 

A Q = - -  

and 
A T = T o - T ~ o  

T= 

(3 a) 

(3b) 

Here 0o, To, Q~ and T~ are respectively the density and temperature of the 
gas at the surface and downstream. Since we are concerned with tempera- 
ture-density effects, we can [5] take "moments"  of  Eq. (1) to obtain equations 
dependent  only on x and c~. We let 

1 o~ oo 

~l(x,  cx)=zr 2 S ~ e-(C~+C~) h ( x , c ) d c u d c , ,  (4a) 
- - 0 0  - - 0 0  

and 
1 oo oo 

qJ2 (x, c~) = ~r 2 ~ ~ e-(c~,+c~) h (x, c) (cg + cg - 1) dcu dcz. (4b) 
- - 0 0  - - ~  

Thus if we multiply Eq. (1) by exp ( - c g -  cw and integrate over the com- 
plete range with respect to cu and Cz, and similarly if we multiply Eq. (1) by 
(cg + cg - 1) exp ( -  c~ - c~) and integrate, we obtain two equations which can 
be written in the form 

( u + ~ )  +1 ~ ( x , ~ ) = ~ - 5  I [Q(~) ( ~ ' ) + 2 ~ ' P ]  
- - o o  

�9 ~ (x,  ~') e -  d~',  
1 

1 1 0 

0 0 0 

(5) 

(6 a, b) 

where 

Q (r = 
1 

and ~(x ,  ~) represents the column vector whose components  are ~u 1 (x, 4) 
and u/2 (x, 3). The boundary conditions given by Eqs. (2 a) and (2 b) can be 
expressed in terms of ~ (x, 4) by taking appropriate  moments;  we find 

Iim ~ (x, ~) = 0, (7 a) 
X - - *  OO 

and, for ~ > - u, 

1 1 1 z 1 
~(0 ,~)=zFf f  A~+~r2 ~ - - ~  AT+~r-ff 2 ~ ( u o - u  ). (7b) 

0 1 0 

Equations (5) and (7) represent the complete formulat ion of the problem to 
be solved. 
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We now seek to establish, for u > 0, the elementary solutions of  
1 00 

(u +/z) ~ x 'P(x,/.t) + ~ (x,/.t) = n - 2  j" [Q (/-0 QT(/z') + 2/z/z 'P] 
~ 0 0  

�9 ~ ( x , / t ' )  e -u'5 d/l' .  

Thus if we substitute 

~ ( x ,  ~:  q) = ,~ (q,/z) e - ~ " + u )  

into Eq. (8) we find 

(r / - /z)  ~ (q, U) = (r/+ u) K (/z) M (r/) 

where 
1 

K (U) = re- $ [Q (/z) - 2 u / 1 / ] ,  

0 1  =1o ol 
and 

co 

M (rl) = I QT ([ -z) ~ (r], kt) e-U2 d/z- 

I f  we consider first that  r /= g r ( -  m,  m),  then Eq. (10) yields 

~ ( ~ , / z ) = ( ~ + u ) K ( l z ) ( ~ - ~ ) M ( ~ )  
if  

A (~) M (~) = O, 

where 
o o  

A (z) -- I + (z + u) ~ ~ (/~) "-----~ 
- o o  /2 - - Z  

and 
1 

(/z) = n -  -~ Q r  (/~) [Q (/z) - 2 u u T] e -US.  

We find that we can express A (z) as 

a (z) = r ( z )  + ~ (z) J (z) 

where 
1 o~ dg 

] (z) = ~ -  -~ (z + u) ~ e - ~  
- o o  / t  - - Z  

(8) 

(9) 

(lO) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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and the polynomial matrices are 

2 

r(z)= 

1 

1 - 2 u ( z  + u)  

(20 a) 

and 

z(z)= 

1;t 2uz, 

1 - 2 u z  

(20b) 

Computing the determinant  ofA (z), we find 

A (z) = a (z) + b (z) J (z) + c (z) j2 (z) 

where 

a(z )=l -2u2  + [3  (2u2- 7)] z + [+(2uZ-1)] z2, 

(21) 

(22 a) 

, ,o I+ ] b(z)=-~( l l - lOuZ)-- -~-uz+ (2 u Z -  1) z 2 

and 
2 4 

c (z) 3 3 u z. 

For large z we find 

A ( z ) - +  z 3 u 2 -  + . . .  

(22b) 

(22c) 

(23) 

so that for u 2 4= 5/6, A (z) has a triple zero at infinity. The  argument  principle 
[6] can be used to show that A (z) has no zeros in the finite plane. Concerning 
solutions corresponding to t /=  0% we conclude that  

1 7*2 ( x , / z )  = / 1  0 1 a n d  c)  7.1 ( x , / x )  = 0 ' a n d  7*3 ( x , / ~ )  = -g (24  a, b 

satisfy Eq.  (8) .  I f  u 2 = 5/6 then we find that 

7*, (x, # ) =  ( x - u - / t ) [ 3  7.1 ( x , / z ) -  3 u 7.2 ( x , / , ) +  7*3 (x, #)]  (25) 
[ z  J 
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though dearly not of  the form given by Eq. (9) is also a solution�9 If we now 
solve Eq. (10) for r/~ ( -  0% oe), we find we can express the desired solution 
to Eq. (8) as 

K oo 

~(x,/g)  =}-'~ A~ ~ (x,/g) + I ~ (r/,/g) A (r/) e -*/("+u) dr/ (26) 

where K = 3 for u 2 4 :5 /6  and K = 4 if u 2 = 5/6. In addit ion A~, e = 1, 2, �9 K, 
and the two-vector A (r/) are expansion coefficients to be determined from 
appropriate boundary conditions, and the 2 x 2 matrix solution to Eq. (10) is 

~(r/,/g)=(r/+u)K(/g)e-~2Pv + Q -  T (r/) A (r/) 6 (r/--/g), (27) 

where 
oo 

,~ (t/) = I + (r/+ u) P I ~ (/g) d/g (28) 
- ~  / g - r /  

m .  Boundary-value problem 

As discussed in the Introduction we now seek a sotution to Eq. (8) subject 
to the boundary conditions 

lim T (x,/g) = 0 (29 a) 
X . - * ~  

and, for/g > - u, 

 {1'1 I: 1 
~,(0, /g)  = f ( / g )  = ~ A e +  -~ 

0 1 

1 
AT+2~ I O ] (Uo-U) }. 

(29b) 

To satisfy Eq. (29 a) we write 
oo 

~(x,/g)  = S ~ (r/,/g) A (r/) e -*/(n+') dr/ (30) 
- - U  

where A (r/) is to be found from Eq. (29 b). Setting x = 0 in Eq. (30) and using 
Eqs. (27) and (29 b), we now find 

dr/ 
F(/g) = Q - r  (/g) 2 (/g) A (p) + K(/g) P ~ (r/+ u) A (r/) e -"2 (31) 

-u  r / - /g  
o r  

oo 

QT(/g) F(#) e - : =  A (/g)A (lt) e-U2+ ~(/g) P I (r/+ u)A (r/) e - " 2 -  
- - U  

Now introducing 
$ 

1 ~ dr/ 
N (z) = u) A (r/) e - :  

2 7~ i - u  z 

dr/ 

r / - / . t  
(32) 

(33) 
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and using the Plemelj formulas [7], we find we can write Eq. (32) as 

(It + u) QT (/1) F (it) e -"2 = A + (it) N + (it) - A - ( I t )  N-(/1) (34) 

where the superscripts + are used to denote limiting values as branch cuts 
are approached from above (+) and below (-) .  If  we let 

/ '(it) = (/1 + u) [0  + (#)]r  [A+ (i t)]- i  QT(It) e-U2 (35) 

then we can write the solution [7] to Eq. (34) as 

{ 1 ~F(/z)  dIt + P , ( z ) }  (36) N(z)=O-T(z) ~ _ I  F(H) i t - z  

where P .  (z) is a vector of polynomials and �9 (z) is a canonical solution 
(with ordered normal form at infinity [7]) of  the matrix Riemann-Hilbert  
problem defined by 

O + (U) = G (it) O-  (It), U s [ -  u, oe), (37 a) 

where 

G (It) = [A + (it)]r [A- (it)I- T. (37 b) 

In order to proceed with the solution of Eq. (31) we now must investigate 
�9 (z) so that the form of  Eq. (36) as I zl oo can be analyzed and made con- 
sistent with the definition of  N (z) given by Eq. (33). To this end we first fac- 
tor the dispersion matrix as 

A (z) = 0 (z) e(z) Or(z) (38) 

where P (z) is a matrix of polynomials and O (z) is a canonical solution (of 
ordered normal form at infinity) of  the Riemann-Hilbert  problem defined by 

o + (z) = 6 .  (r) o -  (z), 

where 

G.  (z) = A + (z) [A- (z)1-1. 

z ~ ( -  0 % -  u], (39 a) 

(39b) 

If  we now investigate 0 (x) = argA+(x) for x s ( -  0% oe) we find we can, for 
0 < u 2 ~ 5/6, take 0 ( -  oe) = - rc and deduce that 0 (x) varies continuously 
from 0 ( - m ) = - r c t o  0 ( - u ) = 0  to 0 ( o e ) = 2 ~ ,  for u 2 < 5 / 6 ,  or to 0(oo) 
= 3 re, for u 2 = 5/6. FOr u s > 5/6 we find that 0 (x) varies continuously from 
0 ( -  oo) = 0 to 0 ( -  u) = 0 to 0 (oe) = 3 ~. Thus we can write [7] 

/, 0 < u 2 < . 6  <40a  05 (z) = (z + u) 2exp ~ (It) 2~] dIt 
- I t - z  

q5 (z) = (z + u) 3 exp _~ (It) - 3 ~] It-zdIt u 2 > 5/6, (40 b) 
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= 0 < u 2 -< 5/6, (41 a)  O(z) ( z + u )  eXp [0(r)+zc] ~ - z j '  

and 

O (z) = K ,  exp 0 (z) , u 2 > 5/6, (41 b) 

where K and K* are constants, q~ (z) = det �9 (z) and ~9 (z) = det O (z). It is 
thus apparent that the indices [7] for the two Riemarm-Hilbert problems de- 
fined by Eqs. (37) and (39) are, respectively, z = 2 for 0 < u 2 < 5/6 or z = 3 
for u 2 >- 5/6 and z* = 1 for 0 < u 2 -< 5/6 or z* = 0 for u 2 > 5/6. 

Considering the Riemann-Hilbert problem defined by Eqs. (37), we note 
first that G ( -  u) = I and that G (#) ~ I as/z ~ ~ .  We thus can define G (/~) 
= l for/z ~ ( -  ~ ,  - u] and view 

~+ (/t) = G (U) ~/i- (/~) (42) 

as being valid for/~ on the entire real axis. The transformation 

i - z  
= - -  ( 4 3 )  

i + z  

which maps the upper half plane into the interior of the unit circle can now 
be used to yield a Riemann-Hilbert problem defined on a closed contour. 
Thus the existence of  a canonical solution follows from the work of Mand~a- 
vidze and Hvedelidze [8]. The same argument can be used to establish the 
existence of a solution to the Riemann-Hilbert  problem defined by Eqs. (39). 
We can also follow Muskhelishvili [7] and express the dominant terms of 

(z) and O (z), for large l z I, as 

~ (z) ~ K l Z-~l 0 z-~'2 (44a) 

and 

I ~ I 0 (z) ---, K ,  0 z -  '~* 

where ~q, x~, ~ and ~ are the partial indices basic to the two considered 
Riemann-Hilbert problems. 

Noting that 
1 

1 
a ( z )  ~ - - u  

z 

0 0 

+1 
22 

1 1 ) 

1 _• u2_• 
2 \ 3 ]  2 

+ . . .  (45) 
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as I zJ we can use Eqs. (38) and (44) to deduce  that  for large ]z[ 

P,~ (z) ---> a ~  z x , + ~ -  1 (46) 

where  Pll  (z) and P22 (z) are the diagonal  elements of  P (z) and a~,, e = 1 and 
2, are constants. I f  we could show that PI~ (z) P22 (z) �9 0 then Eq. (46) would  
yield z~ + z* _>- 1 and x2 + x* >_- 1 or, since z~ + z s = z and x* + z* = z*, 

y~ + z* >- 1 (47 a) 

and 
~q + z* -< z + ~* - 1. (47 b)  

We  note that the partial  indices are ordered,  i.e. z~ < xs and z* < ,x*, so that  
Eqs. (40), (41) and (47) can be  used to deduce  that xl = 1, zs = 1, z* = 0 and 
• = 1 for u s < 5/6, that  • = 1, zs = 2, z* = 0 and x* = 1 for u s = 5/6 and that 
z~ = 1, z2 = 2, z* - 0 and z* = 0 for u s > 5/6. Though  we have been  unable  to 
prove  that Pz~ (z) Pss (z) �9 0, we proceed  with our  analysis with the assump- 
tion that such is the case. W e  recall that  part ial  indices are crucial to the ar- 
guments  used by Muskhelishvil i  [7] for determining if  a system of  singular 
integral equations,  such as Eq. (31), is solvable and, i f  so, whether  uniquely  
or not. Therefore  our  assumpt ion  here  that  P n  (z) Ps~ (z) �9 0, which al lowed 
us to deduce  the partial  indices, is a significant flaw [9] in this analysis. H o w -  
ever, in Appendix  C we discuss some evidence based  on numerical  computa-  
tions that  we believe strongly supports  our  assumption.  

It now follows from Eqs. (36) and (44a) that  z N (z) will be  bounde d  at 
oe only i f  P ,  (z) --- 0, 

/" (/~) f (/~) d/z = 0, all u, (48) 
- - U  

and 

1 _ (u )  F( ) du=O (49) 

i f  u 2 >_- 5/6. F rom Eq. (29 b) we  see that  F (/~) contains two constants A ~ and 
A T that can be  de te rmined  uniquely  f rom the system o f  two linear algebraic  
equat ions resulting f rom subst i tut ing Eq. (29b)  into Eq. (48), provided  o f  
course that the matrix of  coefficients is not singular. In a similar vein it ap- 
pears that  there is no solut ion for the considered p rob lem if u 2 >_- 5/6 since 
Eqs. (48) and (49) would  yield, upon  subst i tu t ion of  Eq. (29b),  three l inear 
algebraic equat ions for the two constants A Q and A T. To be conclusive we 
dea r ly  must  demonst ra te  that  these three equat ions  are l inearly independent .  

IV. H Matrices 

In regard to the Pdemann-Hi lber t  p rob lems  def ined by  Eqs. (37) and (39) 
we observe [10] that  i f  ~b (z) and {9 (z) are canonical  solutions with o rdered  
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normal form at infinity, then so are 

i o 0 1  L c 0  (z) P (z )  b and O(z)  P . ( z )  d 

where a, b, c and d are constants and the polynomials P (z) and P .  (z) are, 
respectively, of degrees ~2 - zl, and x* - z*. For  this reason we find it suffi- 
ciently general to consider the matrix P (z) in Eq. (38) a constant. Thus since 
A ( -  u) = / ,  we write Eq. (38) as 

h (z) = 0 (g) 0 -1 ( -  12) r - u) 171~T(z). 

Introducing the definitions 

H;T (Z) = r ( - U) r (z) 

and 

H ;  ~ (z) = 0 (z) 0 -1 ( -  u) 

we deduce the desired factorization of A (z), i.e. 

A (z) = HI -1 (z) H~-T (Z). 

Now since 

H~-T(z) = H 1 (z) a (z) 

vanishes at infinity we can write 

1 
I-1~2 T (z) = 2 r~ i J Y  ~ (/2) [A+ (/2) - a -  ( / 2 ) ]  ~ 

o r  

H~-T(z) = I +  (z + u) J //1 (/2) ~(/2) - -  
- - U  

(50) 

d/2 

/ 2 - - z  

(51 a) 

(51 b) 

(52) 

(53) 

d/2 (54) 
/ 2 - - z  

(55) 

//T2 T( - 1:) = I -  (r - u) j H 1 (/2) ~ ( / 2 ) - -  
- - U  

oo 

HZ 1 (/2) = I -  (/2 + u) I ~' (-  ~) Hi  (- r) dr  (58a) 
z+/2  

d# (58b) 
/ 2 + z  

and 

In a similar manner,  we write 

1 -!~- dr  (56) 
H r  1 (z) = Hi -1 (oo) + - ~ / _  [A + (z) -- A- (z)] ~ (z) r--------z-- z 

or ~o dr  
Hi -1 (z) = I -  (z + u) I ~P ( -  r) H / ( -  r) - -  (57) 

u TWZ 

Thus Hi -1 (z) and/-/~-2 T(Z) can be readily computed  from Eqs. (55) and (57) 
for all appropriate z once the coupled set 
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has been solved for/z e [-  u, m) and T e [U, o0). In Appendix A we discuss a 
convenient way to develop the desired solutions to Eqs. (58). 

If we now consider Eqs. (55) and (57) for large ]z[ and write 

H z l ( z ) =  Xo + 1 1 --~- X 1 - - ~  X2 + . . . (59a) 

and 
1 

Y~ - z-~ Y2 + - - .  (59 b) = ro  - S -  

w h e r e  

X o = I -  ~ ~ ( -  T) I~z ( -  3) dr, (60a) 

Yo = I -  f H 1 (/~) ~ (U) dp, (60 b) 

and, for 0r -> 1, 
oo 

X, = ~ ( 'c- u) ~ ( -  3) H ~ ( -  T) 3~-1 dz (61 a) 
u 

and oo 

Y,= ~ (l~ + u) H~ (p) ~(/z)/z~-ld/~, (61b) 

then Eqs. (44), (45) and (51) can be used to establish the following identities 
that provide useful checks for computed values ofH~ (/t) and H r ( -  3): 

I1o=0, all u, (62a) 

X~ = 0 ' I  u2<5/6'= (62b) 

and 

l l xo 
l0 

= 0, u 2 _-> 5/6, (62 c) 

, a l l  u ,  

0 

5 
/ 2 2 - - - -  

6 

u z > 5/6 

(62d) 

(62 e) 
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V. Final results 

We first note that Eq. (48) is equivalent to 
oo 

I (P + u) H 1 (p) Qr(/~) F (#) e -u2 d/t = 0 (63) 

and thus on using Eq. (29 b) in Eq. (63) we find 
1 

i ( I . t+u)H~(i .z  ) Qr(#)  0 A O+ --2 A T  e-"2dlz = W ( u )  (64) 
- - U  

where 111 (65) W (u) = 2 (u - Uo) S (Iz + u) 111 (lz) QT (Iz) I~ e-"2 dlz 0 " 
- - U  

Thus for u 2 ~ (0, 5/6) we can solve the two linear algebraic equations given 
by Eq. (64) to find A 0 and A T. Our numerical results for Uo = 0 and various 
values of u are shown, along with the results of  I and those of  Ytrehus [12], in 
Table I. It is apparent that the BGK model considered here is a significant 
improvement over the one-dimensional gas considered in I. To conclude we 
note that Eq. (36) can be written as 

da 
2 x i N (z) = a -~ (z) H~ ~ (z) ~ (Iz + u) H 1 (a) QT (p) F (Iz) e -~'2 

- u  p - z  
and thus since (66) 

N + (t/) - N-  (r/) = (r/+ u) A (r/) e -~2 (67) 

we can readily compute A (~/) to establish the complete solution ~ (x,/1). For 
u 2 = 5/6 and selected values of  u 2 > 5/6 we have found that the three equa- 
tions found after substituting Eq. (29 b), with Uo = 0, into Eqs. (48) and (49) 
cannot be solved. 

Table I 
Density and temperature perturbations. 

u o~lOo T| 

Previous Present Ytrehus [12]  Previous Present Ytrehus [12] 
work [1] work work [1] work 

0.0 1.0 1.0 1.0 1.0 1.0 1.0 
0.1 0.8812 0.8614 0.8494 0.9195 0.9552 0.9567 
0.2 0.7961 0.7652 0.7283 0.8421 0.9101 0.9152 
0.3 0.7322 0.6949 0.6303 0.7695 0.8648 0.8756 
0.4 0.6824 0.6418 0.5501 0.7024 0.8196 0.8378 
0.5 0.6427 0.6004 0.4841 0.6407 0.7748 0.8016 
0.6 0.6104 0.5676 0.4292 0.5845 0.7308 0.7671 
0.7 0.5838 0.5412 0.3834 0.5334 0.6877 0.7342 
0.8 0.5616 0.5196 0.3447 0.4870 0.6458 0.7028 
0.9 0.5429 0.5020 0.3120 0.4449 0.6052 0.6729 
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Appendix A - The L equations 

As for the scalar case discussed in I, we have found that an iterative solu- 
tion of Eqs. (58) converges slowly, and thus we discuss here an analogous 
transformation that improves the rate of convergence. We introduce, for 
u s < 5/6, 

L; -~ (z) = D (z) H; -~ (z) (A- 1 a) 

and 

L~- r (z) = (1 - z - u) H~- r (z), (A- 1 b) 

where 

I1 0 (A-Z) 
D ( z ) =  0 z + l + u  

Noting that Li -1 (z) and LZr(z)  are bounded at infinity, we can now use the 
Cauchy integral formula [6] to establish the following coupled non-linear 
integral equations: 

dr  (A-3 a) L;  ~(t~) = I -  (11 + u) S ( r + I -  u) D ( -  r) ~ ( -  z) L f ( -  z) r+ /~  
u 

and 
L ; r ( _ z ) = i _ ( z _ u  ) S ( I _ k t _ u ) L ~ ( u ) D ( I ~ ) ~ ( U  ) d/~ (A-3b) 

-u  I z + r 

where /l s [ -  u, oo) and r s [u, ~ ) .  We have found, for u s < 5/6, that a 
numerical solution of  Eqs. (A-3), by an iterative procedure, converges 
rapidly, and thus we have used, for u 2 < 5/6, this inethod to find/-/1 (/~) and 
I-/2 ( -  ~)- For u 2 - 5/6 we define our L functions differently. Noting an ear- 
lier work on L equations [11], Eq. (45) and the fact that for large [z I 

1 
A (z) ~ ~2,  u s = 5/6, (A-4) 
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we let 

L ;  1 (z) = O (z) H ; '  (z) 

and 

L7  r (z) = (1 - z - u) A T n~- T (Z) A E (z) 

(A-5 a) 

(A-5b)  

where  

E (z) = l 1 -  Z -  011 (A-6) 

and 

_ 1  

(A-7) 

Again  L~ -1 (z) and L~-r(z) are b o u n d e d  at  infinity,  and  we find,  for u 2 =  5/6, 
tha t  

oo 

L~-1(/2) = I -  (/2 ~- u) ~ ( r + l -  u ) D  ( -  r) ~ ( -  r )A  E ( -  r) L2Z( - r ) A  T 
u 

dr  
and r +/2  (A-8 a) 

go 

L~-r( - r) = I -  (r - u) ~ (1 - / 2  - u) A r L  1 (/2) O (/2) ~ (/2) A E ~ )  d/2 
- u  / 2 + r  

( i - 8 b )  

can be solved iteratively in a rapidty  converg ing  manner .  F inal ly  for u 2 > 5/6 
we let 

L~ 1 (z) = H~ -1 (z) (A-9 a) 

and  

L ; T  (z) = (1 --z -- u) A r I-l~2 r (z) A E (z)  (A-9b)  

and find 
d~ 

L ? ~ ( / 2 ) = I - ( a + u ) ~ ( r + l - u ) ~ ( - z ) A E ( - z ) L T ( - r ) A  z .... 
z +  /2 U 

and  (A-lOa)  

L~ T (_  Z) = I -- (Z -- U) S" (1 --/2 -- U) A z L~ (/2) ~ (/2) A E (/2) 
d___~_a 

- u  / 2 + z  

(A-10b)  



Vol. 33, 1982 Strong evaporation into a half space. II 215 

Appendix B: An approximate solution 

We now use the FN method  [13, 14] to construct an approximate,  but  ac- 
curate, solution for 7 ' ( 0 , - ; t ) ,  ~t e [u, oo), and the desired AQ and AT. Setting 
x = 0 in Eq. (30), we write 

o o  

7"(0,10 = j" r (q , /0  A (r/) dr/. (B-l) 
- - U  

Thus following our previous work on the one-dimensional  gas [14], we as- 
sume for the moment  that  7" (0,/x) is known for all/2 e ( -  ~ ,  ~ )  and use the 
theory of Muskhelishvili [7] to show that the system of singular integral 
equations given by Eq. (B-l) has a unique solution provided 

f (/.Z + U) QT(ll ) 7"(O, lz ) e -u2 d/~ = 0 ,  ( B - 2 a )  
- - 0 0  

I~ 1 /1 (/~ + u) Qr(p)  7"(0, /0 e-U~ d/z = 0 (B-2b) 

and 

(# + u) ~ t  (_ r/, p) Qr(/z) 7" (0,/J) e -~2 d/J = 0, q e [u, oo), (B-3) 

where 

�9 t (r/,/2) = (r/+ u) P v ~ I + ~ (r/) 7"-1 (r/) 6 ( r / - / 0 -  (B-4) 

If  we now substitute the approximat ion 

 o<1> 7"(0,-/ t)  = K ( - p )  ~ A~, /l e [u, 0o), v~ e [ -  u, oo), (B-5) 

where K(#)  is given by Eq. (11), and Eq. (29b) into Eqs. (B-2) and (B-3) we 
find 

M2-'~ M o N M 4  - M2 + 5 Mo 
- ~Io(v=)A=+ AO+ A T = 2  u 

~=o Mo M 2 -  -~ Mo 

Ni~ 
Z I 1 (v~) A~ + M1 A 0 + '(M3 - "~ M1) A T = 2 u M2 

and, for r /e  [u, oo), 
N 

Z r~(r/) A~ + 

1 R~ (r/) - -~  Ro (r/) 
A 0 +  

R o (r/) 

R3 (r/) - ~ R l ( r / )  
= 2 u  

5 R4 (r/) - R2 (r/) + 7 Ro (r/) 

1 R2 (t/) - ~ R o (r/) 

R1 (~) 

1 
M3 - ~ M1 

[ M1 

(B-6a) 

(B-6b) 

A T  

(B-7) 
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Here 

M j = - - ~  S cJ (c + u) e - ~  dc, 

Ip(z)=diag --~-,1 ~ / ~ r  

R~ (~) = S ~ ( ~  + ~) e -"~ 
- u  , u + r /  

and 

1 
F~(r/)= v - ~ d i a g { ~  , 1 } ( ~ )  

dFt 
/~+z 

(B-8) 

(B-9) 

(B-10) 

�9 - + ~ (~ + u) ~'(~) . 
(~ u) ~ ' ( - ~ ) ~ + v ~  _~ 

(B-11) 

If we now consider Eq. (B-7) at N selected values of r/j, j = 1, 2 . . . . .  N, along 
with Eqs. (B-6) then clearly we find 2 N + 3 linear algebraic equations for 
the 2 N + 4 unknowns A ~, A T, {A1, ~} and {A2, ,}, where A1,, and A2,, denote 
the elements of A~. In order to generate an additional equation, we use a 
combination of the two components of Eq. (B-7) evaluated at r/= u. Thus if, 
for example, we let v, = z , -  u and r/j= zi+ u, where {~} are the positive 
zeros of the Hermite polynomials H2~v(~), then we can solve the linear alge- 
braic equations 

N 

- ~ Io(v=)A~ + 
~'~0 

1 t Ms-  2 Mo 
AQ+ 

Mo I 

M3-7~ M~ 
= 2 u  

M1 

5 M 4 -  M2 + "T Mo 

M 2 - ~ Mo 
A T  

(B-12a) 

N [01 r - - ~ M O A T = 2 u M 2 ,  1 II(v, , )A, ,+M~Ao+(M3 1 
~t~O 

(B-12b) 

w r r ,  (u) A 

1 R~ (u) - -~ Ro (u) 
+ 

Ro(u) 

so + R,(u) -R2(~) + JRo(~) 

I R2(u) - ~ R o ( u )  

= 2 u W  r 
R3(u) - ~ R l ( u )  

& ( u )  
(B-12c) 
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and, for j =  1 , 2 , . . .  ,N,  

N 

r,(qj) A,+ 
~ 0  

= 2 u  

R~ ( ~s) 1 - ~ Ro (~) 
AO+ 

Ra 1 

+ ~ Ro (~) 

- ~ Ro (~) 
AT 

(B-12d) 

to find the desired constants A0, A T a n d  {A~}. We have used, for I ~ [0, 1], 

W = [  1 - /  
l [ (B-13) 

and the FN method discussed here to reproduce the exact results given in 
Table I with N -< 4. 

C. Indices 

If we write Eq. (58a), for v e [ -  u, Go), as 

d'c 
Hl(v ) = I +  (v+ u) ~ ~ ( -  z) Hr2 ( - z) T--+ vH~(v) (C-l)  

u 

/ 1 \  
we can multiply E q . ( C - 1 ) b y  ~ ( v ) P V ~ v m u  ) 

linear singular integral equation, for/z e [ -  u, oo), 

oo d v  
/-/i (U) 2 (P) = i + (U + u) ? ~ H~ (~) ~ (~) -- 

- u  V-- lZ 

and integrate to find the 

(C-2a) 

In a similar manner  we find, for z e [u, oo), 

oo d v  
- - .  (C-2b) i~ ( -  7:) Hrz ( -  z) = l + ( z -  u) P ~ ~ ( -  v) I-l~z ( -  V) v _  z 

Clearly if Eqs. (58) have solutions then so do Eqs. (C-2). Following Muskhe- 
lishvili [7] we can now show that  Eqs. (C-2) have solutions only if • _>- 0 and 
zl = 0. Thus the fact that we have computed  solutions of Eqs. (58) provides 
good evidence that the partial indices are non-negative. If  z* - 0 then clearly 
the partial indices relevant to O(z) are determined,  i.e. z* = 0 for all u, 
z * = l  for u 2 -  <_5/6 and •  for u 2 > 5 / 6 .  For  u 2 > 5 / 6  we can show, if 
~q => 0, that ~q -- 0 is not possible; thus for this case xl = 1 and z2 = 2. Given 
that we have solutions of  Eqs. (58) that, by way of  Eqs. (55) and (57), provide 
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a f a c t o r i z a t i o n  o f A  (z) m e a n s  t h a t  

H~ -1 (z) = �9 (z) P (z) (C-3) 

w h e r e  P(z) is  a m a t r i x  o f  p o l y n o m i a l s .  S i n c e  w e  h a v e  v e r i f i e d  n u m e r i c a l l y  

fo r  u 2 - 5 /6 ,  t h a t  H~ -1 (oo)  = 0 w e  c o n c l u d e  f r o m  Eq.  ( C - 3 )  t h a t  z l  > 0 a n d  

t h u s  t h a t  zz = z2 = 1 fo r  u 2 < 5 /6  a n d  z~ = 1 a n d  zz = 2 fo r  u z = 5/6 .  
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Abstract 

Evaporation of a liquid into a vacuum occupying a half space is investigated on the basis of 
the BGK equation for a three-dimensional gas linearized about a drifting Maxwellian distribu- 
tion. The theory of singular integral equations is used and numerical results are given. 

Zusammenfassung 

Die Verdampfung einer Fliissigkeit im Vakuum, die den Halbraum fiillt, wird untersucht 
mit Beniitzung der BGK-Gleichung f'fir ein dreidimeusiouales Gas, linearisiert in bezug auf eine 
mitbewegte MaxwelI-Verteihmg. Es wird die Theorie der singuliiren Integralgleichungen beniitzt, 
undes werden numerische Resultate gegeben. 
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