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L Introduction

In a recent paper [1] Siewert and Kelley used a solution, similar to one obtained by
Cercignani [2], of the Riemann-Hilbert problem defined by
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to construct a canonical solution of the problem. In the process of developing their
canonical solution, Siewert and Kelley [1] used the fact, proved previously by Kriese,
Chang and Siewert [3], that the partial indices relevant to the considered Riemann-
Hilbert problem are x,=x,=1. Here we wish to show that the partial indices », and
%, can be determined directly from the solutions given by Cercignani [2] and Siewert
and Kelley [1]. In order to condense our presentation, we assume that the paper by
Siewert and Kelley, to which we hereafter refer as I, is available, and we use, with
the inclusion of I in the equation numbers, the results developed there.

L. Analysis

The solution, before it was converted to a canonical solution, developed in I is
written as
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where S(z) is given by Eq. (I-12) and U,(2), a=1 and 2, are given by Egs. (I-39) and
(1-40). If we let @,(z) denote a canonical solution then, from I,
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where P(z) is a matrix of polynomials with det P(z) o z%(z — x,)% From Eq. (7) and I
it is apparent that P(z) must be determined so that
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We note from Muskhelishvili [4] that as |z| — o0
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where x, and x, = %, are the partial indices. We note also that x, + x, = %, where » can
be computed from det G(n); it is also apparent from Eq. (7) that » = 2, which agrees
with the calculation of Kriese, Chang and Siewert [3].

After using Eqs. (6) and (9) along with the explicit expressions for $(z) and
U, (z) given in I, we can readily deduce from Eq. (7) that as |z| — o
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It is clear from Eq. (10) that », > — 2 for otherwise the second column of P(z) would
be identically zero, which is not allowed. From I, we observe that U, (z) has a double
zero at z = 0, and thus we conclude from Egs. (8), after using Eq. (6), that
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Now since U, (x,) = 0, we can conclude from Eq. (8a) that
0 0
; a‘ P(x)=0, (12)
where, from ],
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If we assume for the moment that the elements of the second column of P(z) are
linear in z, then Egs. (11) fix the ratio P,,(z)/P,,(2) to be — (2/3)V2. From Eq. (12) we
thus find a contradiction since a * (2/3)Y2 It follows that the second column of P(z)
must be at least quadratic in z and therefore that », = x, = 1, which agrees with the
conclusion of Kriese, Chang and Siewert [3].
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HI. Concluding remarks

It is worthwhile to recall from the work of Muskhelishvili [4] that the partial
indices play a crucial role in the theory of systems of singular-integral equations.
Muskhelishvili [4] in fact uses these indices to determine if a given system can be
solved, and if so the number and type of constraints that may be required to yield a
unique solution. Though there are problems in regard to coupled systems in particle
transport theory, see for example [3, 5, 6], for which the partial indices have been
determined, there are also important cases, even for two-vector problems, where these
indices remain elusive [7, 8] In our continuing work we intend to see if the idea
developed here can be used to determine the partial indices for Riemann-Hilbert
problems more difficult than the one considered at present.
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Abstract

An analytical solution of the matrix Riemann-Hilbert problem relevant to the BGK model
in the field of rarefied-gas dynamics is used to deduce the partial indices basic to a canonical
solution of the considered Riemann-Hilbert problem.
Sommario

Si fa uso di una soluzione analitica del problema di Riemann-Hilbert che origina dal
modello BGK nel campo della dinamica dei gas rarefatti per dedurre gli indici necessari per

ottenere una soluzione canonica del problema di Riemann-Hilbert.
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