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Abstract-The FN method is used to solve in a concise and accurate manner a linear model of the 
Boltzmann equation appropriate to the transport of neutral hydrogen atoms in a hydrogen plasma. 
Half-space and finite-slab boundary conditions are considered and numerical results are reported. 

1 .  I N T R O D U C T I O N  
THE UNDERSTANDING of neutral hydrogen atom transport in a hydrogen plasma is 
important in the context of present-day fusion research. SAKHAROV (1961) was 
the first to point out that neutral hydrogen atoms could penetrate deeply into a 
hot plasma by repeated charge exchange. Because the plasma scale length can be 
comparable to the mean-free-path of the neutrals, an accurate analysis of this 
problem must be based on a kinetic treatment rather than low-order moments 
(fluid) equations. Early kinetic models have been discussed by ZUBAREV and 
KLIMOV (1961) and KONSTANTINOV and PEREL (1961) who obtained analytical 
solutions by assuming special forms for the hydrogen ion distribution. DNE- 
STROVSKII et al. (1972) also considered a special ion distribution function and used 
an integral form of the Boltzmann equation to obtain some basic results. REHKER 
and WOBIG (1973) also used an integral form of the Boltzmann equation and a 
Maxwellian ion distribution function to deduce results for a half space with 
either perfect specular or diffuse (thermal) reflection at the boundary. In addition 
HACKMANN et al. (1978) reported results for a problem involving a spatially- 
dependent ion temperature and for a time-dependent problem. The method of 
elementary solutions (CASE, 1960; CERCIGNANI, 1962) has been used recently by 
CONNOR (1977) to study a half-space version of this problem for the case of a 
spatially constant ion temperature. BURRELL (1978) and BURRELL and CHU (1979) 
reconsidered the constant ion-temperature problem, for both a half space and 
finite slabs, and reported results for the special case of perfect specular 
reflection at the boundaries. We note that additional work concerning other 
models and alternative methods of solution has been reported by GREENSPAN 
(1974), HOGAN and CLARKE (1974), PARSONS and MEDLEY (1974), CLARKE and 
SIGMAR (1975), JZVOZCHIKOV and PETROV (1976) and DUCHS et al. (1977). 
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We have concluded that to date computational results reported in the 
literature have been presented in graphical form (and usually on a log scale). 
While such a presentation may be adequate for the qualitative study of physical 
laws and/or for correlation with experimental data, we believe there is a place 
for accurate numerical results for an extended class of half-space and finite-slab 
problems. Therefore, we use here the FN method to develop numerical results, 
which we believe to be of reference quality, for the desired particle distribution 
function basic to neutral hydrogen transport in a plasma slab for several 
combinations of partial specular and diffuse reflection. 

The FN method initially introduced and used efficiently in the context of 
neutron-transport theory (SIEWERT and BENOIST, 1979; GRANDJEAN and SIEWERT, 
1979) has also proved to be a particularly efficient method of solving basic 
transport problems in the fields of radiative transfer (SIEWERT, 1978; DEVAUX and 
SIEWERT, 1980) and rarefied gas dynamics (SIEWERT et al, 1980). The method, 
though approximate, can yield very accurate numerical results with modest 
computational effort. The method, which is easy to use and which can accom- 
modate a broad class of boundary conditions, can be summarized in the 
following way. First a system of singular integral equations (and constraints if 
appropriate) for the exit distributions at the boundaries is established. The exit 
distributions are then approximated by a finite expansion in terms of a set of 
basis functions, and the coefficients in the expansion are found by requiring that 
the set of integral equations be satisfied at certain (collocation) points. Once the 
boundary distributions are established, similar ideas can be used, as discussed in 
Section 3, to find the desired distribution function at  any location in the slab. 

2. THE KINETIC EQUATION A N D  BOUNDARY CONDITIONS 
As discussed, for example, by BURRELL and CHU (1979), at sufficiently low 

temperatures (< 5 keV) the dominant interactions for hydrogen neutrals in a 
hydrogen plasma are ionization by electron impact and charge exchange. If we 
assume that the neutral density is sufficiently low that neutral-neutral interactions 
can be neglected, the appropriate steady-state transport equation is 

Here fo(r,v), fe(r,v) and fi(r,v) are, respectively, the neutral, electron and ion 
distribution functions. Also, ue(v) and ux(u) are the cross sections for electron 
ionization and charge exchange (RIVIERE, 1971). We can simplify (1) by using the 
experimental evidence (FREEMAN and JONES, 1974) that the charge exchange 
cross section is, to a very good approximation, inversely proportional to speed. 
In addition and due to the mass difference between electrons and neutrals, the 
ionization rate is essentially independent of the neutral velocity [i.e., v can be 
neglected compared to v‘ in the ionization term in (l)]. We thus write (1) as 
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where fn(r,v) is a spatially normalized ion distribution 

Here Ni(r) is the ion density, taken as equal to the electron density by imposing 
charge neutrality, and the ( a  e )  notation implies an average over the appropriate 
electron or ion distribution. (By assumption u,v is a constant, and the averaging 
notation is superfluous in this case.) 

If we specialize the problem to one of planar geometry, we can integrate (2) 
over v, and uy to obtain 

(4) 
where we have defined, for a = 0 or a = n, 

Finally it is convenient to rewrite (4) in terms of dimensionless variables. We let 

where 6 is a characteristic speed, introduce the optical variable 

T = (77)- '  Ni(z')((u,v) + (up)) dz', 

let 

$ ( T , U )  -+go(z, U,) 

and rewrite (4), for u E ( - c o p ) ,  as 

and 

(7) 

F(T,u)+ fign(z, 0z)- (11) 

An especially important example of (10) and (1 1) corresponds to a local Max- 
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wellian for the ion distribution, i.e. 

where the thermal speed u i ( ~ )  is related to the local ion temperature Z(T) by the 
usual expression 

The case analyzed by CONNOR (1977), BURRELL (1978) and BURRELL and CHU 
(1979) corresponds to assuming T(7) independent of 7. If we choose ij = vi (Le. 
in this case it is natural to set the characteristic speed 5 equal to the spatially 
independent speed v i )  then we can write (9) as 

where c E [0,1] is given by the spatially constant value 

To complete the specification of this kinetic problem we now consider the 
boundary conditions. We assume the plasma slab occupies 0 I z 5 zo. At z = 0 
we take y ( v )  as a known incident distribution of neutrals, and we assume that 
a fraction p i  of the neutrals is specularly reflected and that a fraction pd is 
diffusely reflected with some known distribution h-(v), with 0 5 pS + pd I 1 .  The 
boundary condition on fo(r,v) at z = 0 is then, for U, > 0, 

where v, stands for (ux,uy,-u2), the function h-(v) is normalized to a unit 
right-directed flux, i.e., 

and j -  is the flux of left-directed neutrals at z = 0, i.e., 

In terms of the variable $(?,U), (16) yields, for U > 0, the boundary condition 

#(o, U) = r - ( U )  + ~ M O ,  - U )  + p d ~ - ( U ) ~ - .  (19) 
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Here we have defined 

It follows from (17) and (21) that the function H-(u)  is normalized according to 

A completely analogous boundary condition holds at z = zo, which we take to 
correspond to T = T ~ .  We have, for u < 0, 

where T+(u)  and H+(u) are specified functions and J+ is, aside from a factor of 
5’, the right-directed flux of neutrals at T = T ~ ,  i.e., 

For diffuse reflection characterized by a Maxwellian 
we have as a special case 

(25) 

of characteristic speed w, 

We proceed now to develop the FN method to solve the problem here for- 
mulated. 

3. T H E  F’, METHOD FOR HALF-SPACE AND FINITE-SLAB APPLICATIONS 

We note that CONNOR (1977) has used exact analysis based on the method of 
elementary solutions to develop a Fredholm integral equation that in principle 
could be solved numerically to yield the desired solution of (14) constrained to 
meet boundary conditions appropriate to a semi-infinite half space. We prefer 
here to use the FN method (SIEWERT and BENOIST, 1979; GRANDJEAN and SIEWERT, 
1979) to establish concise and accurate approximate solutions that can be readily 
evaluated numerically. In order to facilitate the correlation of this work with a 
previously reported solution (SIEWERT et al., 1980), by the FN method, of a 
related problem concerning Poiseuille flow in a plane channel we let 
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and consider, for T E [ O , T ~ ]  and c E [0,1), 

a 
U - Y(7,u) + Y(T,u) = C ~ T - ’ ’ ~  Y ( T , ~ )  e-p2 dp. 

a7 c 
For a half-space we impose the boundary conditions 

for U > 0, and, for all U ,  

lim Y(T,u) = 0; 
7- 

whereas for finite slab applications we consider, for U > 0, 

Y(0,u) = F-(u)+ p?Y(O,-u)+ pdG-(u) Y(0 , -p)  e-w2p d p  (30a) l 
and 

Here, in general, F(u)  and G(u)  are considered given and p s  and pd are 
reflection coefficients. 

We first investigate the case of a half-space and express Y(T,u)  in terms of the 
elementary solutions reported by CONNOR (1977), i.e. 

where 

and A(7) is an expansion coefficient to be determined. We note that the 
generalized functions ~ ( T , u )  are normalized such that 

and that they obey the orthogonality condition (CERCIGNANI, 1969) 
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1-1 4 ( 7 7 , ~ ) 4 t ~ ' , ~ ) e - ~ * ~  du = 0, T +  7'. (35) 

It is thus apparent from (31) and (35) that 

which for 7 = 0 yields 

6 4(T,u)Y(O,-u)e-'*u du = 4(- 77,u)Y(O,u)e-'*u du. c (37) 

If we now substitute the boundary condition given by (29a) into (37) we find, for 
77 E [ O P ) ,  

[ +(q,u)Y(O,-u)e-'*u du - 4(- q,u)[p'Y(O,-u) + pdJG(u)] e-"u du = R ( v )  l 
where 

J = 1 Y(0,-U) e-"*u du 

and the known term is 

R(q)  = j'; 4(- v ,u)F(u)  e-"*u du. 
0 

The fact that (31) yields, for u 2 0, 

suggests the approximation (GARCIA and SIEWERT, 1981) 

(39) 

(40) 

where the basis points {qa}  are to be selected and the constants {a,}  are to be 
determined. If we substitute (42) into (38) we find 

N 

a =O 
2 a a r a t q )  = ~ ( 7 7 )  (43) 

where 
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and 

du V(T) = e-U2G(u)u - 
u + q '  

It is clear that we can now consider (43) at N + 1 selected values of 7 E [O,m) to 
generate the N + 1 linear algebraic equations 

that can be solved to yield the desired constants {ua}.  In the following section of 
this work we discuss our choices of basis and collocation points and tabulate, for 
selected test cases, the partial flux 

0" = loa Y(0,-u)e-u2u du. (50) 

It is clear that the partial flux 

I* = [ Y(Q,u) e-"*u du 

can be expressed in terms of 0"; we find 

I* = 1 F ( u )  e-U2u du + ( p s  + pd)O*. 

If we presume now that (49) has been solved to yield the constants {aa}  then, for 
u > o ,  

and 

establish the desired solution at  the boundary. At this point we could set T = 0 in 
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(31) and solve the resulting equation, for all U, to find A(q) and thereby to find 
Y(r,  U) for all r and U. We prefer, however, to use the FN method in the manner 
discussed by DEVAUX et al. (1982) to find the interior distribution. Since 

where 

we can multiply (31) by u4(q,u) exp (- U’) and integrate to find, for q E [O,w), 

which yields, for 7 = 0, 

We thus can eliminate A(q)N(q) between (56) and (57) to find an equation to be 
used with (36) for deducing Y(T,u) for all r and U once Y(0,u) is known. We 
write these two equations, for q E [O,w), as 

and 

J -m 

Denoting two sets of appropriate basis functions by La(u) and R,(u), we can 
now substitute the approximations, for u > 0, 

and 

into (58) and solve the resulting equations at selected values of q to find the 
desired c,(r) and d,(r). 

Let us consider now the case of a finite slab. In order to be brief, we focus our 
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attention on a symmetric problem; therefore, we drop the subscripts appearing in 
(30) and write 

where A(v)  is to be determined so that, for u > 0, 

Y(0,u)  = F ( u )  + psY(O,-u) + pdG(u) Y(0,-p) e-p2p dp. (61) 

We can readily deduce from (60) that, for 7 E [Op), 

which for r = 0 yields 

If we now introduce the approximation 

into (61) we find 

N 

U =o 
Y(0,u) = T ( u ) [ F ( u ) +  pdJG(u)]  + pscn-R-”2 I] aaPa(%- 1). U > 0. (64b) 

Here 

~ ( u )  = (1 - (p’ ) ’  e-*‘dU)-’(l + p4 e+”) 

and an approximate value of 

J = 1 Y(0,-U) e-u2u du (66) 

can be found after we multiply (64a) by U exp (- U’) and integrate. We find 

N 

J = (1 - pdR)-’(  Q + c7r-”2 I] aaKa) 
a =o 
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where 

and 

Ku = Pu -- 1 e-u2u du, L= (: 1 

R = [ T(u)G(~)e-~~~+'@'"'u du. 

In (64) we use a Legendre basis that is orthogonal for U E [O,U] to avoid, in 
subsequent systems of linear algebraic equations, the inversion of ill-conditioned 
matrices that occur for large N, with the use (SIEWERT et al., 1980) of the simple 
basis functions uU. In the next section we explain how we select the parameter U 
used in (64). We observe that the approximation given by (64a), with J given by 
(67), becomes exact for c = 0. We also note that (64) can be used even if F ( u )  
and G(u)  contain delta functionals. If we now substitute (64) and (67) into (63) 
and evaluate the resulting equation at N + 1 values of 7, say {vp}, we find the 
system of linear algebraic equations 

that can be solved to yield the desired constants {au}. Here the known terms are 

+ pd(l - pdR)-'QG(u)] e-'*u du (72) 

where 

and 

In addition, we find we can express the matrix elements in (71) as 

Y n ( 7 7 8 )  = Bu(qp)  + c e-'dv@A,(vp) - ps[cAu(vp) + W v d l  

- pdc(l  - pdz?)-'D(qp)Ku (75) 
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and 

In the Appendix we discuss how recursive relations can be used efficiently to 
compute K,, A,(r]) and B,(r]). We presume now that the constants {a,} have 
been deduced so that (64) and (67) establish Y(0,u) for all U. We thus seek to 
deduce an approximate solution Y(T,u) for all T and U. If we multiply (60), after 
we change U to - U, by u4(r],u) exp ( - U’) and integrate we find, for r ]  E [ O p ) ,  

In a similar manner (60) yields, for q E [ O p ) ,  

The unknown A(r] )N(r] )  can be eliminated from (79) by, for example, consider- 
ing again that equation for T = T ~ .  In the same way A(r])N(r]) can be eliminated 
from (80) by evaluating that same equation at T = O .  In this way we develop, 
after invoking the fact that Y ( T ~ , u )  = Y(0,-U), the equations, for r ]  E [ O p ) ,  

and 

that are the desired generalizations of (58). We now write, for u > 0, 



On the transport of neutral hydrogen atoms in a hydrogen plasma 915 

and 

N 

a =O 
Y(T,u) = T(u)[F(u)+pdJG(u)]e-"" + CT-"~ 2 da(T)Pa (g -  1) (82b) 

where the coefficients {ca(7)} and {d,(T)} are to be determined. On substituting 
(82) into (81) and considering the resulting equations at N + 1 values of 77, say 
{ T ~ } ,  we find the system of linear algebraic equations 

to be solved. Here 

-(q) = lom T(u)[e-(70-T)'US(77,~;~) + C(v,u;~)][F(u)  + pdJG(u)] e-"u du 

and 

We observe that the functions Aa(q5) and B,(qs) appearing in (83) are the same 
as used in (71), and thus f l ( ~ ~ )  and @ ( T ~ )  are the only new quantities to be 
evaluated. Finally we note that the matrix of coefficients in (83) is independent 
of 7. The solution of these equations for many values of T can thus be achieved 
at modest computational cost. In the following section we discuss our numerical 
results for $(T,  U) and the partial flux 

O* = 1- Y(0,-U) e-u2u du. (86) 
0 

Here we also find 

I* = loffi Y(0,u) e-u2u du = F(u) e-u2u du + ( p s  + pd)O*. (87) 

4. N U M E R I C A L  RESULTS 

In solving (49) for the constants {a,} required in (53) to establish the 

PP Vol. 24, No. 8-D 
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boundary distribution for the half space we have used the following scheme for 
selecting the collocation and basis points: 

q, = (e) a =0,1,2,. . . N, I - &  ’ 

where f are the zeros of the Chebyshev polynomial of the first kind TN+,(2x - 
l), i.e., 

In order to generate numerical results for a half-space problem, we consider 
initially in (29a) the explicit forms: 

1 
U0 

F(U) = - exp (u~)s(u - u0) 

and 

G(u) = (2a) exp [ - ( a  - 1)u23. (91) 

We report in Table 1, for several test cases, converged FN results for the partial 
flux O* which were deduced with N < 30. We also consider a half-space problem 
with G(u) given by (91) and 

F(u)  = (2b) exp [- ( b  - 1)u2]. (92) 

Converged FN results (N < 20) are reported in Table 2. 
Turning our attention to the slab problem, we first would like to explain how 

we select the parameter U used in (64). We note that the distribution function 
$(T, t U), U E [Op), is in general very small for U = 5 and, in fact, becomes 
negligible for increasing U. Thus by choosing U = 12 in (64) we aim to represent 
$(T,+ U) efficiently on [0,12] by using a set of basis functions which is ortho- 
gonal on [0,12]. Of course this particular choice of U is not essential; in fact, we 
have found that U = 8 or 10 works as well and yields the same converged 
re sul t s. 

TABLE  THE PARTIAL FLUX O* FOR uo = 20 AND a = 2 

p’ = 0.0 p5 = 0.2 p s  = 0.5 ps = 0.8 ps = 1.0 
C pd = 1.0 pd = 0.8 pd = 0.5 pd = 0.2 pd = 0.0 

0.1 0.00150433 0.00150331 0.00150177 0.00150024 0.00149922 
0.6 0.0205588 0.0204342 0.0202471 0.0200600 0.0199351 
0.9 0.123119 0.121266 0.118509 0.115778 0.113971 
0.95 0.254887 0.250047 0.242888 0.235847 0.231216 
0.99 7.74354 7.50295 7.15595 6.82451 6.61163 
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TABLE 2.-THE PARTIAL FLUX o* FOR b = 10 AND a = 2 

ps = 0.0 ps = 0.2 ps = 0.5 p' = 0.8 p' = 1.0 
C pd = 1.0 pd = 0.8 pd = 0.5 pd = 0.2 pd = 0.0 

0.1 0.03221 11 0.0322089 0.0322055 0.0322021 0.0321999 
0.6 0.330242 0.329614 0.328676 0.327743 0.327123 
0.9 1.14504 1.13483 1.11965 1.10466 1.09476 
0.95 1.78900 1.76541 1.73056 1.69634 1.67387 
0.99 14.6382 14.2063 13.5835 12.9886 12.6066 

We show in Table 3, for several test cases, converged F ,  results for O* 
obtained with N < 30 when we used the explicit forms for F(u) and G(u) given, 
respectively, by (90) and (91) in (61). In Table 4 we report analogous converged 
results ( N < 3 5 )  obtained when we used the forms for F(u) and G(u) given, 
respectively, by (92) and (91) in (61). 

In solving (71) for the constants {a,} required to establish the results reported 
in Tables 3 and 4 we have used for c < 0.9 the collocation scheme: 

q, = Ut,, CY = 0,1,2,. . . N, (93) 

where the 6, are given by (89). 
However, for c 2 0.9, we have found that an alternative collocation scheme 

is needed to obtain accurate results. The reason the above scheme fails for 
c 2 0.9 can be related to the influence of 

1 
vo = qTo9 

TABLE 3.-THE PARTIAL FLUX o* FOR ps =0.2, pd =0.5, U o = 2 0  AND a = 2 

C To= 1 70 = 5 To= 10 70 = 20 

0.1 1.3428 0.93854 0.70136 0.40410 
0.6 1.6683 1.0845 0.8 1058 0.47423 
0.9 2.4449 1.5505 1.1456 0.69608 
0.95 2.7853 1.9168 1.4261 0.88660 
0.99 3.3190 3.2646 3.1801 2.9529 

TABLE 4.-THE PARTIAL FLUX o* FOR ps = 0.2, pd = 0.5, b = 10 AND a = 2 

C 70 = 5 

(94) 

~~~ ~ ~ 

0.1 0.10534 0.032465 0.031994 0.031978 
0.6 0.64475 0.31685 0.30612 0.30564 
0.9 1.9033 1.0188 0.89374 0.87624 
0.95 2.45 17 1.5097 1.2630 1.1994 
0.99 3.3103 3.2457 3.1735 3.0492 
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as discussed by CONNOR (1977) in the context of the method of elementary 
solutions. Therefore, for c 2 0.9 we use a modified scheme that includes a finite 
number of points in the vicinity of yo: 

770 = yo, (95) 

plus 

In Table 5 we show converged FN results for the neutral distribution $*(T,u)  at 
selected values of T and U for one of the cases studied in Table 3. The asterisk in 
$*(T,u) indicates that the delta-function contribution due to F(u) is ignored 
when computing the boundary distribution by (64) and the interior distribution 
by (82). In Table 6 we show the neutral distribution $(T,u) for one of the cases 
studied in Table 4. In addition, we list in Table 7 converged F ,  results for the 
neutral distribution $(?,U) for a special case with F ( u )  given by (92), perfect 
specular reflection and no diffuse reflection at the boundaries. Our results for 
this case exhibit a behavior similar to those reported by BURRELL (1978). We 
would like to point out that for this type of problem once $(T, U) is known, one 
can immediately obtain the complete neutral distribution f,,(~,v) with the use of a 

TABLE S.-THE NEUTRAL DISTRIBUTION $*(T,U) FOR C = 0.6, To = 20, p s  = 0.2, pd = 0.5, 
Uo=20AND a = 2  

U r = o  = 7018 r = TO14 T = 3 ~018 T = TO12 

-5.0 0.1160(-11)t 0.82159(-12) 
-4.0 0.1002(-7) 0.67389(-8) 
-3.0 0.1201(-4) 0.74834(-5) 
-2.0 0.2036(-2) 0.11328(-2) 
-1.0 0.5168(-1) 0.23621(-1) 
-0.8 0.7960(-1) 0.34237(-1) 
-0.6 0.1150 0.45899(- 1) 
-0.4 0.1571 0.56957(-1) 
-0.2 0.2068 0.65495(-1) 
-0.0 0.2919 0.69933(-1) 

0.0 0.1007(+1) 0.69933(-1) 
0.2 0.9169 0.69661(- 1) 
0.4 0.7201 0.66585(- 1) 
0.6 0.4847 0.63695(- 1) 
0.8 0.2796 0.55885(-1) 
1.0 0.1387 0.41882(- 1) 
2.0 0.7254(-3) 0.15240(-2) 
3.0 0.2416(-5) 0.83780(-5) 
4.0 0.2005(-8) 0.66861(-8) 
5.0 0.2320(-12) 0.73495(-12) 

'Read as 0.1 160 x lo-" 

0.78603(-12) 
0.64131(-8) 
0.70396(-5) 
0.10452(-2) 
0.21 155(-1) 
0.30408(- 1) 
0.40364(-1) 
0.49489(-1) 
0.56048(-1) 
0.58649(-1) 
0.58649(- 1) 
0.56728(-1) 
0.50770(-1) 
0.42235(- 1) 
0.32941(-1) 
0.23968(-1) 
0.12420(-2) 
0.79639(-5) 
0.68279(-8) 
0.78582(-12) 

0.77993(- 12) 
0.63826(-8) 
0.699 17(-5) 
0.10289(-2) 
0.20567(-1) 
0.29491(-1) 
0.39049(-1) 
0.47743(- 1) 
0.53900( - 1) 
0.56190(-1) 
0.56190(-1) 
0.54094(-1) 
0.48095(-1) 
0.39505(- 1) 
0.30013(-1) 
0.21128(-1) 
O.IO999(-2) 
0.74392(-5) 
0.66385(-8) 
0.78851(-12) 

0.78301(-12) 
0.64697(-8) 
0.71234(- 5 )  
0.10435(-2) 
0.20541(- 1) 
0.29386(- 1) 
0.38839(-1) 
0.47406(-1) 
0.53429(-1) 
0.55602(-1) 
0.55602(- 1) 
0.53429(- 1) 
0.47406(-1) 
0.38839(-1) 
0.29386(-1) 
0.20541(- 1) 
0.10435(-2) 
0.71234(-5) 
0.64697(-8) 
0.78301(- 12) 
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TABLE 6.-THE NEUTRAL DISTRIBUTION 4(~ ,  U) FOR C = 0.6, 70 = 20, p' = 0.2, pd 0.5, 
b = 10 AND a = 2  

-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
-0.8 
-0.6 
-0.4 
-0.2 
-0.0 

0.0 
0.2 
0.4 
0.6 
0.8 
1 .o 
2.0 
3.0 
4.0 
5.0 

0.1939(-11)' 
0.1879(-7) 
0.261 1(-4) 
0.5374(-2) 
0.1795 
0.2982 
0.4713 
0.7212 
0.1118(+ 1) 
0.2345( + 1) 
0.2108(+2) 
0.1419(+2) 
0.4626(+1) 
0.9383 
0.2628 
0.1195 
0.1280(-2) 
0.5232(-5) 
0.3758( - 8) 
0.3877(- 12) 

0.18173(-12) 
0.12895(-8) 
0.13628(-5) 
0.23801(-3) 
0.68148(-2) 
0.10722(- 1) 
0.15738(- 1) 
0.21613(-1) 
0.27906(-1) 
0.34170(- 1) 
0.34170(- 1) 
0.40646(- 1) 
0.59015(-1) 
0.72556(-1) 
0.67 177(- 1) 
0.54609(-1) 
0.29422(-2) 
0.17976(-4) 
0.14575(-7) 
0.15997(-11) 

0.15988(-12) 
0.86548(-9) 
0.52229(-6) 
0.44797(-4) 
0.10382(-2) 
0.16151(-2) 
0.23412(-2) 
0.31660( - 2) 
0.40046(-2) 
0.47569(-2) 
0.47569(-2) 
0.53445(-2) 
0.57961(-2) 
0.65392(-2) 
0.74385(-2) 
0.77572( -2) 
0.99665(-3) 
0.86901(-5) 
0.84821(-8) 
O.lO428(-11) 

0.24169(- 12) 
0.13757(-8) 
0.79506(-6) 
0.35006(-4) 
0.2371 1(-3) 
0.34717(-3) 
0.48524( -3) 
0.63831(-3) 
0.78809(-3) 
0.91409(-3) 
0.9 1409(-3) 
0.99959(-3) 
0.10385(-2) 
0.10501(-2) 
0.10957(-2) 
0.1 1894(- 2) 
0.31066(-3) 
0.39186(-5) 
0.46496(-8) 
0.64413(-12) 

0.39348(- 12) 
0.25153(- 8) 
0.17378(-5) 
0.953 15(-4) 
0.24745(-3) 
0.26430(-3) 
0.29798(-3) 
0.33294(-3) 
0.35780(-3) 
0.36675(- 3) 
0.36675(-3) 
0.35780(-3) 
0.33294(- 3) 
0.29798(-3) 
0.26430(-3) 
0.24745(-3) 
0.95315(-4) 
0.17378(-5) 
0.25153(-8) 
0.39348(- 12) 

?Read as 0.1939 x lo-'' 

TABLE 7.-THE NEUTRAL DISTRIBUTION 4 ( T , U )  FOR C = 0.2, 70 = 20, p s  = 1.0, pd = 0.0 
AND b = 100 

~~ ~~ 

U 7 = 0  T = r0/8 7 = 7014 T = 37018 7 = 7012 

-5.0 0.3922(-12)+ 0.27122(-13) 0.40345(-13) 0.65955(-13) 0.10863(-12) 
-4.0 0.3846( - 8) 0.12935(-9) 0.19329(-9) 0.35492(-9) 0.66181(-9) 
-3.0 0.5486( - 5 )  0.72455(-7) 0.84590(-7) 0.18416(-6) 0.42165(-6) 
-2.0 0.1189( -2) 0.78152(-5) 0.24478(-5) 0.54074(-5) 0.18253(-4) 
-1.0 0.4482( - 1) 0.21762(-3) 0.27035(-4) 0.58688(-5) 0.10205(-4) 
-0.8 0.7811( - 1) 0.34453(-3) 0.42195(-4) 0.80996(-5) 0.67580(-5) 
-0.6 0.1321 0.50956(-3) 0.61479(-4) 0.1 131 1(-4) 0.67757(-5) 
-0.4 0.2248 0.70660(-3) 0.83681(-4) 0.14937(-4) 0.74836(-5) 
-0.2 0.4250 0.92395(-3) 0.10674(-3) 0.18533(-4) 0.80138(-5) 
-0.0 0.2068( + 1) 0.11514(-2) 0.12828(-3) 0.21635(-4) 0.82061(-5) 

0.0 0.2021(+3) 0.11514(-2) 0.12828(-3) 0.21635(-4) 0.82061(-5) 
0.2 0.4088(+1) 0.14235(-2) 0.14664(-3) 0.23878(-4) 0.80138(-5) 
0.4 0.2248 0.28346(-2) 0.16542(-3) 0.25183(-4) 0.74836(-5) 
0.6 0.1321 0.65712(-2) 0.25803(-3) 0.27252(-4) 0.67757(-5) 
0.8 0.781 1( - 1) 0.91692(-2) 0.53449(-3) 0.42501(-4) 0.67580(-5) 
1.0 0.4482( - 1) 0.90818(-2) 0.84264(-3) 0.82924(-4) 0.10205(-4) 
2.0 0.1189( -2) 0.74601(-3) 0.21841(- 3) 0.63208(-4) 0.18253(-4) 
3.0 0.5486( - 5 )  0.50462(-5) 0.22199(-5) 0.96837(-6) 0.42165(-6) 
4.0 0.3846( - 8) 0.42628(-8) 0.23026(-8) 0.12353(-8) 0.66181(-9) 
5.0 0.3922(- 12) 0.48205(- 12) 0.29461(-12) 0.17899(- 12) 0.10863(- 12) 

'Read as 0.3922 X lo-'* 
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scaling factor which depends of course on U, and U,. Finally, we note that all our 
numerical results are correct, we believe, to within 21 in the last figure shown. 

In reporting the numerical results shown in Tables 5 ,  6 and 7 we used 

where the Ga(q) ,  with Go(q) = 0, are given by 

to deduce from (71) for U E [0, cf)) the following alternative expressions which 
proved to be improvements over the usual (64) in the computation of the boundary 
distributions, especially as U +O: 

Y(0, - U) = T ( ~ ) [ F ( u ) + p ~ J G ( u ) l e - ' ~ ~  +$Y(u) (101a) 
7r 

and 

Y(0, U)= T(u)[F(u)+pdJG(u)l+ps &Y(u).  (101b) 
i? 

Here 

N 

a =O 
Y(u) =(1- ps e-+)-'( B(u)+ c 2 aa[pd(l - pdR)-'D(u)Ka - [e-+ - pS]Aa(u) ] }  

N 

a=O 
+ c 2 a, [[ - A,( u)]Pa ($ - 1) + Ga (U)]. 

One additional comment is needed regarding the convergence of our method for 
slab problems. While for integrated quantities such as O* the FN method 
converges to 5 significant figures with N < 35, we have found that higher N is 
necessary to obtain accurate neutral distributions. For example, to obtain the 
results shown in Table 6 we used N = 60. We note also that the convergence in 
the calculation of neutral distributions is slowest at the boundaries and this 
explains why we have reported boundary distributions with fewer significant 
figures than interior distributions. 

Since the elementary solutions appropriate to a class of spatially varying ion 
temperatures have recently been established (POMRANING, 1981), we intend, in 
our continuing study, to use the FN method to develop numerical results for this 
important generalization of the present work. 
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APPENDIX 
Recursive relations 

the Legendre polynomials to deduce, for a z 0, 
In order to compute accurately the constants K ,  defined by (68), we use elementary properties of 

(A.l), with given values of KO,  K , ,  K2 and K3,  defines an initial value problem. We have found that 
forward recursion is unstable here, and thus we use the method discussed by OLIVER (1968) to 
compute the required K,, for a up to a fixed L. First we select M and replace the initial value 
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problem by a convenient boundary value problem defined by (A.1) with 

(A.2, A.3, A.4) 

and solve the resulting L + M - 1 linear algebraic equations for K2, K3,.  . . K L + M  by Gaussian 
elimination. We repeat this procedure for different M until we obtain K, with the desired accuracy 
for a up to L. Indeed by using a double-precision Gauss elimination routine and an IBM 370/165 
machine we were able to compute K,, accurate to 14 significant figures for a up to 185, with M = 15. 

In regard to the functions A,(q) defined by (76) we find for a 2 0 

(A.5) 
2 

(a + l)A.+I(q) + (2a + 1) A,(q) + aA,-l(q) = ~ ( 2 a  + 1)K, 

with 

Due to the fact that the generation of A,(q) for q > 0 is unstable when using (AS) in the forward 
direction, we use a combination of (AS) and the corresponding homogeneous equation, both in the 
backward direction, to compute A,(q) accurately for a up to N. First we take A$++M+I(q)= 
AEtM(q) = 0 for some M and use (AS) backwards to generate A:tM-l(q), AEtM-2(q), . . . . A;+,(q). 
We then increase M and repeat the procedure until convergence in A;+,(q) is achieved. Next we set, 
for some M, A*N*iM+l(q) .= 0. A Z M ( q )  = E. and use the homogeneous version of (AS) backwards to 
generate AATM-l(q), A E d q ) ,  . . . A;tl(q). BY increasing M and repeating this procedure, con- 
vergence in the ratio A:T1(q)/AE2(q) is finally achieved. We then propose for (Y = 0,1,2,. . . N :  

Once we have completed the generation of A$(q) and A$*(q) down to a = 0, we can compute the 
normalization factor from 

and find the desired A,(q) by using (A.7). For q > 1, however, we discovered that the convergence 
of Afi+l(q) becomes progressively slow; therefore we use the Christoffel-Darboux formula (HOCH- 
STRASSER, 1964) for the Legendre polynomials to deduce the alternative recursion relation 

(A.9) was used backwards in the manner suggested by MILLER (1952) to generate the required A,(q) 
for q > 1. We note that by computing K,, as outlined in the beginning of the Appendix we were able 
to compute A,(q) accurate to at least 13 significant figures for q > 0 and a up to 100. In addition, the 
use (obligatory in this case) of the recursive relations given by (AS) and (A.9) in the backward 
direction yields Ao(q) automatically, i.e., no numerical integration is needed to compute A,(q). 

The functions B,(q) defined by (77) may in turn be expressed for a 2 0 by 

(A.lO) 2c 
U (a+1)Ba+1(q)- (2a+l )  B,(q)+aB,_,(q)=--(2a+l)K,  

with 

Bo(q) = ~ " ~ ( 1  - C)  + cAo(q). (A.11) 

(A.lO) can be used efficiently in the forward direction to generate the required Be(?)  for q > 0. 


