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On the scattering of polarized light 

By C. E. Siewert and F. J. V. Pinheiro, Depts. of Mathematics  and Nuclear 
Engineering, Nor th  Carolina State University, Raleigh, USA 

I. Introduction 

In a recent paper, hereafter referred to as [1], the Ku~er-Ribar i~ 
formulation [2] of the equation of transfer relevant to the scattering of 
polarized light was used to reduce the computa t ion  of  the desired density 
vector l(z,[2,~0) to a set of ~0-independent problems, each based on real 
quantities. Here we wish to develop the basic analysis we use to establish the 
azimuthally symmetric component  of the complete  solution. 

To summarize the results of [I ], we consider the equation of transfer 

27zl 

co ~ Sp([2 , [2 , ,~o_r162 (I) [2-ff-~z I ( z , [2 ,  (a) + I ( z , [2 ,  (o) = - ' ~  o - ,  

where the density vector I ( r ,  [2, (p) has the four Stokes parameters [3, 4 ] / ,  Q, 
U and Vas components,  and P(# ,  [2', ~0 - r  is the phase matrix. We use here 
the expansion of the phase matrix introduced by Kugrer and Ribari6 [2] and 
shown in [1] to yield the convenient representation 

[2', - r  (2) 
L 

= ~ T I  (2 - &,m) [C m (12, [2') cos m ((o - r  + S m (#,  [2') sin m (~o - (o')] 
m=0 

where 

C ~ ([2, [2') = A m ([2, [2') + D A  m ([2, [2') D ,  (3 a) 

a m ([2, [2') = A m (I.1, [2t) )D - i D A  m ([2, [2 t ) ,  (3 b )  

D = diag { 1, 1, - I, - 1 } (4) 

and 
L 

A m ([2, [2') = ~ / 1 7 '  C[2) B~ H~ ([2'). (5) 
l=m 
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Here the given constants used to define 
introduced by Herman and Lenoble [5], i.e. 

( I -  m)! 
BTt - - B t  

( l+m)? 
with 

B t = T t  ~t 0 
0 ~'l - e l  ' 

0 et 

flo = 1 and et = c~t = 0 = el = 0 for l = 0 and 1. In addition 

the phase matrix are those 

nT' ( ~ )  = 

(6) 

(7) 

/,7' (~) o o 

o RT" (u) - T~" (U) 

0 - T7 ~ (~) RT' (~) 
0 0 0 

is the associated Legendre 

0 

0 

0 
P'r (P) 

function, i .e  

(8) 

(9) 

Further R~ (/z) and T~ (/1) are defined in terms of the generalized spherical 
functions discussed by Gel'fand and gapiro [6], i.e. RT'(lz)= T'~(p)= 0 for 
l = 0 and 1, and for I >-- m 

1 r ( l+  m)! [pZm,2 (p) + p t,_2 (/1) ] (lOa) R~ (/.t) = - T ( 0  m ~ m ) !  

and 

TT/(p) = _ 1  (0m V (1+ m)! ( l -  m)i [P~,2 (/t) - P~ , - z (P ) ]  

where 
1 --[1 I m/2 d 1-~ 2 

.pt +2(/~) =A+ 1---~f] (1 _p2)-v-I , -  d//l~2 [(1 ]2) l-m (l  + ]l)l+m] (1 l)  

and 
A + --(--1)l-m(i)-m - -  V ( l - m ) ! ( l + 2 ) [  (12) 

= - 6 +  ' 2-7"~--- m~( m). (IT- 2)! 

We note that the phase matrix given by Eq. (2) obeys the seven symmetry 
relations (A,B, . . . ,  G) derived by Hovenier [7]. We seek, in general, a 
solution to Eq. (1) for z E [L, R] subject to the boundary conditions, for/~ > 0 
and ~0 ~ [0, 2 re], 

l (L ,  la, ~o) = rC 6(la - Po) ~(~o- ~)  F +  Fa (lz, ~o) (13a) 

(lOb) 

Legendre polynomial of order l, then for l >_- m 

e~  (/0 = (1 - I22) m/2 d~ d/.t m Pl(/t) .  

where /ffl (/a) if Pt (/z) is the 
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and 
2. I 

I(R,-/2, ~0) = F2 (/2, ~o) +m--~-L ~ f I(R,/2', ~o')/2' d/2' d~o'. (13b) 
7C 0 0 

Here the flux constant has components Fz, FQ, Fv and Fv, 2o is the Lambert 
reflection constant, L = diag {1, 0, 0, 0} and F1 (/2, ~0) and F2 (/2, ~o) are con- 
sidered given. As we intend to develop our solution in detail, we consider 
first the azimuthally symmetric component 

2n  1 

I(z,/2) = ~-K-S ~I(z,/2, ~o) de  (14) 
0 

of the complete solution. 

II. The elementary solutions 

If we integrate Eqs. (1) and (13) over ~o we find that I(r,/2) is defined by 
(.0 L 1 

/1 1(%/2) + l (z,/2) =-7 ~ Hz(/2) Bt S Iil(/2') I (z,/2') d/2', (15) 
1=0 - 1  

and the boundary conditions, for/2 > O, 

i 3 (/2 - /20)  F + Fl (/z) (16 a) I(L, /2) = T 

and 
1 

I(R, -/2) = F: (/2) + 22o L SI(R,/2')/2' d/2' (16b) 
o 

where 
2n 

F=(a ) =_.1_1 5F~(a, ~o) d~0. (17) 
2~z o 

Here 

///(/2) = diag {Pt (/2), Rt (/2), Rz (/2), P~ (/2) }, (18) 

where Rt (/2) -- R ~ (/2) = 0 for l = 0 and 1, and for l >- 2 

V ( I  p2 (/2). (19) 2) ? 
Rt(/2)  = (t + 2 ) !  

It is apparent that for the special case /20 = 1 and FI (/2, (o) and F2(/2, ~0) 
independent of (a that I(z,/2, ~0) = I(z,/2); otherwise, of course, I(z,/2) is only 
one component of the complete solution. We note that Domke [8, 9, 10, 11] 
has reported elementary solutions of Eq. (15) and extensive analysis basic to 
the Ku~er-Ribari6 formulation [2] of  the general polarization problem. 

Although I(z,/2) is four-vector, it is clear from Eqs. (15) and (16) that the 
coupling is not complete. Thus we study here the two-vector problem 

8 L I 
~0 P /2"~-z-z ~(z,/2) + ~(z,/2) =--g- ~-~ t(/2) Cz SPt(/2') ~(r , /2 ' )d/2 ' ,  (20) 
z~ l = 0  - 1  



810 C.E.  Siewert  and F. J. V. Pinheiro ZAMP 

where 

Pt (/0 = diag {Pl (/~), Rl (#)}, (21) 

and the matrices 6"l, with elements C7, are constants. Clearly, if we use 

C~= fl, i ~i (22) 

the two components of ~(~,/z) are the Stokes parameters I(z,/z) and Q(z, #). 
On the other hand, if we use 

C~= _el6~ ~l t , (23) 

then the two components of ~(z, #) represent the Stokes parameters V(z,/.t) 
and U(z,/l). In the manner of Case [12], we now substitute 

~ (~,/~) = ~ (~, #) e -~/r (24) 

into Eq. (20) to find 

~- L cog 
(4 - /~) ~ (~,/z) =--7-  ~ Pt(/~) C~ Gt(~) M ( ~ ) ,  (25) 

l=0 

where the 2 • 2 matrices Gt(~) are defined such that 
I 

Pt(.u) ~(~ ,  #) du = Gt(~) M ( ~ ) .  (26) 
- I  

To normalize the vectors ~(~,/z)  we use the particularly convenient 
condition 

t 

~K(#)  ~(~, /~)  d/~ = M ( ~ ) ,  (27) 
-1 

where 

K(/z) = diag {1, R2 (U)}, (28) 

which allows us to deduce Gz(~) in a simple manner. If we note Eq. (19) and 
use, for 1 - m, the orthogonality relation 

' (l + m)! (____.~2 ] 32,,, (29) 
PT' (/t) P~ (/z) du ( l -  m) ? \ 2 l + t / 

-1 

we can deduce a similar expression for the matrices Pt (/z), i.e. 

~Pt(#) Pz'(#) d/l = ~ diag {1, (1 - ~o,t) (1 - 31,3} ~l,e. (30) 
-1 
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We can also use, for l = m, the recursive relation 

(21+ l)l.zprf(lz)=(l+ l-m)p~m+i(/a)+(l+m)(1-6m, l) P]21(la) (31) 

to deduce, for l >= 1, that 

(2 l + 1)/1 PI (/z) = Kl Pz+ ~ (/z) + J~ Pt- 1 (/z), (32) 

where 

K/= d iag{ l+  1 , ] / ( l -  1 ) ( l+  3) } (33) 

and 

Jz = diag {l, V ~ -  4}.  (34) 

Since K~ is singular, it is apparent  that  

Po(/-t) = A = diag {1, 0}, (35a) 

e~ (r = A/~ (35b) 

and 

P~ (/0 = diag {/'2 (/0, R2 (g)} (35 c) 

are required before Eq. (32) can be used to generate the remaining 
P matrices. 

We now multiply Eq. (25) by Pt(/z), integrate over ~ from - 1  to 1 and 
use Eqs. (30) and (32) to find, for l >-- 1, that  

[~ hz GI(~) - Kl Gl+j (~) -- It Gl-1 (~)] M(~)  = 0 (36) 

where 

co 1 h, = (2l + l) [ I -  ( 2-~-~) C,] . (37) 

To avoid constraining ~ at this point,  we take the matrices Gl(~) to satisfy, 
for/>_-- 1, 

~hz G(~) =Xt G+1 (~) +J~ G-~ (~). (38) 

Again, since Kl is singular it is clear that Go(~), G1 (~) and G2(~) are 
required before we can use Eq. (38) to generate the remaining Gz(r On 
multiplying Eq. (27) by A and using Eqs. (25) and .(26), we see that we 
can take 

Go (~) = d (39 a) 

and 

G, (~) = k0 ~ A.  (39 b) 
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We can also deduce from Eqs. (25), (26) and (27) that 

G2(~) = diag {�89 (~2 k0 kl - 1), 1}, (39c) 

where, in general, 

k1= (2l +1) 1 1 -  co( 2l-2l~) C~11 . (40) 

Returning now to Eq. (25), we first consider that ( r [ -  1, 1] and write 

L 

= co ~ (---L-1 ] Z P1(/1) C, Gt(r M(~).  (41) 
O(~,/z) 2 \ G - / t ] l = 0  

Thus on multiplying Eq. (41) by K(/z) and integrating we find that ~ must be 
a zero of 

A (z) = det A (z) (42) 

where 
1 L co d/z 

A(z) = I + - ~ z  ~K(/.z) ~P1(/.z) ClGt(z) . (43) 
-1 1=0 /t - z  

If we write, for l - 1, 

[Gt(z) - Gt (/z)] = al(Iz, z) a~ + at-z (#, z) A~-2 + . . . ,  (44) 
Z - -  l t  

where 

at(It, z) = lz t-I + ~1-2 Z q - . . .  "F Z 1-1 (45) 

then Eq. (43) yields 

d/~ co z 2 z 
A ( z ) = I +  z ~ ~ ( l Z ) - -  - -  ( l - A )  ~ W t C t A ~ ,  (46) 

-I p - z 2 l=2 

where 
L 

CO 
PI( ) cl GI( ) 

/ = 0  

and, for l ~ 2, 
1 

Wt= I R2(p) Pl(lt) I 1t-2 dlt . 
- I  

We find we can write Eq. (46) as 

1 d/~ 
A (z) = T(z) + z I ~(lU) ~ ,  

- x  I.t - z 

(47) 

(48) 

(49) 
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where 

Here ~ can be expressed as 
L CO [ C~/I [ T 

= -  1---~ k0 k, Z C~ D,, 
l=2 

where [1] 
Dr= l ( 2 / +  1) d i a g { V ~ - 4 , / }  ht-i D,-I 

with 

(50) 

(51) 

(52) 

1 

If we now consider Eq. (25) for ~ = v ~ ( -  1, 1), we can readily generalize 
our previous work [13] to find the following 2 x 2 solution 

eo v ( P I K-" 
~(v,/z) =-2-- \ v - - ~ }  G(/~, v) + 6 (v - / z )  (v) ~(v),  (54) 

where 
L 

G(/~, v) = ~ P~(~) G G,(v) (55) 
1=0 

1 de/ 
l~(v) = T(v) + vP I ~ ( r  (56) 

-i I.Z- v 

and 

Thus to express the solution to Eq. (20) in terms of  the elementary solutions 
we have found we write 

x-I 
~'(z,/t) = Z {A (v~) �9 (v~,/z) e -~/v~ + A ( -  vp) ~ ( -  v~, U) e ~/v"} 

/~=0 1 

+ S ~/i (v, r A (v) e -~/v dv (57) 
-1 

where {vB} denote the x "positive" zeros of A (z), A (vB), A ( -  vs) and the two- 
vector A (v) are expansion coefficients to be determined by the boundary 
conditions and 

~(v/~'lt) 2 \v~- iz]  G(tz 'v#)M(v~)'  (58) 

where M(vjs) is a null-vector ofA (vp). 



814 

lII. Discrete eigenvalues 
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Now that we have established Eq: (57) it is clear that  a computa t ion  o f  
the discrete eigenvalues is crucial to our  study. Thus  we first seek to 
establish x, the n u m b e r  o f  pairs of  zeros _ v~ o f A  (z). Note  that  A (z) =A ( - z ) .  
I f  we let 

1 
Xr (U, z) = [K(/A) Pl(/A) - K(z) Pl(z)] (59) 

/ A - - 2  

then clearly Eq. (43) can be writ ten as 

l d/A L 
a (z) = I + z %V(z) ~ + co z ~ / ' z  (z) Cz Gt (z) ,  (60) 

-1 / A - z  1=0 

where 
1 

/'/(z) ~- ~ Xt (/A, z) d/A. (61) 
-1 

It is not difficult to show that F0 (z) = 0, 

E (z) = A,  (62) 

1 Z ( 3 Z 2  ~(z )  = diag {~ z , g  - 5 ) }  (63) 

and, for l - 11 that  

( 2 / +  1)z/ ' t (z)  = Kt/'t+~ (z) + art/'t-1 (z) + 6z,/diag {0, - 1}. (64) 

If  we let 
L 

r(z) = I +  coz ~ It(z) Ct Gl(z) (65) 
/=0 

then we can write 
1 

a (z) = Y(z) + z ~F(z) S d/A (66) 
-1 / A - - Z  

and 

A ( z ) = a ( z ) + b ( z ) z  ~ + c ( z )  z - -  , (67) 
-1 / A - - Z  1 / A - - Z ]  

where the polynomials a (z), b (z) and c (z) are  given by 

a(z) -- det Y(z) , 

and 

(68 a) 

b ( Z )  = Yll (z)  ~r-t22 (z)  -[- Y22(z)  ~r-tll (z)  - Yl2(Z) ~/21 (z )  - ]I21 (z)  ~r-/12 (z)  (68b) 

c(z) = det ~ ( z ) .  (68 c) 
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For the case A(oe)~:  0, we readily compute z by using the argument 
principle [14]. Thus, since A (z) = A ( -  z) and A (if) = A (z), 

1 l 
z = - -  A argA + (r) , (69) 

7Z 0 

i.e. gz  is the change in the argument, as r varies from 0 to 1, of 

A + (z) = R (z) + i I(z) ,  (70) 

where 

1 - r  [In 1 - z  - - 7 c  2} (71) R(z)=a(r)+b(~)~ln(-~-~z)+c(~)r2  { (-i--~r) ] 2 

and 

1 - z  
I(z) = z~z [ b(z) + 2c(z) z ln (--i--~z ) J . (72) 

If we let 

O (z) = arg A + (z), (73) 

with O(0) = 0 since A (0) = L we can factor A (z) in the manner [15] 

A(z) =A(oo)  X(z) X ( -  z) 1-I (4-i - z2), (74) 

where 

1 
X ( z ) = ( I  z) - - - - - - 2 e x p ( l \ n 0  0(3)  . (75) 

Now, as discussed previously [15], we can consider Eq. (74) at z values of z to 
establish z algebraic equations that can be solved to yield the discrete eigen- 
values {v~}. It is clear that the determination of z is vital to this analysis. Thus 
once the constants co and Cl are prescribed a careful analytical or numerical 
study of Eqs. (71) and (72) is necessary in order to deduce z from Eq. (69). 

IV. Ex i t  d i s tr ibut ions  

We now consider the basic 
boundary conditions 

~(L,  r = ~1 (p), 

and 

= 6u),  > 0,  

problem defined by Eq. (20) and the 

/z > 0 ,  (76 a) 

(76b) 
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where, at least for the moment ,  ~l (/2) and ~2 (a) are considered given. Thus 
if we write 

• 

T(z,/2) = ~ {A (v~) �9 (va,/2) e -~/v" + A ( -  vp) # ( -  v~,/2) C/v'} 
~=0 

1 

+ S qli (v,/2) A (v) e -*/v dv,  (77) 
- I  

then we must  determine the expansion coefficients A (+ v~) and A (v) so that  
Eqs. (76) are satisfied. If  this could be done then Eq. (77) would yield the 
desired result for all z ~ [L, R] and all/2 ~ [ -  1, 1]. On the other hand, if we 
are primarily interested in the surface quantit ies ~ ( L , - / 2 )  and ~(R,/2),  
/2 > 0, we can use an alternative procedure.  We note that a full-range 
orthogonality relation concerning the # (~,/2) can be readily established from 
Eq. (25). Thus if we mult iply Eq. (25) by ~ r ( ~ , , / 2 ) E / ~ ,  where E is a 
diagonal constant and T is used to denote the transpose operation, and 
integrate over/2 we find 

I ~r(~,,/2) E ~ (~,/2) 1 - /2 d/2 
- I  

L 

= c~ Mr(~ ' )  ~ Gf(~')  ECt Gt(~) M(~). (78) 
2 1=0 

Now on interchanging { and g'  in the transpose of  Eq. (78) and subtracting 
the resulting equation from Eq. (78) we find 

-! d/2 
L 

= c~ M: (~ ' )  ~ GT(~') [ECt- C~E] Gz(~) M(~), (79) 
2 t=0 

and we obtain the desired result, i.e. for ~, ~' ~ {_ vp} u ( -  1, 1) 
1 

~r(~,, /2) E q~ (~,/2) 12 d/2 = O, ~ 4: ~', (80) 
- I  

if 

EQ= CT E. (81) 

Clearly for Ct as given by Eq. (22) we can take E = I; whereas for Cl as given 
by Eq. (23) we can take E = diag { 1, - 1 }. 

If we multiply Eq. (77) by a f f : (~ ,  #) E and integrate over/2 we see that  

1 

S/2 # r ( _  ~,/2) E [~(L,/2) - e -a/~ ~(R,/2)] d/2 = 0 (82 a) 
- I  
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and 
i 

/z ~/ir(~,/2) E [~(R,/2) - e -~/~ ~(L,/2)]  d/z = 0 (82 b) 
-1 

for all ~ ~ {v~} u (0, 1). Here A = R - L .  If we use Eqs. (76) we can write 
Eqs. (82) as 

I 1 

~/2 ~r(~ , /z)  E ~ (L ,  - /z )  d/2 + e -~/~ ~ # ~ r ( _  ~,/~) E ~'(R,/2) d/z = Lt (~) 
o o (83 a) 

and 
1 1 

/2 ~r(~,/2)  E ~V(R,/2) d/z + e -~/r ~/2 ~ r ( _  ~,/1) E ~P(L, - /2 )  d/2 = L2 (~) 
o o (83 b) 

where the known terms are 

L~ (~) = ~/z ~ r ( _  ~,/2) E ~ (/2) d/t + e -~/~ j'/2 ~r(r E ~u2 (/2) d/2 (84a) 
0 0 

and 
1 1 

Le (~) = ~/2 q~r (_  ~,/2) E ~2 (/2) d/z + e- J/~ ~/2 ~ r  (~, #) E ~u 1 (#) d/2. (84 b) 
0 0 

Equations (83) are a system of singular integral equations and constraints for 
the desired surface results. In a following work we intend to introduce a 
concise approximate solution of  Eqs. (83) and to report numerical results for 
basic problems. 
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Abstract 

The elementary solutions basic to the azimuthally symmetric component of the radiation 
density vector are developed for a general model concerning the scattering of polarized light. 

Zusammenfassung 

Die ElementadSsungen, die die Basis der azimuthal symmetrischen Komponente des 
Vektors der Strahlungsdichte bilden, werden hergeleitet fiir ein allgemeines Modell fiir die 
Streuung von polarisiertem Licht. 
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