
Journal of Applied Mathematics and Physics (ZAMP) 0044-2275/82/005626-14 $ 4.30/0 
Vol. 33, September 1982 �9 Birkh~iuser Verlag Basel, 1982 

A n a l y t i c a l  s o l u t i o n s  to  t w o  m a t r i x  

R i e m a n n - H i l b e r t  p r o b l e m s  

By C. E. Siewert and J. R. Thomas, Jr., Depts. of Mathematics and Nuclear 
Engineering, North Carolina State University, Raleigh, and Nuclear 
Engineering Group, Virginia Polytechnic Institute and State University, 
Blacksburg, USA 

I .  I n t r o d u c t i o n  

In a recent paper [1] concerning the evaporation of a liquid into a half 
space [2] we reported our analysis of the system of partial-integro differential 
equations 

8 
(u + u) -G-x ~'(x, u) + ~'(x, u) 

oo 

=re -v2 j [Q (g) Qr(g') + 2a/z' P] ~(x,/ t ' )  e-U'2du' (1) 
- -00  

that describe temperature and density variations [3] in the kinetic theory of 
gases. Basic to our solution [1] of boundary-value problems relevant to Eq. 
(1) are the solutions to the matrix Riemann-Hilbert problems defined by 

*+ (u) = 6 Cu) ~-  (u), 

and 

o+(u)  = ~ , 0 ~ )  e - ~ u ) ,  

where 

G ~ )  = [A+~)]r [A- ~)]  -~, 

~,(u) = A+(u) [,t-01)1 -~ 

and 

/~ ~ [ -  u, oo), (2) 

e (-  m , - u ] ,  (3) 

co H g " t  

A (z) = x + (z + u) ~ ~(u)  ~-----~-" 
-oo /.t - -  Z 

In addition 
_/ . /2  ~ )  = zc-v2 Qr(p) [Q(p) _ 2u/~ T] e , 

(4) 

(5) 

(6) 

(7) 
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Q ~ )  = 

1 

0 

(8) 

1 "[0  9a, T = I o  , 

a nd  for evaporat ion we consider  u > O. W e  seek 2 x 2 matr ices  ~ ( z )  and 
0 (z) such that �9 (z) is analytic in the complex  plane cut along the real axis 
f rom - u to o% 0 (z) is analytic in the complex  plane cut  f rom - c~ to - u 
along the real axis, det  �9 (z) 4= O, det  0 (z) 4~ 0 and such that  the b o u n d a r y  
values of  ~ ( z )  and O(z),  i.e. ~+6u)  and O+(/z), as z approaches  the real axis 
from above and be low satisfy Eqs. (2) and (3). W e  note that  Siewert  and 
Kelley [4], following the work  of  Darroz6s  [5] and Cercignani  [6], have 
reported the desired solut ion for the case u = 0. 

II. Analysis  

First  o f  all we note that  we can write  

A (z) = Y(z) + Z (z) J (z) (1 O) 

where Y(z) and .~ (z) are po lynomia l  matr ices  and 

d/z 
J(z)  = n-a/2(z + u) S e -"2 . (11) 

_ ~  I t  - -  Z 

Using the explicit forms [1] for Y(z) and .~(z), we find we can rewrite  
Eq. (10) as 

Q-T(z) A (z) E(z) Q- l (z )  = 11 (z) + (1 - 2 u z) J (z) I (12) 

where 

E(z) = diag {1 - 2 u  z, 1} (13) 

and 

i 1 H2 
/-/(z) = 1 - 2 u (z + u) 2 . (14) 

! _ u 2 3 (1 - 2 u z )  + ( ~ -  u 2) ( -~ -  z 2 ) 

It is apparent  that  for the special case u 2 = -~ 2 

W(z) = Q-T (z) ,4 (z) E(z) Q-l(z) (15) 

is diagonal. Devot ing  the Append ix  to this special  case and considering here 
that  u 2 4:-~, we observe that  W(z)-can  be diagonal ized by  a similari ty 
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transformation involving at worst  

R ( z )  = 

where q (z) is a polynomial .  We  find 

S(Z) a (z) E(z) Q - l ( z )  Q-T (z) S - i ( z )  = ~r~ (z) 

where 

(16) 

(17) 

12(z) = diag {f21 (z), t'22 (z)}, (18) 
1 f2L2(z ) = 7 [ ~ - -  5u  2 -  1 0 u z - ( 1  - 2 u  s) z 2 + R ( z )  + 4 ( 1  - 2 u z )  J ( z ) ] ,  

(19) 

1 [ R ( z ) - z  2 1 _ 5 u  s + 2 u z +  2 u  2z s] ( -~)  (1 - 2 u  2) 
1/2 

- ( 1  - 2 u s) 

and 

1 z2 1 [ R ( z ) +  + ~ +  5u s - 2 u z - 2 u  s z  s] 

S ( z )  = 

q(z) = (1 - 2 u S )  z z ' + 4 u ( 1  - 2 u  s) z s 

25 +[4u2(1  + 3u  s ) -  3]z  s -  6u(1  + 2u  s) z + 2 5 u ' -  7u  s +-7--  

(20) 

(21) 

The sectionally analytic function R (z) which  we write  as 

R (z) = ] 1 - 2 u2l [(z - zl) (z - z2) (z - z~) (z - z,)] vz (22) 

has branch points at z 1, z 2 , z~, and z 4, the four  zeros o f  q (z). W e  note that  
van H o o f f  [7] has proved,  for u 2 4: -~, that  q(z)  has no real zeros. W e  consider  
here the branch o f  R (z) that  is analytic in the complex  plane cut  along 
F = F 1 w F2 where  F 1 denotes  a path be tween  the two branch points  in the 
upper  half  plane and/"2 is a path be tween  the other  two branch  points. 

Investigating now the R iemann-Hi lbe r t  p rob lem def ined by Eq. (2), we 
generalize the method  repor ted by  Siewert  and Kel ley  [4] for the case u = 0. 
We let h (z) = diag {1,1 - 2 u z} and subst i tute  

41 (z) = d (z) S -~ (z) U(z)  S ( z )  (23) 

into Eq. (2) to find 

U + (/z) = I2 + (/t) [f2-(/t)] -1 U - ~ ) ,  /z ~ [ -  u, oo) .  (24) 

We must also require  

4 + (r) = 4 - ( z ) ,  r 6 / " ,  (25) 

and since 

S -  ( z) = - B S+-( z) (26) 
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where 

B =  01 10 ,  

we find that U(z) must also satisfy 

U+(z )B=BU-( z ) ,  v e  F. 

If we let 

~ (/1) = ~+ ~ ) / ~ ;  ( P ) ,  

A @) = ~1 (U)/~ (U) 

and 

(27) 

(28) 

(29) 

(30) 

(31) 

then since R+(~) = - R-  (~), z e F, we find that 

U* (z) = diag { U* (z), U* (z)}, (32) 

where 

U* (z) = exp ~ _ tog B (x) - ( -  1)~ R (x----~ 

�9 [ l o g A ( x ) + 2 k n i A ( x ) ] }  d~-~_Xz), (33) 

yields a solution to Eqs. (24) and (28). Here k is an even integer (Siewert and 
Kelley [4] failed to ment ion that  k must  be even) and 

1, x e(Xo,Xl) 
A(x )=  0, otherwise. 

(34) 

Since A (x) and B (x) have unit  magni tudes  we write Eq. (33) as 

U* (z) = exp ~ _ arg B (x) - ( -  1)~ R (x-----~ 

/ ax  ) 
�9 [argA(x)  + 2 k z c A ( x ) ]  ~ (35) 

and use continuous values of a rgA(x)  and. a r g B ( x )  such that  a rgA(oo)  
= arg B (oo)=  0. Since R (z) ~ z 2 as [zi ~ oo we mus t  impose the condit ion 
[4] that 

�9 1 dx 1 ~ dx 
~ =  } arg A (x) S R (x) 2 k ~ R (x) (36) 

x 0 - - u  

in order to avoid in U* (z) an apparent  essential singularity at infinity. 
We now consider that  u2e(O,t /2)  w (1/2, 5/6), i.e. the non-special 

values of u for which the strong evaporat ion problem was solved [1]. Now 
since q ( 0 ) >  0 it is clear that q ( x ) >  0 for all x ~ ( - o o ,  oo). We therefore 
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take R ( x ) > 0  for all x ~ ( - o o ,  oo). We find that  f2~ I-q-S.l=0, and so we 
write \X-Ul 

(2~ (z) = (1 - 2 u z) W(z)  

and 

71 (x) = W + ( x ) / W  - (x) . 

We can now write 

7~ (X) = e 2i&(x) 

where 

01 (x) = tan -~, 

and 

02 (x) = tan -1 

In addition 

(37) 

(38) 

4 ~z v2 (x + u) exp ( - x Z )  1 

w(x) ] 

4 zc v2 (x +u) (1--2  ux)  .exp ( -  x2) t 

M ( x )  - R (x) ] " 

(39) 

(40 a) 

(40b) 

x 
11 _ _  M ( x ) = -  T 5 u z - l O u x - ( 1 - 2 u 2 )  x 2 - 8 ( 1 - 2 u . x ) ( x + u ) e - Z 2 ~ e r  (41) 

and o 
M (x) + R (x) (42) 

w(x) = 1 -  2u x 

We take continuous values o f  0~(x), with 0 ~ ( - u ) =  0, and note that  
01 (x) ~ [0, re] for x ~ [ -  u, oo) and that  01 (oo) = z~. Fur the r  we find that  
02(x) e [0, 2z~] for x ~ [ -  u, oo) and that  0 , (oo)  = ~z. It follows that  

arg A (x) = 2 [01 (x) - 0 z (x)] = - 2 0 (x) (43 a) 

and 
arg B (x) = 2 [01 (x) + 02 (x) - 2 zc] = 2 q~ (x ) .  (43 b) 

Equation (36) can now be wri t ten as 

dx  (44) dx = 1 0 (x) 
 oR(x) R(x) 

and since O ( x ) ~  [0, 2~r] for x ~ [ - u ,  oo) we can take k = 2 ,  X o = - u  and 
solve 

zl --=dx 1 SuO(x) dx  (45) 
I R (x) 2 ~z R (x) 

to find x 1 . Some typical results are shown in Table 1. It now follows that  

U* (z) = exp ~o (x) + ( -  1)~ - ~  0 (x) x - z 

zl 1 dx  -1, 
+(-1Y+IR(z) S R(x) x - z  (46) 

! 
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and to remove the singularity at z = x~ we write 

U~(z) = (z- xO u*~ (z). 

From Eq. (23) we observe that 

det ~1 (z) = (1 - 2 u z) U~ (z) Us (z) 

or 

The 
vanishes at z = x a ,  z = - u  and z = l / ( 2 u ) .  We thus 
canonical solution and write 

�9 ~ (z) = �9 (z) P ,  (z) 

or  

(z) = [(1 - 2 u z) (z + u) = (z - x,) 2] -1 ~ (z) P ( z ) .  

Here P ,  (z) and P(z) are polynomials and 

det P(z) oc (1 - 2 u z) (z - x,) 2 (z + u) ~-. 

We must determine P(z) so that 
1 

�9 a ( ~ ) P ( { ) = 0 ,  { = 2 u '  ~ = - u  and { = x l ,  

and 

631 

(47) 

(48) 

d e t ~ ( z ) = ( l - 2 u z ) ( z + u ) ~ ( z - x O  ~ (z+u)2  exp ~0(x) . 
- -U 

(49) 

solution .~l(z) therefore is not a canonical solution since det ~ ( z )  
let ~ (z )  denote a 

(50) 

(51) 

(52) 

(53 a) 

d 
.~. [ ~ ( ~ ) P ( ~ ) ] = O ,  ~ = - u  and ~ = x ~ .  (53b) 
U ~  

On using Eqs. (23) and (46), we find that Eqs. (53) yield 

P ( -  u) = O, 

d t0 "~z P(z) + 0 

P(x 0 = O, 

~x P(xO+lO 0 

~2 P(z) = O, 

o P(xl) = o ,  
k, 

(54a) 
1 

0 

1 

0 

0 

k~ 

0 

ka 

z = - u ,  (54 b) 

k l 
0 

kl 

0 

0 

1 

0 

1 

and 

(54 c) 

(54d) 

 54e, 
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where 
[ 3 \  1/2 

1 - 1  k l = 2 ( 1 - Z u 2 ) ~ - ~  -) [ R ( - u ) + 2 u ' - 8 u 2 - - ~ ]  , (55a) 

k 2 = 2 u [2 (1 - u 2) - u 2 (4 u 4 + 8 u ~ + 3 ) / R  ( -  u)] 
1 - 1  �9 [R ( -  u) + 2 u" - 8 u 2 - -~] , (55 b)  

k3 = - $22 ( x l ) / ( 1  - 2 uZ) , (55 c) 

k ,  = - ~ $22(x l ) / (1  - 2uZ). (55d) 

and Sz~(z ) is labeled as an element of S ( z ) .  From Eq. (52) it is apparent  that 
the matrix P ( z )  must be at least cubic in z, and it is also clear that  Eqs. (54) 
can be satisfied by a cubic; thus in order  to obtain at once a canonical 
solution that has normal form at infinity we let 

P ( z )  = a l I +  bxlz  + c1~ z 2 + 12zz s a12 + b l z z  + c~2z z (56) 
a~l + bz l z  azz + b2zz - l lxz  z " 

Here the two sets of  constants {a11, bl~, c~,  a21, b21} and {al~, b12, c~2, a~2, b2z} 

can be readily found by substituting Eq. (56) into Eqs. (54) and solving the 
two resulting sets of  five linear algebraic equations�9 In writing Eq. (56) we 
have made use of the fact that Eqs. (20), (46) and (47) can be used in 
Eq. (23) to yield, for large I z[,  

I lllz ll z' 
�9 l ( z )  ~ lz 1 122z 2 + . . .  (57) 

where 
l~ = [b U* (oo) + a U* (oo)] (211 - 2 u s [)-1, (58 a) 

= -  u [a (cz)  + b (oo)] ( l l  - 2 u 2 I) -1 (58  b)  

Table I 
Computed Values of  x~ and Yl 

u x 1 Yl 

0.0 0.4232585948 - 
0.1 0.3343463538 1.135463005 
0.2 0.2672015586 1.068122027 
0.3 0.2306651046 !.025512132 
0.4 0.2509172223 1.010471675 
0.5 0.3895740878 1.024144838 
0.6 0.8002481006 !.063757221 
0.7 1.973904503 1.123421895 
0.8 1.824695075 1.197300176 
0.9 1.582201876 1.281710422 
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and 
U*(oo)=exp (-1)~+111-2u2 ] -~-~ _ , -  

In addition 

Analytical solutions to two matr ix  Riemann-Hi lber t  problems 

xO(x) 
R (x) dx - _o R (x) 

633 

(59) 

- ( -1 )~R(z)  I R(x) 
- - I t  1 

dx 
X - - Z  

- ~' 1 x -d X zl] 

(66) 

(67 a) 

(67b) 

(68) 

(69) 

o l  (z) = s -~ (z) V(z) s (z) 

where 

v+(u) = ~+(u)  [~- (u) ]  -1 v - ( u ) ,  u ~ ( -  ~ , -  u], 

and 

V+(z )  B =  B V - ( z )  , ~ ~ F .  

In a manner similar to the foregoing we find 

V ( z )  = (z  + Y O  diag {V* (z), V~* (z)} 

where 
( 1 -_~[ ~ ] 

V* (z) = exp ~ ~, (x) + ( -  1) ~ 0 (x) 
t )  

a = l l - 2 u  2 [ - 1 + 2 u  2 and b = l l - 2 u  s l + l - 2 u  s. (60 and61) 

Considering that we can solve the mentioned systems of linear algebraic 
equations, we conclude that our desired canonical solution, that has normal 
form at infinity, is given by Eq. (51). For large Izl we find from Eqs. (51), 
(56) and (57) that 

1! 1 - -  - -  r 1 2  
z 

�9 (z) --* + . . . .  (62) 
1 

Z 21 Z 

From Eq. (62) we conclude that the partial indices here are zl = z2 = 1, as 
anticipated in our previous paper [1]. We can now write one of the desired H 
matrices [1] as 

H 2 (z) = 4i ( -  u) ~/i-1 (z) (63) 

o r  

H 2 (z) = �9 ( -  u) l ( z )  S -~ (z) U -1 (z) S (z) A -i (z) (64) 

where 
= [ -  a22 - b = z  + l n z  2 a12 + b12z + c12z  ~ 

I ( z )  (65) 
I a21 + b2~ z - a n  - bxl z - c n  z 2 - l~2z ~ " 

We now consider the Riemann-Hilbert problem defined by Eq. (3) and 
write 
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1 ' 
(70) 

(o(x) = ~ ( x )  + 02(x ) + lr (71 a) 

and 

0 (x) = 02 (x) - 01 (x) + n. (71 b) 

Here the angles 

01(x) = tan-1 ( 4 r Y ~ ( x + u ) ( l - 2 u x ) e x p ( - x 2 ) )  (72a) 
M (x) + R (x) 

and 
02(x) = tan_1 ( 4roY2 (x + u ) ( 1 -  2u x ) e x p ( -  x2)) 

M (x) - R (x) . (72 b) 

are defined to be continuous for x e ( - o o , -  u] and such that 01( -oo)  
= 0 ~ ( - u ) =  0 2 ( - u ) =  0 and 0 2 ( - ~ ) = -  n. It is clear that Eq. (70) can be 
solved, and thus we include in Table 1 computed values of yl for selected 
values of u. Now since Eqs. (66), (68) and (69) yield 

det O1 (z) = (z + y02 (z + u) exp ~ ~0 (x) (73) 

we conclude that O~(z) is not a canonical solution. However, the desired 
canonical solution O (z) is given by 

O(z) = [(z + u) (z +yl)2] -1 S-~(z) V(z) S(z) B(z) (74) 

where the polynomial matrix B (z), with det B (z) oc (z + u) (z + y,)2, can be 
found from 

01 ~ B ( - u ) = 0 ,  (75a) 

0 B (-Y0 = 0 (75 b) 

and 

o u~ B(z)  0 

where 

l~=-  [R( -u) -2u4+8u2+~][2(1  - 2u2)] -1, (76a) 

12 = SI~(- yO/(1 - 2u 2) (76b) 
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and 
[ a = ( 2 )  1/2/ d 

l--dTz S12(z) lz=_Ul)/(1-2u~) �9 

(~12 -~ ~12 Z + m22z 2 

~22 + mli Z 

For large I z] 

7 
11z mi2 Z2 

01 (z) - - ,  + . . .  

T m2i m22z 

where 

m n = [b V* (oo) + a V* (oo)]  (2 I 1 - 2 u 2 I) -~, 

m22 -~ [a V* (oo) + b V* (oo)1 (2 ] 1 - 2 u 21) -1 

and [ V*(oo)=exp  ( -1)=+111-2u= I - ~ - _ ~  

We thus can use 

B ( z )  = cq l  + / ~ 1 1 z  - m 2 ~ z  ~ 

(~21 + mnZ 

and conclude that for large I z] 

Sa2 
O ( z )  - - ,  z + . . . .  

1 
S2i Z 

(76c) 

(77) 

(78) 

(79) 

- -dx - )u~  R-~ dx) ] . (80) 

(81) 

(82) 

Here the constants {an, fl11, ~21} and {el~, fl12, e=} can be determined from 
Eqs. (75). It follows from Eq. (81) that the partial indices for this problem 
are ~ = 0 and x* -- 1, as suggested earlier [1]. We can now use the definition 

H; l(z) = 0 (z) 0 -1 ( -  u) ( 8 3 )  

and invoke the condition [1] 

Hi-T(oo) I ~ = 0  (84) 

to find our final result, viz. 
H 1 (z) = O ( -  u )Y(z )  S -1 (z) V -1 (z) S (z) (85) 

where 

J(z)  = (z + u) (z + yl)~ B -~ (z) .  (86) 

We have evaluated Eqs. (64) and (A-16) for z = - r ,  r s [u, oo), and 
Eqs. (85) and (A-26) for z-- /z , /z  ~ [ -  u, oo), to obtain for selected values of 
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u S ~(0, 5/6) numerical results that agree (to ten significant figures) with 
values of H2(-  3) and/-/1 (p) established previously [1] by solving in a strictly 
numerical way a set of coupled non-linear integral equations. In conclusion 
we note that although it clearly is satisfying to find that the developed results 
do in fact constitute computationally viable solutions of the considered 
Riemann-Hilbert problems, we believe it considerably more important that 
we have been able, as anticipated [9], to deduce the partial indices that play a 
vital role in the theory of systems of singular integral equations [8]. 
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1 Appendix: The special case u" = 

Here we write Eq. (12) as 

(f-r(z)  A (z) E(z) Q-1 (z) A -~ (z) = F(z) (A-I) 

where 

F(z) = diag {- 2 u z + (1 - 2 u z) J (z), -~ + J (z) } (A-2) 

and 

A (z) = diag { 1, 1 - 2 u z}. (A-3) 

Thus on introducing a diagonal matrix U(z), with elements U1 (z) and U2 (z), 
and substituting 

�9 ~ (z) = E -~ (z) QT(z) A (z) U(z) (A-4) 

into Eq. (A-2), we find the diagonal system 

U+(p)=F+(P) [F-(P)] -~ U- (p), /z e [ -  u, oo), (A-5) 

which can be solved by the theory of Muskhelishvili [8] to yield 

U ~ ( z ) = ( z + u ) - ~ e x p ( l ~ [ ~ 9 1 ( p ) - 2 7 r ] g  d~p-z) 4 (A-6 a) 
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and 

U2(z)=exp(--~-~,92(/z ) d-~_~z). 

Here 

8 ~ )  = a r g F  + ~ ) ,  

F~(z) = - 2uz+(1  - 2uz) (z + u) zc -a/2 

(A-6b) 

(A-7) 

~ e  - ~  (A-8 a) 
dx 

--o~ X - -  Z 

and 

3 (A-8 b) F2 (z) =-~- + (z + u) zc -a/2 ~ e - ~  dx 
X - - Z  

- - 0 0  

We find that 0~(p)~ [0,2z c] varies continuously from 8 1 ( - u ) = 0  to 
81 (oo) = 2 z~ and that 0 z (jz) ~ [0, zr] varies continuously from 02 ( -  u) = 0 to 
8z (oo) = 0. Thus on using continuous values for the arctan function, we write 

81~  ) = tan- '  { ~_w__(~_~z) e ~ l  (A-9a) 
(~ _ pz) f ~ )  _ # /  

and 
roY2 (u +_.kt) e-U2 / J ~z(P) tan-1 (A-9b) 

/ (u +/z)f(kt) +41 
where 

f(P) = zc-1/2 P S e - ~  d___x__x= _ 2e_UZ ~ e~ dx. (A-10) 
-~o X --/Z 0 

Equation (A-4) yields the canonical solution [8] 

- 3 -v2 (z + u) U~ (z) U2 (z) 
~ (z) = (A- 11) 

U1 (z) 0 

Since a column that vanishes faster than 1/z as I zl ~ c~ cannot be obtained 
from polynomial combinations of the columns of ~ l (z )  we conclude that 
here the partial indices are z~ = z~ = 1. Though ~a (z) is a canonical solution 
it is not in normal form [8], so we let 

~2(z)=~(z)12u(z  +~) (A-12) 

where ~ is a constant to obain 

[ 2 \  v2 

1-3] (z + u) 
~2(Z) = .(A-13) 

2 u (z + CQ U 1 (z) U~ (z) 
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Finally the most general canonical  solution with zl = z 2 = 1 and in normal  
form can be written as 

(z) = ~2 (z) M (A- 14) 

where M is a non-singular constant matrix,  and thus one o f  t h e / - / m a t r i c e s  [1] 
we seek 

JT;~ (z) = �9 (z) ~ -1  (_  u) 

is 
/~;1 (z) = [u~ (z) - (z + u) ~ u~ (z)] u ;  1 ( -  u) 

3 v2 (z + u) U~ (z) U~ ~ ( -  u) 

(A-15) 

- 3 -v2  (z + u) U~ (z) U; 1 ( - u )  . 

U1 (z) U71 (-  u) 
(A-16) 

Considering now the second R iemann-Hi lbe r t  problem,  we let V(z) be 
diagonal with elements V~ (z) and V z (z) and  substi tute 

01 (z) = Qr(z) V(z) (A-17) 

into Eq. (3) to find 

V+(z) = F+(v) [F- (z)] -a V- (z ) ,  r ~ ( -  0 % -  u] ,  (A-18) 

which we can readily solve to obtain 

 A 9a) V~ (z) = (z + u)-I exp I [01 (z) + ~] z - z r 

and 

V2(z ) = exp ~ O2(z) r_---2-~- z (1 -19b)  

with ~1( -  oo) = - ~ and ~ 1 ( -  u) = ~ ( -  oo) = ~ z ( -  u) = 0. On using Eqs. (A- 
19) in Eq. (A-17) we obtain a canonical  solution. F inding  that  the solution is 
not in normal form, we write 

02 (z) = Oa (z) 01 a-1 z (1-20) 

where a is a constant. I f  we write 

1 m 
V i ( z )  - -  - -  + (A-21 a) 

---* Z .-t- Z~  . . .  

and 1 
V 2 (z) --* 1 + -  + . . .  (A-21 b) 

z 

as ]z[ ~ oo and take a -- 1 -  m then 

v2 (z) [(z2 - 4)  vl  (z) - (z - a) v~ (z)] 
0 2 (z) = (A-22) 

0 vl (z) 



Vol. 33, 1982 Analytical solutions to two matrix Riemann-Hilbert problems 639 

clearly implies that here the partial indices are z* = 0 and ~* = 1. In addition 
O~(z) is now in normal form. If  we let 0 (z) denote a general canonical solu- 
tion in normal form then we must have 

I c~ 06 (A-23) O (z) = O2 (z) + 7 z 

where ~, fl, 7 and 6 are constants. If we now substitute Eq. (A-23) into the 
definition [1] 

/_/~1 (z) = O (z) 0 -1 ( -  u) (A-24) 

and invoke the condition [1] 

Hi-~(oo) ] 01 = 0  (A-25) 

we find that 7 = 0, and thus we obtain the final result 
1/2 (A-26) 

o vl (z) v; ( -  u) 
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Abstract 

Two matrix Riemann-Hilbert problems derived from boundary-value problems in the 
kinetic theory of gases are solved analytically. 

Riassunto 

Vengono risolti analiticamente due problemi relativi alia matrice di Riemann-Hilbert, che 
si incontrano in problemi con condizioni al contorno nella teoria cinetica dei gas. 
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