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Abstract-Basic considerations are used to derive the integral form of the equation of transfer relevant to a 
homogeneous sphere with internal sources as well as external illumination and a specularly and diffusely 
reflecting surface. 

1. INTRODUCTION 

The equation of transfer basic to plane-parallel media can be readily converted from the 
integrodifferential form for the specific intensity of radiation to the integral form for the energy 
density even for the general case where radiation is incident on the two surfaces and when the 
boundaries reflect both specularly and diffusely. The resulting integral form of the equation of 
transfer has been used to advantage, for example, by workers who use projection techniques to 
develop solutions’ or basic analysis to prove existence theorems.’ However for the case of 
spheres this transformation has not, to our knowledge, been reported for the general case we 
consider. This transformation from the integro-differential form to the integral form has, for 
spheres, an additional feature in that, for some problems,Gs the integral formulation for the 
given spherical problem can be actually solved in terms of a pseudo-slab problem. These 
potential uses provide, we believe, good reasons for the following brief development. 

2. ANALYSIS 

We consider, for r E (0, R] and p E [-1, 11, the equation of transfer 

1 a 1 a 
/L~+;(l-$)-+l I(r,/A)=W 

ap I 2 I _, I(r, p’) dcc’ + Q(r) (1) 

and the boundary condition, for p E [0, 11, 

IW, - II) = K(P) + al(R, P) + Bxb.4 l’ QR P’)P’ h’. (2) 

Here I(r, CL) is the specific intensity of radiation, r is the optical variable, R is the radius (in 
optical units) of the sphere, ~1 is the direction cosine (measured with respect to the radial 
variable r) of the propagating radiation, and Q(r) represents an inhomogeneous source of 
radiation. In addition, (Y and /3 are coefficients for specular and diffuse reflection, K(p) 
describes the radiation incident on the surface, and the redistribution function x(p) is 
normalized so that 

I 

1 

x(& dp = 1. (3) 
0 

We can use the idea of integrating back along the propagation ray, discussed for example by 
Case, de Hoffmann and Placzek,6 and Fig. 1 to write 
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Fig. 1. The geometry used. 

I(r, p) = I[R, -pdr, p)] eCacp)+ ~so”‘) [t I(d/(? + s2 - 2rsF)) + Q(q(? + s2 - Zrsp))] ems ds, 

where 

~~g(r,p)=cos &=[l -(r/R)‘(l-~~‘J”*, 

So(r, CL) = rp + [R* - r*(l - j?#‘*, 

and, aside from a factor of the speed of light, the energy density of the radiation field is 

I(r) = I_‘, I(r, CL) dp. 

Changing the integration variable to x, as shown in Fig. 1, we rewrite Eq. (4) as 

I(r, CL) = I[R, - pdr, p)] e-sdr,p’+ (LI)(r, p), p 10, 

and 

where 

I(r, -p) = I[R, -p&, p)] e-so~r.-p’+ (GNr, p), p 2 0, 

(Ll)(r, p) = Ed,,_,, [r I(x) + Q(x)] T-‘(x, r, dew [-,w + 4~ r, ~11~ dx 

+ [:,,,, [T I(X) + Q(x)]P+(x, r, p) exp [- w - dx, r, FIX dx 

and 

(GW, LL) = frR [T ( ) Q( 11 -I( I x + x P x, r, p) exp [rp - T(X, r, p)]x dx. 
‘ 

Here 

~(a r, p) = [x2 - ?(l - p*)]“*. 

(4) 

(5) 

(6) 

(7) 
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(gb) 

Pa) 

Pb) 

(10) 
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If we now integrate Eqs. (8) over CL and add the two resulting equations, we find 

R 

d(r)= 
I [ x 
0 

TI(x)+ ~(x)]~~,(~r-rl)-E,(r+ x)ldx 

+2r o’IIR,-p&, ~)]cosh(~~)e-~(~~~)d~. 
I (11) 

In order to reduce Eq. (11) to an integral equation for I(r) we must express I[R, -p&, p)] in 
terms of I(r). Setting r = R in Eq. (8a) and entering the resulting equation into Eq. (2) we find 

I(% - CL) = T(P)[K(P) + ~(~I)(R, P) + Bx(/Nl, (12) 

where 

J = o’ I(R, &CL dp I (13) 

and 

T(p) = [l -a e-2R’L]-‘. 

We can now multiply Eq. (2) by ~1 and integrate to find 

(14) 

(NVJ=/l [I(R,-~L)-K(P)IP~P; (15) 
0 

thus on multiplying Eq. (12) by cc, integrating and using Eq. (15), we deduce that 

where 

I 
I 

x*=i o %4x(~) e-*&p dp 

and 

I 
1 

K*= VP)K(P) e-2Rrp dp. 
0 

We can now substitute Eq. (9a) evaluated at r = R into Eq. (16) to find 

(17) 

(18) 

(19) 

where 

U*) = j$ I 
1 

T[pO(x, t)] cash (xt) e-“‘RVx, ‘) dt. (20) 
0 

We can now change p to Fo(r, p) in Eq. (12) and substitute the resulting equation into Eq. (11) to 
find our final result, viz. 

d(r) = d(r) + ~Rx[~~(x)+Q(x)][El(lr-xl)-E~(r+x)+a~~(r,x)+BF,(r,x)Idx, (21) 
0 
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where the known term is 
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GO? = 2 I’ Tb~.Lo(rt PL)I{K[Po(c pII+ IN - /?~d-~K*x[p~(r, p)]} cash (rp) eeRcRsr, *) dp. 
0 

(22) 

In addition to the exponential integral functions appearing in Eq. (21), we have 

I 
1 

F,( r, x) = 4x T[t.~~(x, p)]r-‘(r, x, p) cash (xr~) cash [~(r, x, p)] e-2R@Cx’ “dp, x 5 r, (23) 
0 

1 

F,(r, x) = 4r U&r, p)lw-‘(x, r, p) cash (rF) cash [~(x, r, p)] eVZr@dKp)d~, x z r, (24) 

and 

F,(r, x) = 2(1- &J’mL(x) 1’ T[p,,(r, k)]x[b(r, p)] cash (rp) e-P(Rs“)dp. (25) 
0 

It is clear that Eq. (21) is the desired integral equation for the energy density in a 
homogeneous sphere with an isotropic internal source distribution for the general case of 
external illumination with partial specular and difIuse reflection at the surface. To conclude we 
note that the method of characteristics has been used to provide an independent verification of 
Eq. (21). 
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