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I. Introduction 

We consider the particle transport equation written as 

c S P (cos O) I (z,/z ', (o') d ~0' dp ' ,  (1) iz 1(3, #, ~0) + I(3, ~, e) = - ~  -1 0 

where c > 0 is the mean number  of secondary particles per collision, p is the 
direction cosine of the propagating radiation and ~0 is the azimuthal angle. In 
addition O is the scattering angle, and we consider scattering laws that can be 
adequately represented by a finite Legendre expansion, i.e. 

L 

; (cos  O) = ~ ( 2 l +  1) fPl (cos  O), 3~ = 1. (2) 
l=0 

Using the addition theorem to write Eq. (2) as 
L l 

p(cos O) = ~ ~ (2 - 60,m) fit m P~ (/z) P~  (/.t') cos m(~0- ~0'), (3) 
I=0 rn=0 

where 
(l - m)!  

fl~ = - -  (2 l + 1) f (4) 
(l + m)! 

and 

P~(~) (1 2m/2 dm = - ;  ) ~ t , , ( u ) ,  (5) 

we find [1, 2] that the components in a Fourier  representation of  1(3,/z, ~) 
must satisfy for 0 ~_ m --- L, the equations 

I m I. 1 
I m (z,/z) + (3, lt) = 4 ~ tip Pt m (/1) S P~ (/z') I m (z,/z') d/~'. (6) /z 

Z l=m - 1  

II. The dispersion function 

If we now follow the work of McCormick and K u ~ e r  [3] and substitute 

I m (~: r,/Z) ~- r (~,/A) e -~/r (7) 
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into Eq. (6) we find 
L r 

(~ - ~') ~m (~' l') = T ~ ~ / ~  e;"~(') g~" (~)' 
l = m  

where 
l 

g~" (~) = ~/ ,y ( , )  ~0 m (~,/~) d~,. 
- 1  

Considering that ~ q~ [ -  1, 1], we write Eq. (8) as 

~0m (~' ~) = T ~ 2 ~ PF (~) 0~ (~)- 

We normalize the solutions ~0m(~,/~) such that  

g~(~) = (2m - 1)!!. 

Thus on multiplying Eq. (10)by P~ (/~) and integrating we find 

C L 1 
gm (~) =-2- ~ ~ tim g~, (~) ~ p.~ (/z) p m (/~) dot 

~=~ -~ g - /~  
o r  

(8) 

(9) 

(lO) 

(11) 

(12) 

Am(~)(2m - 1)!! = 0 (13) 

where 
z. 1 d ~  

A m (z )=  1+-~-z  ~ film 9~ (z) ~ (1 -#2)m/2 plm ( I z ) - - -  (14) 
Z I = m  - I  ].l - -  Z 

It is apparent that the zeros v~ r [ -1 ,  1] of  the dispersion function A m (z) lead, 
by way of Eqs. (7) and (10), to solutions of  Eq. (6). 

From Chandrasekhar 's work [1] it is clear that  the zeros v~ 6 [ -1 ,  1] of 
A m (z) occur in ___ pairs, and we note that  Shultis and Hill [4] have argued in 
the manner of Case [5] that  the zeros are real and simple for 1 - c f  > 0, 
1 = 0, 1 , . . . ,  L. For  the special case m = 0, Case [5] and Hangelbroek [6] have 
argued that the limiting values A~ io) of A~ cannot vanish for 
v 6 ( -1 ,  1) and Lekkerkerker [7] has extended that  result to include the 
endpoints + 1. Here we wish to show for the general case that the limiting 
values Am(v +- io) of Am(z) cannot vanish for v~  ( - 1 ,  1) and further that 
A '~ (z) and 

L 

(z) = c Z P~ g~" (=) ( 1 7  z:)m'2 p m (Z) (15) 
l = m  

cannot have a common  zero for any z r [ -  1, 1 ]. 
We define 

= 2 i  d/a (16) Q~ (z) _ (t- -/~2)m/2 p ~  (#) z - - - - ~  ' 
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and rewrite Eq. (14) as 
L 

Am(z) = 1 - cz ~ fl• g'i'(z) Q'l'(z). (17) 
l=m 

Now since the associated Legendre  functions Pt" (z), with 

P~ (z) = (1 - z2) "/2 (2 m - 1) ?!, (18) 

satisfy, for 1 >- m, the recursion formula  

( l - m +  l)P'/'+l(z)--(21+ l ) z P / ' ( z ) - ( l + m ) ( 1 - f " , t ) P T ' t - l ( z )  (19) 

we can readily deduce,  for 1 >_- m, that  

( l -  m + 1) Q7'+I (z)  

= (2 l + 1) z QT (z) - (1 + m) (1 - 6,.,t) Q~ 1 (z) - 2" m ? 6m,~- (20) 

In addition the polynomials  gI" (z) satisfy [1], for 1 ~ m, 

(l  - m + 1) 07'+1 (z)  -- hz z g~" (z)  - (1 + m)  (1 - ~m,t) 97'-1 ( z ) ,  (21 )  

where 

h, = ( 2 / +  1)(1 - c J)). (22) 

We can mult iply Eq. (21) by (1-  m)! Q? (z)/(1 + m)?, mult ip ly  Eq. (20) 
by ( l - m ) ! 9 7 ( z ) / ( l +  m)?, subtract  the two equat ions  one f rom the other  
and sum the resulting equat ion f rom l = m to 1 = L to find 

(L - m + 1)! 
A " ( z ) =  ( / ~ + m ~ i  {Q'~(z)g'~+'(z)-Q'~+'(z)~ (23) 

Similarly we can mul t ip ly  Eq. (21) by ( l -  m)! (1 - z2),./2P'~(z)/(l+ m)?, 
multiply Eq. (19) by ( l - m ) !  (1 - z 2 )  m/2 gP (z)/(l + m)?, subtract  and sum the 
resulting equation f rom l = m to l = L to find, af ter  using Eq. (15), 

l (1 --Z2) m/2 (L - m + 1)] p, ,  m z ~,m (z) = -~- (I_. + m )  ? { L+I (z) gT ( z ) -  P~ (z) gL+l (z) }. (24) 

In a similar way we can find f rom Eqs. (19) and (20) that  

(1 - z2)m/2 - ((--s + 1)] {P~'+1 (z) Q~ (z) - P~ (z) Q~'+I (z)} . (25) 

Finally we can mult iply Eq. (23) by (1 - z2)"/2P'~+l (z) and use Eqs. (24) and 
(25) to find 

(1 - z2) "/z P ~ +  1 (z)  A "  (z )  = (1 - z2) " g~'+ 1 (z)  - 2 z V ~ (z)  Q~'+ i ( z ) .  (26 )  

At this point we would  like to general ize our  previously given proof  [8] 
and show that  Am(z) and ~ ( z )  cannot  have a c o m m o n  zero for z r [ - 1 ,  1]. 
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By contradiction, if we suppose that  there exists Zo ~ [ -1 ,  1] such that  A m (Zo) 
- ~ ( z 0 ) =  0 we must  conclude from Eq. (26) that  gL+lm (Zo) -- 0. Since 
P~+1 (z0):~ 0 as shown by Robin  [9], we see that  Eq. (24) would require 
g~ (Zo) = 0 which is not possible because Eq. (21) would yield gT' (zo) = 0, for 
all l ~ m, and deafly ~ (z0) ~: 0. We must then conclude that there is no such zo. 

As the dispersion function can also be written as 

dk~ 
A" (z) = 1 + z [ ~m ( # ) _ _  (27) 

-1 /~ - z  

we can use the Plemelj formulas [10] to express the l imiting values of A m (z) 
as z approaches the branch cut f rom above (+) and below ( - )  as 

[Am(Z)]+ -~. ,~m (.c) -{2 n i z q F  (z), z e ( -  1, 1), (28) 

where 
1 du 

;Y ( 0  = 1 + r e  .[ ~v m (/~) ~ .  (29)  
-l  u - z  

We can also use the Plemelj formulas with Eqs. (23), (25) and (26) to obtain 

2" (1:) = ( ( ~  +rn m)! + 1)! {qT (z) 9L"+1 (z) - qr+, g7 (0} , (30) 

(1 - z'z) m/z = ( L  - m + 1)1 {e~+l (z) q~ (z) - e~  (z) q~+l (z)} (31) 
(L + m)! 

and 

(1 - rZ)m/2PT+I (z) 2re(Z) ---- (1 -- ZZ) m g~'+l (Z) -- 2Z V" (r) q~+l (Z), (32) 

where 
1 J dg 

q? = T e (1 - u2W 2 (u) (33) 
-1 z - / , t  

Now since 2" (z0) and ~ (zo) are real, we see f rom Eq. (28) that [Am (z0)] -+ --- 0, 
z0 ~ ( -1 ,  1), implies that 2"(z0)= . ~ ( z 0 ) = 0 .  Equat ion (32) thus yields 
g~+t (r0)= 0, and Eq. (24) yields P~'+1 (z0)g~ (zo) = 0. It is clear from Eq. (21) 
that O'S(to) and gT+l(zo)  cannot both be zero, and we conclude that  
P~+l (z0)= 0. We thus have a contradict ion since Eqs. (30) and (31) clearly 
show that P~+l(zo)  and g~+z (zo) cannot both  be zero. It therefore foUows 
that [A" (to)] + =~ 0 for r0 e ( -  1, 1). 

Finally we consider z = + I. We note that  for the case m = 0, the left- 
hand side of Eq. (31) is unity, and thus the arguments  used to show that 20 (z) 
and ~v ~ (z) do not have a c o m m o n  zero for z e ( -  1, 1) clearly are valid for 
r e  [ -1 ,  1]. For m -_ 1 it is apparent  f rom Eq.(15) that  ~m(+_ 1) = 0, and we 
can use the fact that  Q~(1) = 2 m-l ( m -  1)!, l ~  m, in Eq. (23) to deduce the 
condition for A m (_+ 1) = 0: 

OT+t (l) = 9~ (1). (34) 
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Equation (34) can be readily used to check, for specific values of c and J), 
l =  0, 1, 2 . . . . .  L, if  Am(+ 1) = 0. We consider two simple examples. For 
linearly anisotropic scattering and m = L = 1, the condition given by Eq. (34) 
reduces to 

cJ] 2 (35) ~ -  -~-. 

Since the physical restriction that p(cos O) _-> 0, 0 -< O _-< ~z, implies ]Jq[ -< 1/3 
we see that Eq. (35) can be satisfied only for 0 < j ]  -_< 1/3 and c >_- 2. In the 
case of quadratically anisotropic scattering, the requirement that p (cos O) >_- 0, 
0 _-< O -< ~, implies [11] 

1 1 1 (36a) IAl~y( l+595) ,  5 -<Ji---- 1--0-' 
and 

< 5 1 2 (36b) 
f z  = __~_j~ (2 - 5A), 10 -< A -<-- -~--- 

For m = 1 and L = 2, Eq. (34) reduces to 

5jqj~ c 2 - (3Ji + 5fi)c + 2 = 0.  (37) 

Thus, for a given c, the values o f ] ]  and J~ that yield A'~(+I)  = 0 ,  m =  1, 
comprise, in this case, the hyperbolic segment given by Eq. (37) and 
contained in the region defined by Eqs. (36) in the_/] - J~  plane. It should be 
pointed out here that this can happen even for c -< 1, the case of  interest for 
radiative transfer applications. The set ]i = 1/(2c), J~ = 1/(5c), c = 0.95, for 
example, satisfies Eq. (36b) and yields A m (+_ 1) = 0, m = 1. For  rn = 2 and 
L = 2, Eq. (34) reduces to 

4 
cA = ~- (38) 

z which can be satisfied only for 0 < J )  =< 3- and c >_- 2. In conclusion we note 
that, in contrast to the m = 0 case where even for those situations for which 
~u~ = 0 we cannot have A~ 1)=  0, we have found and demonstrated 
by the foregoing examples the surprising result that A m (-t- l) can be zero for 
m - > l .  
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Abstract 

Elementary considerations are used to show in regard to particle transport theory that the 
dispersion function relevant to each of the Fourier-component problems resulting from a finite 
Legendre expansion of the scattering law cannot have a zero for v e ( -  1, 1), and a condition for 
the endpoints + I to be zeros is reported. It is also shown that the dispersion function and the 
characteristic function cannot, for a given Fourier-component problem, vanish simultaneously for 
any value ofz ~ [ -  1, 1]. 

Zusammenfassung 

Mit elementaren Betrachtungen der Teilchentransport-Theorie wird gezeigt, dab die 
Dispersionsfunktion ftir jedes Fourier-Komponentenproblem, welches durch eine endliche 
Legendre-Entwicklung des Streuungsproblems entsteht, keine Nullstellen fiir v E ( -  1, 1) hat; eine 
Bedingung fiir Nullstellen an den Endpunkten - 1  wird angegeben. Es wird gezeigt, dab die 
Dispersionsfunktion und die charakteristische Funktion fiir ein gegebenes Fourier-Kompo- 
nenten-Problem nicht gleichzeitig verschwinden k6nnen ftir Werte z ~ [ -  1, 1]. 
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