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The Critical Problem for an Infinite Cylinder
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The Fy method is used to compute the critical radius and the flux distribution for a
bare cylinder of infinite length. With modest computational effort, the developed solution
technique, though approximate, yields results accurate to at least six significant figures.

I. INTRODUCTION

The integral equation for the neutron flux dis-
tribution ¢(r) in a bare homogeneous right circular
cylinder of infinite length and radius R was written
by Mitsis! for the case of no inhomogeneous source
term and no incident neutrons as

o(r)=c fo 1 [Ko(r/u) for td() Io(t/w)dt

R
+1rlw) | t¢(t>1<o(t/u)dt] ‘% .

where I(x) and Kyx) denote modified Bessel func-
tions? and c¢ is the mean number of secondary
neutrons per collision. Equation (1) is, of course,
based on a one-speed model, and we have assumed
that the redistribution of secondary neutrons is
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isotropic. In this work we seek, for a given value of
¢ > 1, the critical radius R and the resulting non-
negative neutron flux ¢(r), r € [0,R] that satisfies
Eq. (1).

Following Mitsis,! we let

P(r,pu) =c [Ko(r/u) fo ' to() Io(t/w)dt
R
+ Io(r/w) fr t¢(t)Ko(t/u)dt] (2)
so that
- (! dp
6(r) fo 2 Sf 3)

Differentiating Eq. (2), we find that ®(r,u) for
u € [0,1] and r € [O,R] satisfies

2 193 1 _ ! n A
<5r—2+;5—;5)¢(r,u)-~0f0 ) 4

subject to the conditions! that ®(0,u) is bounded and
KiRIDPR 1) + iKo(R /1) 2 @ )}pr = 0
re€[0,1] . (5)
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We deduce a solution (bounded at r = 0) to the
pseudo-problem defined by Egs. (4) and (5). Con-
tinuing to follow Mitsis,! we write

O(r,u) = u? {A (o) [d(vo, u) + D(—vo, ) o(r/vo)

+ A(v)[qs(v,m+¢(~v,u>110(r/v)dv} ,

(6)
where
o(tv,u) = % VPU(V Il M) + (1 -cvtanh™')8(v F ) ,
ve@O,l), ()
and
80,0 = § 547 (8)

are the familiar (generalized) functions appropriate
to one-speed neutron-transport theory®»* in plane
geometry. Here the discrete eigenvalue v, is the
“positive” solution of

Cro (! _du
1+2f_

Note that at this point in his analysis, Mitsis'
substituted Eq. (6) into Eq. (5) and investigated the
resulting equation for the expansion coefficients
A(vy) and A(v). In more recent work, Westfall and
MetcalfS and Westfall® carried the Mitsis analysis to
completion and deduced accurate numerical results
for R and ¢(r), r € [0,R]. We take a considerably
different approach here. We use* the full-range
orthogonality condition

1
€= 8) [ uoEmet wdu=0
to deduce from Eq. (6) that

=0 . 9
1M~ Vo 0 ©)

(10)

S 66, 1) — S(=E, 1) B(r 1) ‘—’f = A®) I /ONE)
(11a)

and

! ) du
S toem - o-E1 5 @ G

= é A LN (11b)
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forE€P=v,U [0,1]. Here

N(vo) =5 V%(;g‘;—l - V—%) (12a)
and
2,22
N@) = v[(l - cvtanh™ p)2 + ‘%—] . (12b)

We can eliminate between Egs. (11a) and (11b) to
obtain, for § € P,

fo ' Lo(E ) - B(-£, )]
(20~ er0rn 2 00| =0, 03)
where

T(x) = Io(x)/11(x) . (14)

We can now set » = R in Eq. (13) and use Eq. (5) to
deduce that

. 66 1) - B(-E )]

X [+ ETRIEE R/ B(R, 1) %’% =0 (5
for § € P. Here
=(x) = Ky(r)/Ko(x) - (16)

Note that Eq. (15), which has been derived without
approximation, represents a singular-integral equa-
tion and constraint for the unknown function ®(R, u).

In Sec. II we use approximate analysis to deduce
R from Eq. (15).

II. THE F SOLUTION

Following previous work with the Fy method,”®
we introduce the approximation

N
DR, p) =1 Y agu® (17
a=0
into Eq. (15) to find, for £ € P,
N
V5 dalEa(§) + T(R/E)Da(8)] =0 (13)
a=0
where
| I
Eu® = J ut 10w - oCEmldn  (19)
o
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and
1
Du(®)= [ w8t W) - SCEWERIDAL . (20)
We can readily deduce that, forc > 1,
E()=1-c, t€EP, (21a)
E@=v-5-c’ln (1 + },) C veloll, (lb)
E\(v) =~ % [1 ~ |vl? In (1 + ﬁ)] , (21c)
Do =ielwl [ WERIW) s (22a)
Dy = el [ wER/N) s (22b)
15 —
D) =R - v [ERERID o
ve[0,1] , (22¢)
and
_ 1p2E(R/v) — p*E(R /1)
D) =vER) - cv [ o du
vEI0,1] . (22d)
We can subsequently use the recursion formulas
Eo($) = §Ee T (23)
and
1
Du(®) = £Darr(® ~ct [ wER/Wdn  (24)

to evaluate the functions E(§) and D,(¢) for all
§EP.

As Eq. (18) is homogeneous in the desired
coefficients {a,}, we normalize our solution by
taking ao = —1. Subsequently, we consider Eq. (18) at
a set of collocation points & = &5 d defined® by £, = v,
and

2 —
§5=%+%cos< gNl 7r> , B=1,2,...,N . (25
Thus, to find the desired constants a,, « = 1,2,...,
N, and the critical radius, we must solve the system
of linear algebraic equations

N
Y aalEa(p) + T(R/EG) Dy (£5)]

a=1

=1-c+T(R/E)Do&p) (26)

forB=1, 2,...,N, subject to the critical condition

N
Z; aoz[Eoz(Vo) + iDa(VO) U(R/VO)]

a=1

= 1= c+iDy(vy) UR/vo) , (27)

where
U(R/vg) = Jo(R/Iwo)IJ{(R/1vol) (28)

It is apparent that once we have deduced the critical
radius R and the constants {a,}, we can readily
compute the desired flux distribution ¢(r) from
Egs. (3), (6), and (11a). We find, for r € [O,R],

é(r) _N( )J(r/VO) Z: asEq(vo)

=0

1, N
+ fo WI(V/V)gaaEa(V)dv , (29)
where
J(r/vo) = Jo(r/Iwo)/To(R/ o)) (30a)
and
I(r[v) = I(r[v)[I(R V) . (30b)

III. NUMERICAL RESULTS

For a given value of ¢, we first compute v, and
evaluate the functions E,(§) at the collocation points
defined in Sec. II. We then assume an initial value of
R, evaluate the functions D,(¢) at the collocation
points, and solve (for fixed N) the linear system
given by Eq. (26) to find the constants f{a,}.
Using these constants, we then solve Eq. (27), the
critical condition, to find a corrected value of R.
The procedure is then repeated until a converged

TABLE 1
The Critical Radius in Mean-Free-Paths
Westfall Sanchez
c Fy (Ref. 6) (Ref. 10)
1.01 13.12551647 13.12551647
1.02 9.04325484 9.043255
1.05 5.41128828 5411288
1.1 3.57739129 3.577391 3.57739129
12 2.28720926 2.287209
1.3 1.72500292 1.72500292
14 1.39697859 1.396979
1.5 1.17834084 1.17834085
1.6 1.02083901 1.020839
18 0.80742662 0.807427
20 0.66861286 0.668613 0.66861287




82 THOMAS et al.

value of R is obtained. We then increase N and repeat
the calculation until we find our final results for the
critical radius. Some final results obtained with
N < 19 are shown in Table I along with what we
believe to be particularly accurate results of Westfall®
and Sanchez.!?

We find that, for 1.01 < ¢ < 1.6, the critical
radius is converged to six significant figures for
N < 7; whereas, for ¢ of 1.8 or 2.0, N =9 is required
for the same convergence. We have also evaluated
Eq. (29) for selected values of ¢ to obtain flux
distributions that agree to all (four) of the decimal
places given by Westfall.® In Table II we report
normalized flux distributions that are correct, we
believe, to within *1 in the last digit given.

19R. SANCHEZ, “Generalisation of Asaoka’s Method to
Linearly Anisotropic Scattering: Benchmark Data in Cylin-
drical Geometry,” CEA-N-1831, Centre d’Etudes Nucléaires de
Saclay, Gif-sur-Yvette, France (1975).

TABLE 1I
The Normalized Flux Distribution ¢(r)/¢(0)

r/lR c=1.05 c=11 c=16 c=20
0 1 1 1 1

0.25 | 0929851 | 0.936052 | 0.954996 | 0.959783
0.50 | 0.733990 | 0.756084 | 0.824845 | 0.842634
0.75 | 0.452168 | 0.492189 | 0.621823 | 0.656963
085 | 0.326662 | 0.371791 | 0.522344 | 0.564397
091 0.249166 | 0.296040 | 0.456627 | 0.502561
095 | 0.195805 | 0.243013 | 0.408837 | 0.457217
098 | 0.153085 | 0.199922 | 0.368807 | 0.418991
1 0.117908 | 0.164122 | 0.335065 | 0.386649
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