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n o n - u n i f o r m  s u r f a c e  i l l u m i n a t i o n  
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and W.L. Dunn*),  Operations Analysis Div., Research Triangle Institute, 
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I. Introduction 

In a recent paper [1] we considered the inverse problem in radiative transfer 
for infinite plane-parallel media and for a class of boundary conditions that  
allows the incident radiation to vary over the two free surfaces. Here we investi- 
gate the direct radiation transport problem for isotropic scattering, and thus we 
seek a solution of 

~ c 
~-~zI(Z,a,a)+og.-~-~QI(z,a,a)+ I ( z ,a ,D)=--~I I ( z ,e ,  g2')df2 ' (1) 

subject to the boundary  conditions 

I (0, e, f~) = I1 (e, ~2), /z > 0, ~o e [0, 2 z], 

and 

I(a,e, I2)=Iz(e, I2), # < 0 ,  <p ~ [0, 2 re], 

(2a) 

(2b) 

where 11 (#, D) and I=(Q, g2) are assumed to be given and to have two- 
dimensional Fourier transforms. We use a notational scheme similar to that  
used by Rybicki [2] in his study of the classical searchlight problem. Thus z and 
e, which lies in the x - y  plane, locate in optical units the position in the 
homogeneous medium and 1'2 = f~ (/z, tO), with # = cos (0), is a unit  vector that 
defines the direction of propagation (see Fig. 1). In addition eJ is the projection 
of s in the x - y plane and c < 1 is the mean number  of secondary particles per 
collision. 

*) Current Address: Applied Research Associates, 4917 Professional Court, Raleigh, North 
Carolina 27609. 
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Figure 1 
The geometry for /2 ,  to, Q, and k. 
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We can mul t ip ly  Eqs. (1) and  (2) by exp (i k .  O) and  integrate,  for fixed z, over 
the x - y plane to find 

C ~ 2~ 
#-~-z T (Z, l.t, tO) + [1- -  i f (#,  tO)] T (z, l~, tO)= -~-(z~ j ~ ~(z,/z ' , tO')dtO'd#'  (3) 

- 1 0  

and, for /a  > 0 and  tO s [0, 2 r~], 

and 

(o, s,, tO) = tO) (4 a) 

and 

% (#, tO) = I ~ 12 [Q, 12 ( -  #, tO)] e 'k'Q dQ. (6 b) 

In addi t ion  

f (p ,  tO) = k .  to = k (1 - 122) 1 /2  c o s  (tO - r  (7) 

with k = I k l. It  is appa ren t  f rom Eqs. (3) and  (4) tha t  we can write, for ~t > 0 and  

(a, --/~, tO) = ~g2 (~, tO). (4 b) 

Here we suppress  the dependence  on the vector  k, which is in the x - y plane 
as shown in Fig. 1 and  write 

(z, #, ~o) = I I I (z, Q, a )  e a''~ do ,  (5) 

~vl (P, tO) = l I I1 [O,/2 (#, tO)] e ik'~ do (6a) 
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q~ e [0, 2~], 
C z 

T (z, #, q~) = T 1 (#, cp) e-  u(~, ,p)z/u + ~ ! T (z') e-"t"' ~)(z- =')/. dz' (8 a) 

and 
a 

c S 7t (z') e -  u(u. ~)(z'-z)/u dz'  (8 b) 7 ~ (z, - #, q>) = Tz (#, ~o) e -  u(.. o)(a- =)/U + ~ p =  

where 

and 

u (#, q~) = 1 -- i f (p ,  (p) (9) 

c i T ( z ' ) K ( [ z  - z ' l )dz '  (z) = f (z) + g o (11) 

where the known term is 

1 2~ 
F(z)  = S S [T1 (#, ~0) e-"("'~)z/" + 7t2 (#, q~)e-U(g'~')(a-z)/u] dq~ d# (12) 

0 0 

and the kernel is 

1 k 2 #2)- x/2 e-  r + k2.2)l/z/u d# K (4) = I (1 + - -  (13) 
o # 

At this point we can make use of an idea recently reported by Williams [3] 
and consider, for z e [0, a] and # e [ -  1, 1], a pseudo problem defined by 

k2 c ~ 1 #(1 +k2#Z)l/2~--zzr + # 2 ) ~ ( z , # ) = ~  j ~ ( z , # ' ) d # ' + ~ F ( z )  
- 1  

and the boundary conditions (14) 

r  # > 0 ,  (15a) 

and 
r -- #) = 0, # > 0. (15b) 

It is clear from Eq. (14) that, for # > 0, 

�9 (z, #) = + ( 1  + k2#2)-1/2 i S(z')e-(=-=')(l+k2"zwZ/Udz' (16a) 

We thus can integrate Eqs. (8) and add the two resulting equations to deduce the 
integral equation [2, 3] 

i 2~ 

T (z) = I f T (z, #', q;) d~o' d#'. (10) 
- 1  0 
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2 ~  a 
#(z,  -- #) = (1 + k2122)-l/2~S(z')e-("-~)(x+k2~'2)'2/~dz' 

where 

S (z) = c �9 (z) + F (z) 

with 
1 

(~) = S ~ (z, ~) d~ .  
- 1  

Thus  on integrat ing Eqs. (16) we find 

a 
1 ~ S ( z ' ) K ( I z  - z'l)dz'  

(~) = 2 o 
o r  

(16b) 

(17) 

(18) 

(19) 

C 
a 

j S ( z ' ) K ( [ z  - z'l)dz'. (20) s (z) = F(z)  + ~ o 

It  follows that  a solut ion of Eqs. (14) and  (15) yields, by way of Eq. (17), a solut ion 
to Eq. (20), and  so we conclude  that  

~ ( z )  = c # ( z )  + F(z)  (21) 

satisfies Eq. (11). Of  course once ~P (z) is established, the Four ier  t ransform of the 
angular  flux ~ (z, #, ~o) is available f rom Eqs. (8). 

II. The  pseudo problem 

Consider ing now the pseudo  p rob lem defined by Eqs. (14) and  (15), we 
mul t ip ly  Eq. (14), wi th  # changed  to - kt, by exp (--  z/s), integrate over  z f rom 
0 to a, mult iply  by W(/~, s) = s [s(1 + k 2 #2) _ kt(1 + k 2/12)1/2] - I ,  integrate over 
# f rom -- 1 to 1 and  use Eqs. (15) to obta in  

1 ~ ( 0 ,  ~) 
A (s) S* (s) = F* (s) + c s j" /~ - 

0 # - -  S(1 + k2 k/2) 1/2 d#  

1 # 4' (a, #) 
- c s e -  ~ j" (22) o # + s(1 + k2#2) 1/2 d# 

where 
1 1 (1 + k 2 t 12)- 1/2 

A(s)  = 1 + ~cs_S1 # _ s(1 + k2#2) 1/2 d# ,  (23) 

a 
F* (s) = S F (z) e -  :/' dz (24) 

o 
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and 

S* (s) = i 
o 

o r  

S* (s) = i 
o 

Changing the 
forms 

A (s) S* (s) 

S (z) e -  z/~ dz (25) 

T (z) e -  z/~ dz. (26) 

integration variable in Eqs. (22) and (23), we find the convenient  

r dz 
= F *  (s)  + c s S z q~3 (z)  r [0,  - -  p (z)]  - -  

o T - - S  

dz 
- -  c s e - " l ~  S "c q)3 (T) t~i [a, p (z)]  - -  (27 )  

o z + s  
and 

1 
A ( s ) = I + ~ c s  I q~(z) 

--7 
where 

~0 (z)  = (1 - k 2 z 2)- 112, 

7 = ( l  + k2)  - 1/2 

and  

p(z) = z(1 - k 2 z2) - 1/2. 

d-c 
(28) 

" C - - S  

(29) 

(30) 

(31) 

We now observe from Eqs. (8) and (26) that  the first of  our desired results, 
the Four ier  transforms of the angular  fluxes exiting the medium, can be ex- 
pressed, for # > 0, as 

s 
t l l  (0 ,  - -  /A, (~) = ~'t 2 (]A, q3) e -au(g ,  q0]tl + ~ S $ [/A/u (].s q))] (32 a) 

and 
C 

- -  e-~"(u"~)/" S * [ -  #/u (l~, q~)]. (32b) T (a, #, q~) = T 1 (#, q~) e -  au(lt, q~)j,u .+ "4 ~ ]'~ 

It  is apparent  that  we can readily compute  S* (s) from Eq. (27), for any s for which 
A (s) 4= 0, provided we first establish the pseudo angular  fluxes at the boundary.  
We therefore now focus our  a t tent ion on  deducing qi (0, -- #) and �9 (a, #), # > O. 

Since A (s) and the r ight-hand side of Eq. (27) are analytic in the s plane cut 
along the real axis from - ? to 7 we use the Plemelj formulas [4] to deduce from 
Eq. (27) that 

[ ~Tzivq~(vC )] "~ z dz_ 2(v) + S*(v) = F*(v) + cvP!z~93(Z)~[O,  --p(z)]  
v 

7 
+ ~ i c v 2 q~3 (v) ~ [0, - p (v)] - c v e-"/" S z ~03 (z) �9 [a, p (z)] - - d z  (33 a) 
- -  o z + v  
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and  

(v) +_ -~rcivqg(v S * ( - -  v)e -a/'~ = F * ( - -  v)e  -a/'~ 

v dz 
+ c v P ~ ' c c p 3 ( O r  - + n i c v 2 ~ p 3 ( v ) r  

0 7 7 - - y  

- c v e -  "/~ ~ z ~p3 (z )  �9 [0,  - -  p (z)]  - -  

o z + v  
(33b) 

for v e [0, y]. N o w  f rom Eqs. (33) we conc lude  tha t  

r d'c 
2 (v) S* (v) = F*  (v) + c v P ~ z cp 3 (z) r [0, - p (z)] - -  

0 Z--V 

7 dz 
-- c v e - a / v  ! z tP3( z )~[a 'P(Z) ]  "r + v (34 a) 

S* (v) = 2 v ~p2 (v) ~ [0, - p (v)], (34b) 

2 (v) S* ( - v) e -'~/~ = F* ( --  v) e-a/v + C V P ~ z r (T) �9 [a, p (z)] - -  
0 

r dT 
- c v e - " / v l z q ~ s ( z ) ~ [ O ,  - - p ( z ) ] - -  

o z + v  
and  

S* ( - v) e-~/~ = 2 v r (v) # [a, p (v)] 

for v ~ [0, ?]. Here  

1 ~ dT 
2(v) = 1 + ~ c v P  I ~o(~)--. 

- y  Z - - V  

Clear ly  we can e l iminate  be tween Eqs. (34) and  (35) to f ind 

dz 

T--V 

dz 
2 v ,L (v) ~p2 (v) �9 [0, - p (v)] = F* (v) + c v P S ~ ~p3 (z) �9 [0, -- p (z)] - -  

0 T - - V  

dz 
- c v e - ~  S z~Ps(z )~[a ,P(Z)]  

o " c + v  

(35a) 

(35b) 

(36) 

(37 a) 

and  

d~ 
2 v 2 (v) ~D 2 (V) ~ [a, p (v)] = F* ( -- v) e -  ~/~ + c v P S z (p3 (T) ~ [a, p (z)] - -  

0 "C--V 

~' dT 
- c v e - ~ / ~  S z ~pa (z) @ [0, - p (z)]  - -  ( 3 7  b)  

0 T + V  

for v e [0, ?]. The  l imit ing values A +- (v) of  A (s) c a n n o t  van ish  for v e [ - y ,  7]; 
however ,  the a r g u m e n t  principle [5] can be used to  show tha t  A (s) has exactly 
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two zeros + s o, and thus we supplement  Eqs. (37) with the constraints 

dr  
F* (So) + c So S z ~o 3 (r) �9 [0, - p (r)] - -  

0 r - -  S 0 

dr  
- c s o e -  a/so S "C Cp 3 (Z) ~ [a, p (r)] - -  = 0 (38 a) 

o 1 ; + S o  

and 
dr  

F * ( - - S o ) e  -a/s~ + CS o ~ " c c p 3 ( z ) ~ [ a , p ( ' c ) ] -  
o "c - -  S O 

r dz 
- c So e - ~ / s ~  ~ r 9 3  (z)  �9 [0, - -  p (z)] - -  = 0 .  (38 b)  

o r + S o  

Equat ions (37) and (38) represent a system of singular-integral equations and 
constraints that  can be solved, at least in principle, to yield the required pseudo 
boundary  fluxes # (0, - p) and # (a, #), # > 0. 

I I I .  T h e  F N m e t h o d  

Rather  than pursue exact analysis, we wish to use the F N method  [6, 7, 8] to 
develop approximate,  but  accurate, solutions to Eqs. (37) and (38). We therefore 
choose to approximate  the exiting boundary  fluxes by the representations, for 
# > 0 ,  

N 

(0, - #) = Z a, S= (#) (39 a) 
~t=O 

and 
N 

(a,/~) = E b= S= (#) (39 b) 
~ = 0  

where the basis functions S= (#) are to be selected. We can now substitute Eqs. 
(39) into Eqs. (37) and (38) to find 

N 
Y. [a=B~(~) + ce-a/r = E({) (40a) 

0t=O 

and  
N 

Z [b, B~ (~) + c e -  a/r a= A= ({)1 = T({) 
~ = 0  

for { e P = s o U [0, 7]. Here we have defined 

dz 
A,({) = S z q~3 (r) S, [p (z)] { r  7, 0), 

o ~ + r '  

(40b) 

(41) 

dz 
B, (So) = c ~ z r (v) S, [p (z)] - - -  

o S o - -  "C 

(42 a) 
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and 

dz 
Ba (v) = c P 5 z q~a (z) S= [p (z)] - -  + 2 2 (v) q~z (v) S= [p (v)] 

O lJ - -  "/7 

for v e [0, ~;]. In addition the known terms in Eqs. (40) are 

I 
(4) = ~ F* (4) 

and 

(42b) 

(43 a) 

1 
r (~) = ~ F* ( - 4) e -  ~/r (43 b) 

It is apparent that we can now consider Eqs. (40) at N + 1 selected values 
of ~, say ~p, fl = 0, 1, 2 , . . . ,  N ,  to obtain the system of linear algebraic equations 

N 

3-'. [a=B~(4~) + ce  -a/r b~A~(~)] = ~ ( ~ )  (44a) 
0t=0 

and 
N 

[b~ B~(~t0 + c e -a/r a= A~(~a)] = T(~a) (44b) 
~t=0 

that can be solved to yield the constants {a~} and {b~} required in Eqs. (39). It 
is also clear that the choice of basis functions S~ (#) and the collocation strategy 
used to define the Ca play vital roles in this approximate solution. 

In order to continue with our F~ calculation we now must select a set of 
basis functions S~(#) and establish an efficient way to evaluate the functions 
A~ (r and B= (~) defined by Eqs. (41) and (42). We let P~ (z) denote the Legendre 
polynomial of degree 7 and elect to use 

S~ (/~) = q> - 2 [# (1 + k 21,2)- 1/2] pa [2 p (1 + k 2/z 2)- 1/2 _ 11 (45) 

which yields 

S~ [p (z)] = r 2 (z) P~ (2 z - 1). (46) 

We can now substitute Eq. (46) into Eq. (41) to find, for ~ d~ [ -  ~, 0), 

dz 
A=(~) = ! zq>(-c)P~,(2z -- 1 ) - -  (47) z + ~ "  

On multiplying Eq. (47) by (2 r + 1) and using the recursion formula 

(27 + 1)(2z - 1 ) e , ( 2 z -  1)= (7 + 1 ) e , + , ( 2 z -  1) + 7P~_ 1 ( 2 z -  1), (48) 

we find 

( 2 7 + l ) ( 2 { + l ) A = ( { ) + ( 7 + l ) A = + l (  0 + 7 A , _ 1 ( {  ) = 2 ( 2 7 + 1 ) A ~  (49) 
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where 
7 

A= = S "c~o (z)P=(2z - 1)dz. (50) 
0 

In a similar manner  we find from Eqs. (42) that  the functions B~ (~), with S~ (#) 
given by Eq. (45), satisfy, for ~ ~ P, the recursion formula 

(2c~ + 1)(2~ - 1) B,  (~) -- (c~ + 1)B,+ x ( ~ ) - . B ~ _ I ( ~ ) =  2 ( 2 a  + 1 ) c A , .  

(51) 

In order to initiate the use of  Eqs. (49) and (51) in the forward direction we 
clearly require A o (~) and B o (~) for r e P. The starting value 

r dz Ao(r ! (52) 

follows from Eq. (47), and from Eqs. (42) and (28) we find we can express the 
other starting value in the convenient  form 

Bo(~) = 2 A  (oo) + c A o ( ~ )  , (53) 

for ~ ~ P. Here 

C 1 
A ( o o ) =  1 - ~ T a n -  k. (54) 

For  ~ ~ [0, l/k] we can carry out  the integration in Eq. (52) to obtain  

1 
Ao(~) = ~ Tan -1 k -  ~ q~(~)ln[1 + 2/f(r (55) 

where 

f ({)  = [1 + (1 + kZ) ~/2] ~ ~o ({) + cO (4) - 1. (56) 

We note that Eq. (23) can be writ ten as 

x d# (57) A(s) = 1 + c s  z(1 - k zsz) -1 o S p2 - s z(1 _ k z s 2 ) - l ,  

so that  the positive zero So of A (s) can be expressed as 

so = Vo (1 + k z v 2)- 1/~ (58) 

where v o is the positive zero of  the usual (k = 0) dispersion function 

1 ~ d#z (59) A o (z) = 1 + -~ c z _~1 
Z" # 

It is therefore clear that  

(1 + k2) - 1/2 < So < k-1  (60) 
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for all k and all c ~ (0, 1). For  the conservative case c = 1 we observe that 

s o -- k -  l (61) 

It therefore follows that  Eqs. (53) and (55) provide for c~(0, 1] the desired 
starting expressions for all ~ e P. 

IV.  T h e  desired so lut ion  

Here we assume that the F N method has been used as discussed in the 
foregoing section to deduce the exit boundary fluxes for the pseudo problem, 
and we proceed to express the boundary fluxes I[0,#,  f 2 ( - # ,  q~)] and 
1 [a, ~, g2 (it, cp)] for # > 0 and all q~ in terms of the FN results. First of all we can 
use Eqs. (27) and (39) in Eqs. (32) to obtain, for It > 0 and all cp, 

(0, - It, cp) = ~2 (#, q~) e-aU("' ~,)/u + c [4 rc u (it, tp)]- ~ A -  z [it/u (#, r 

. {Y,[it/u(it ,  q~)] + c X [ I z / u ( # ,  r (62a) 
and 

where 

and 

(a, It, q~) = ~1 (#, q~) e -  a.(u, ~,)/u + c [4 n u (it, q~)]- 1 A -  1 [It/u (#, r 

. {T[#/u(it, ~)] + c Y b / u ( ~ ,  ~)]} 

N 

x b l u  (it, ,p)] = Z 
~=0 

Y [it/u (it, ~o)] = 

(62b) 

{a,  A ,  [--  It/u (It, q~)] --  e -a"(~'" ~')/~' ba Aa ~ / u  (it, q~)]} (63 a) 

N 

~,  {b a A a [ - -  It/u (it, r - -  e -au(" '  ~)/~ a a A a [it/u (it, r (63 b) 
a = 0  

We note that in expressing the functions X (z) and Y(z) in terms of Aa ( _  z) we 
have considered the definition 

dr 
Aa(z  ) = ~ z tp ( z )P~(2z  - 1) - -  (64) 

o " r + z  

to be valid for all z r [ -  7, 0). The recursion formula 

(20~ + 1)(2z + 1)Aa(z)+ (or + 1)A.+I (z) + c t A , _ l ( z  ) = 2(20~ + 1)A, (65) 

is also valid for all z r [ -  ~, 0), and thus we can, in principle, compute A~ (z) for 
all z r  ?, 0) from Eq. (65) once the starting value 

1 o dr 
A o (z) = ~ T a n -  x k + z S ~0 ('c) - -  (66) 

-y Z --Z 

has been evaluated. Finally to obtain the desired results for the exiting angular 
fluxes we must  invert the Fourier transform given by Eq. (5). Thus, for It > 0 and 
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all q~, we find 

I [0, Q, a ( - It, q~)] = (2 re)- 2 Jf ~ (0, - It, cp) e- 'k '~ dk 

and 

I [a, a, f2 (it, q~)] = (2 z~)- 2 j'j" 7j (a, It, q~) e- '*'~ dk. 

637 

(67 a) 

(67b) 

V. The searchlight problem 

As an applicat ion of the developed analysis, we now consider  the classical 

and 

~u 2 (#, r = 0. (69 b) 

It therefore follows from Eq. (62 a) that, for It > 0 and all cp, 

(0, - It, ~o) = c [4 n u (#, (o)] - 1 A -  t [it/u (it, ~o)] 

�9 #o u (It, cp) + c E a.  A,~ [ - -  #/u (it, q~)] , (70) 
/z o u (#, ~o) + It u (ito, ~Oo) ~ = o 

where the constants  {a~} are to be obta ined from the linear algebraic equat ions  

/-to 
Z a , B , ( r  = fl = O, 1, 2 , . . . , N .  (71) 
= o Ito + ~ u (ito, ~ o ) '  

To be specific we use here a collocat ion strategy based on one that has proved 
successful [8] in previous FN calculations, viz. we take 4o = so and 

~ = ~ (1 + k 2 ~ ) -  ~/2, fl = 1, 2, . . . ,  N ,  (72) 

where 

1 1 
~ = ~ + ~ cos [(2 fl - 1) n/ (2  N)] (73) 

are the zeroes of  the Chebyshev polynomial  of  the first kind TN(2 x -- 1). 

searchlight problem for a half space (a ~ ~ ) .  We thus write 

1 
I1 (a, ~ )  = ~ (Q) ~ (~ -- #o) 6 (~0 -- r (68 a) 

2nQ 

and 

I2 = 0 (68 b) 

where we use the polar  coordinates  Q = I QI and ~ to locate a field point  in the 
x - y plane. Equat ions  (6) yield 

tF 1 (it, ~o) = 6 (it - #o) 6 (~o - ~Oo) (69 a) 
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As a first numer ica l  test of  the developed  formal i sm we consider  the case of  
n o r m a l  incidence #o = 1 and  no te  tha t  Eq. (71) reduces to 

N 1 
5-'. a~ B~ (r = ~ .  (74) 

~ = o  1 + 4# 

Thus  for this case the cons tan t s  {a,} are real, and  Eq. (70) reduces to 

~u(0, - / 2 ,  q~) = c [47ru (U, 9)J - 1 A  -I  [#/u(/2, ~o)] 

�9 [,- + c  Z a ~ A ~ [ - , / u ( u , e ) ]  . (75) 
( u  (u, ~o) + ~ ~ o  

E q u a t i o n  (75) is val id for # > 0 and  all r and  therefore provides  the Four i e r  
t r ans fo rm of  the exit ing angu l a r  flux. 

W e  n o w  express the d ispers ion  funct ion  A (s) as 

A (s) = 1 - c F (s), (76) 

where  
x d/,t 

F (s) = -- s 2 (1 -- k 2 s 2)- z o ~ #2 -- s 2 (1 _ k 2 s 2)- z (77) 

is i ndependen t  of  c, so t ha t  we can  write Eq. (75), for/~ > 0 and  all ~o, as 

7 s (0, -- #, tp) = ~ + u (/2, tp) + ~v2 (0, - #, q~) (78) 

where  
r 

~2(0 ,  - / 2 ,  ~o) = 
4 zc a [la/U (/2, tp)] 

. ~_rlutu(.,  ~o)] + l N } 
(/2 + u (U, ~o) u (l.Z, q~---~ ~,~o a~, A,  [ -  #/u (/2, q))] . (79) 

We have  observed tha t  

~,~ (0, - #, ~o) = ~ + ~-(/2, ~o) 

is the  two-d imens iona l  Four i e r  t r ans fo rm of  

C 0C) e - (1 + tz)o/(1 - ~2) z/2 
I a [0, 0, I2 ( - / 2 ,  ~o)] - 4nQ(1  -/~2)~/2 6 (tp - (81) 

so tha t  the d i s t r ibu t ion  of  part icles exit ing the z = 0 p lane  can be wri t ten  as 

X [0, e, ~ ( -  #, ~o)] = Ix [0, e, ~ ( -  U, 'P)] 

1 2~ ~ (82)  
~2 (0, /2, tp) e-ik~ c~ k dk  d~b, 



Vol. 34, 1983 Radiation transport in plane-parallel media 639 

# > 0 and ~0 e[0, 27t]. It is apparent that 11 [0, Q,/2(-- kt, q))] is the distribution of 
particles that escape after having a single collision in the medium. Now in order 
to complete the desired solution, we clearly must evaluate the second term (that 
describes the exiting particles that have had more than one collision in the 
medium) in Eq. (82). This can, in principle, be done once we have solved Eq. (74) 
to find, for selected values of k, the constants {a,} required in order to compute 
T 2 (0, -- g, q~) from Eq. (79). 

Continuing with the case of normal incidence, we focus our attention on the 
result for/~ = 1 and deduce from Eqs. (79), (81), and (82) that 

; [o, e, a ( -  1,  o)l = 
r 

8rrQ 
1 2~ o0 

+ (-~7~)2 ! ! T 2 ( 0 , -  1, q~)e-~ko~176 

where 

T 2 ( 0 , - 1 ,  q ~ ) = 8 ~ ( 1  ) (1)+2~a~A=(--1,=o " 

We can integrate Eq. (57) to find 

C k2) -1 /2  [ )  + (1 - k 2 ) 1 1 2 1 -  (1 _ 
A ( 1 ) = I - -  (1-- In k 2 - ~ [ ,  

A ( 1 ) = l - - c ,  k = l ,  

and 

k < l ,  

(83) 

(84) 

(85 a) 

(85b) 

k = 1, (86b) 

1 1)- 1/2 1 r k2 -- l l l /2  
A o ( - - 1 ) = ~ T a n - l k - - 2 ( k  2 -  T a n - [ _ ~ j  , k > l ,  (86c) 

so that A= ( -  1) can be readily deduced from Eq. (65). We note from Eq. (84) that 
~v 2 (0, - 1, ~0) is independent of 0, and thus we can carry out the integration over 

in Eq. (83) to obtain (87) 

c 1 ~ ~2(0 ' _ 1, q)) So (k Q) k dk I [0, Q, $2 ( -  l, q~)] = ~ ~ (Q) 6 (~o - a) + ~ o 

and 

re_ 
Ao ( -  1)= 

A (1) = 1 - c (k 2 - 1)-1/2 Tan-1 (k2 _ 1)1/2, k > 1, (85c) 

and we can integrate Eq. (66) to obtain 

1 k~) - 1/2 [(1 + k2) 1/2 - (1 - k2)1/21 
A o ( - 1 ) = ~ T a n  - ~ k + ( 1 -  In ~ + k 2 ) 1 / 2 + ( 1  k Z - ~ J  ' (86a) 

k < l ,  
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where Jo (x) is used to denote the zero-th-order Bessel function of the first kind 
[9]. Continuing, we substitute Eq. (84) into Eq. (87) to find 

c c 2 
I[0, a, 12(-- 1, q~)] = ~ 5 (~)5(~p -- cr + ~ [1 -- D(e)] 

where 

D(Q)= S [1-- 2 -n 

with 

M(k) = (1) + 2 ~0a~A~(-  1 . 

(88) 

(89) 

(90) 

We have, with modest computational effort, solved Eq. (74) for various 
values of c and k and evaluated Eq. (90) to obtain results that converged to 
several significant figures with N < 20. We have also used the Monte Carlo 
method to provide evidence that the F n results do in fact converge toward the 
correct values. In principle, we thus can use the method of Longman [10] to 
evaluate the integral in Eq. (89) in order to establish D (Q). More complete 
numerical studies are therefore the subjects of our continuing work on this class 
of problems. 
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Abstract 

Fourier and other integral transform techniques are used to reduce the problem of radiation 
transport in plane-parallel media with non-uniform surface illumination to a convenient computa- 
tional form, and the F N method is used to provide a basis for approximate solutions. 

Zusammenfassung 

Fourier- und andere Integral-Transformationen werden beniitzt, um das Problem des Strah- 
lungstransportes in planparallelen Medien mit ungteichf6rmiger F1/ichenbeleuchtung der numeri- 
schen Rechnung zug/inglich zu machen. Die FN-Methode wird als Grundlage einer praktischen 
N/iherung ben/itzt. 
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