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Abstract-Elementary methods are used to derive from the equation of transfer systems of aigebraic 
equations for a set of basic parameters that defines the phase matrix basic tu the scattering of polarized 
light. The developed inverse solutions require that the four Stokes parameters be measured only on the t&o 
surfaces of the considered plane-parallel medium. 

I. INTRODUCTION 

In previous work concerning the solution of the inverse problem in terms of measurements 
made only on the surfaces of a finite slab, the effects of polarization were either ignored’-” or at 

best represented by a combination of Rayleigh and isotropic scattering.9e” Here for a 
significantly more general equation of transfer relevant to the scattering of polarized light we 
seek to deduce the phase matrix from a set of surface measurements. 

In a recent paper” the equation of transfer, as formulated by KuSEer and Ribaric” to 

describe the diffusion of polarized light in a scattering and absorbing host medium, was 
converted to a Stokes representation, and equations based entirely on real quantities and 
utilizing an analytical form for the phase matrix were reported for each of the components in a 
Fourier decomposition of the density vector. If we let I(T, F, 4) denote the density vector with 
the four Stokes parameters I(T, p, 4), Q(r, CL, 4), U(T, II, d) and V(T, CL, 4) as components, then 
we can consider the equation of transfer” 

(1) 

and the boundary conditions 

I(0. p. d) = F,(I*, 4) (2a) 

and 

I( 70. - p. d) = FI(CL. 4). (2b) 

for p > 0 and 4 E [O. 2771, where F,(p, 4) and F?(p, 4) are considered given, For the phase 
matrix we use the analytical representation” 

P(,, p’, 4 - 4’) = 1 C”(p, p’) + 2 [C”‘(p, CL’) cos m($ - 4’)+ S”‘(CL, p’) sin m(d - 4’)] 
,,1 = 1 

where 

C”‘(k, p’) = A’+, p’) +DA”‘(p, p’)D. 

S”‘(p, CL’) = A”‘(p, p’)D - DA”‘(k. F’). 

D=diag{l.l, -1, -1) 
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B, = 

We note” that 

where 

P,“‘( /l ) 0 

n,“‘(p) = 
0 R,“‘(p 1 

1 

0 

0 

0 
0 P,“’ ( p ) 

A “1 
P,“‘(@) = (I - $)“l”+j P,(F) 

(8) 

I’)) 

is used to denote the associated Legendre function. and the functions R,“‘(p) and T,“‘(p) are the 
combinations of generalized spherical functions used in Refs. I?- and 15. 

For the inverse problem considered here we seek to express w and the 6L -- 3 Greek 
constants ~3,. p!. 6, and {a,, pi. yI, 6,. el, &}. I = 1. 3.. . L. in terms of I((). p. d) and I(T,,. I*. cb). 
We note that p,, = I and that N,) = U, = y,, = y, = E,\ = E, = ill = <, = 0. 

If we substitute Eq. (3) into Eq. (I) and integrate the resulting equation over b, from 0 to 7a 
we find that 

I( T. p 1 = & I(T. /L d) dct, 

satisfies the equation of transfer 

( IO) 

where 

U,(F) = diag{P,(p). R,(p). R,(p). P,(l*)l. (17) 

In addition R,,(p) = R,(p) = 0 and. for I 2 1. 

Here we consider that I(T, k) can be measured experimentally for all CL E ( - I. I] at the two 
surfaces T = 0 and T = 7,). and we seek to compute w and the B, from the measurements. 

Although I(T, p) is a four vector, it is clear from Eq. (I I) and boundary conditions of the 
form 
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where I,(h) and I?(p) are considered known, that the coupling is not complete. Thus we study, 
as have Siewert and Pinheiro,” the two-vector problem 

where 

PI(P) = diag {PI(P). Rdlr)l. 

Clearly if the two components of W(T. p) are considered to be I and Q then 

c,= PI Yl I I YI aI * 

whereas if the two components of W(T, p) are considered to be V and U then 

(18) 

We note that LarsenI has used the adjoint equation to define a solution to a multigroup inverse 
problem defined in terms of an equation of transfer similar to our Eq. (IS); however, as will be 
seen, we do not require an adjoint equation here. 

Changing p to - p in Eq. (15) and letting 

we rewrite Eq. (15) as 

where 

F(r, -~)+Q(r. - IL) = ; 2, ( - I)‘p,(cL)c,%(T) 

W,(r) = 
I’ 

I%)%, I*) dp. 
-1 

(19) 

(20) 

(21) 

We can now multiply Eq. (20) by VIT(7, k)E. where E = I (the unit matrix) if the components of 
V(T, p) are I and Q? or E = diag{l, - I} if Q(T, p) has components V and U, to find 

To(T) + I’ *‘(T, ~W’(T, 
-I 

- pL) dp =; AI (- l)‘%T(dW,~,(T) 

where W, = EC, is symmetric and 

T,,(T) = I’ V’(T, ~)EF(T, -I*) d+ 
-I 

Next, we differentiate Eq. (23) and use Eqs. (19)-(21) to find 

Upon differentiating Eq. (22), we conclude that 

; To(~)+2 
I 

I, qi(T,@)E; *(T. -/A) dp = w $ (- ~)'~,'(T)~+,(T). (25) 
I- 0 

(22) 

(23) 

(24) 
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Equations (24) and (25) clearly yield the fact that T,,(T) is a constant, and thus we can integrate 
Eq. (74) to find 

=4 
I’ 

[*‘(T,,. p)E1V(7,,. -/-+*r(O.~)E*(O. -/~)]dp. (26) 
0 

In a similar manner and following a previous study.l we can multiply Eq. (30) hy CL’*’ (T. p)E. 

integrate over CL, differentiate with respect to r and find 

+I ( - I)‘(?1 + I)@,’ (T,JW,h, ‘D,(T,J - D/’ (O)W,h, ‘D,(O)] = 

where 

4 
I’ 

~‘[w’ (T(~, p )E*(T,,. -P) -‘P’(O, p)E’P(O. - pL)l dp. (37) 
0 

and 

D,(r) = 
I’, 

/AP,(J*)\V(T. y) dp 1’8) 

h, = (9-I + I)1 - (tic,. (29) 

It is apparent that Eq. (36) represents an equation that is linear in all of the 3L ~ I unknown 

components of wW,. I = 0, I. 2.. . I.. Thus if we have availahle the curface measurement< from 
3L - I independent experiments then all of the desired unknowns can be found. at least in 
principle, by solving 3L - I versions of Eq. (7-6). Furthermore, since 

ow, = (21 -c l)[E+ (wW,h, ‘) ‘1 / (30) 

we can also find the desired 3L - I unknowns by solving the linear algebraic system defined bq 
3L - I independent versions of Eq. (27). It is also possible that the required number of 
experiments may be reduced by solving Eqs. (26) and (27) simultaneously. This, however. could 
require an iterative procedure which may or may not prove convergent. 

In the accompanying Part II of this work McCormick and Sanchez” make use of higher- 
order Fourier projections to develop additional solutions to the considered inverse problem. 
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