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Abstract-The PV method is used to compute the partial heat fluxes relevant to radiative trantfer in an 
aniwtropically xattering, plane-parallel medium with specularly and diffuvely reflecting boundaries. 

I. INTRODL’CTION 

In a paper published in 1980, Siewert, Maiorino, and ijzigik’ used the FN method’ to compute 

accurately the partial radiative heat fluxes for a general class of radiative heat-transfer 
problems. Here we make use of exact particular solutions and the spherical harmonics method’ 
to compute the partial heat fluxes for the same class of problems. 

We consider the equation of transfer4 

CL; I(T, CL) + [CT, p) = ;g P,P,(FL) 1’ P,(F’)~(T, p’) dp’t (1 - 0); T4(7) (1) 
I (1 -1 

and boundary conditions 

I(0, /.L) = E, ; T,J+ p,‘1(0, - cl) + 2ptd 
I’ 

I(0, - /.L’)/.L’ dk’, /.L > 0, (2a) 
0 

and 

1(7,b - p) = E2; Tz4 t p2’1(7[,. /.L) t 2@” 
I’ 

l(~,,r P’)IL’ dk’, I-L > 0, (2b) 
II 

where T, and T2 refer to the two boundary temperatures, pry’ and pctd, (Y = 1 and 2, are the 
coefficients for specular and diffuse reflection and E, and E? are the emissivities. Though we 
intend ultimately to solve more general problems,’ we consider here that the temperature 
distribution in the medium T(T) is known’. 

2. ANALYSIS 

We express our PN approximation to I(T, p) in the form used by Garcia and Siewert3, viz., 

1(7, /.L*) = c N yPI(p)$ [A;e-"'J+(- 
,=o I 1 

where I,,(T, p) denotes a particular solution of Eq. 
source term 

(I) corresponding to the inhomogeneous 

s(7) = (1 - 0); T4(T). 

The polynomials gr([) are those of Chandrasekhar4, i.e., 
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(4) 



with go(() = 1 and h, = 21f 1 - UPI. We consider that N is odd, so that the eigenvalues .$,, 
j=l,2 , . . . . J = (N + 1)!2, are the J positive zeros of g N+1(5). Assuming that we can find a 

particular solution T,,(T, p), we must simply determine the arbitrary constants {Aj} and {Bj} so 

that the approximate solution given by Eq. (3) satisfies. in uome approximate way, the boundary 

conditions given by Eqs. (2). Substituting Eq. (3) into Eqs. (I!), we find, for p ) 0. 

p+1 
,-{[I -(-- I)‘p,‘]P,(p)-2( - l)‘,,,“S,,I}i [A,+(- l)‘B,e ‘““~)g,([,) = K,(p) (ha) 

IO - I I 

and 

where 

and, in general. 

s,, , = I’ P,,,. ,(rdP,(p) dcL. (X) 
,I 

To convert Eqs. (6) to a system of linear algebraic equations for the desired constants {Aj} and 

{Bj}, we use the Marshak projection scheme’; thus we multiply Eqs. (6) by P2,+,(p.) and 

integrate over w from zero to one to find. for 0 = 0. 1.. . (N ~ I)/?. 

and 

N ,‘/+I ’ c 3 2 {[I -( - ~)‘Pz’lS, , - 3 -- I)‘p,“S ,,,, S,, ,,}[B, + C ~ l)‘A, e ‘““l]g,((,) = R? ,,. (Oh) 
IO - II 

Here 

and 

It is apparent that once we have found the constants {A,} and, (B,}, we can readily compute 

moments of the intensity from Eq. (3). For example. the net radiative heat flux 



and the partial fluxes 
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are given by 
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(12) 

(13) 

and 

q?(7) = 
N 21+1 c 2 (k l)‘S,,,, i [A, em”‘1 + (- l)‘Bi e~““~‘“E~]gr([i) + 1’ I,,(T, ? k.)p dp. (14) 
I =o 1-I I, 

On the other hand, if we wish to compute the intensity we can obtain an improvement to Eq. (3) 
by substituting Eq. (3) into the r.h.s. of Eq. (1) and solving the resulting equation to obtain, after 

using Eqs. (2), 

and 

l(T, - CL) = &(T> - p)+ L(h - cL) e ““~ ‘)” + ; y(T, -,J), ,.‘ > 0, (ISb) 

where 

and 

with 

and 

C(T: p, 5) = (em”‘” - em”‘)/(p - 5) (174 

S(T: p, 5) = (1 - ee”‘” em”‘)/(p + 5). (17b) 

To complete the solution given by Eqs. (lS), we note that 

ZH(O, IL) = (1 - p,‘p~‘ e ~ZrC1’W))‘{K,(~) t P,‘K&) em’“” t F p,'[Y(O, -CL)+ P~‘Y(T~, CL) e-ro’p] 

t 2[p,“J, + pI’pzdJz Ed’““]) (18a) 

and 

IH (7,). - II) = (1 - p,‘p?’ e -““‘“))‘{K,(~) t p?‘K,(p) em’““” +; Pzs]Y(ro, CL) + PISY(O, -CL) e-To’pl 

t 2[p,“J, + fi‘~,~J, e~‘““]}, (18b) 



where 

and 

It is apparent that the constants 

and 

can be found after we multiply Eqs. (18) by p exp( - Q/P)). integrate over F and solve the two 

resulting linear algebraic equations. 

In order to demonstrate the accuracy of our developed P,, solution, we consider the specific 

problem solved by Siewert, Maiorino and ozigik,’ viz., the case of constant internal temperature 

T(T) = T. The required particular solution 

&CT. /L) = (tr/T)T’ (211 

is especially simple. We can now express Eqs. (7) as 

and 

For this problem, we find that the r.h.s. of Eqs. (9) become 

To start our numerical work, we first compute the eigenvalues {k,}. To this end. we multiply 

Eq. (5) by 5 and rewrite the resulting equation. for I = 0. 3. 4.. . as 

It follows that the squares of the .I positivne zeros of ,Y,, , (0 we the .I eigenvalues t’ of the .I x .I 
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tridiagonal matrix A obtained from Eq. (24), for I = 0, 2, 4, . . . , (N - l), and the truncation 
condition g,,,_,(c) = 0. We have used a FORTRAN program in the EISPACK program packages 
to find the required eigenvalues of A. Having found the eigenvalues, we compute the poly- 
nomials g,(t) by either forward (5 s 1) or backward (5 > 1) recursion. 

We note that Dave’ has reported recursion relations that establish a very convenient and 

accurate way to evaluate the constants S,,, , defined by Eq. (8); we express our version of the 

formulas required to compute all non-zero values of these constants as 

S ,“, Z,, / , = 1/(4a + 3), (2Sa) 

and 

S 
12at1 

(1 1 I.0 = --(-)s 
2 (ut2 (1. 0 

(2%) 

(25c) 

with S,,, ,) = 1/2andcu,I=0,1,2 ,.... 
We are now ready to prescribe the data and solve Eqs. (9) to find the required constants {Ai} 

and {Bj}. We use here a scattering law, given in Table 1, that is the result of a Mie scattering 
calculation‘. I” for size parameter = 3 and index of refraction = 1.2. In Tables 2 and 3, we list 
partial heat fluxes found from our PN solution with N ~99 and correct, we believe, to within 
+ I in the last digit given. In Tables 4 and 5, we compare our results for the partial heat fluxes 
at the boundaries to the exact results of Ref. I. It is clear from Tables 4 and 5 that for the 
considered problems our PN solution yields for w = 0.8 and w = 0.95 boundary results that are 

accurate to four significant figures for modest values of N. On the other hand, the convergence 

Table 1. The scattering law. 

0 1 1.24514 0.00667 
I 2.35789 0.51215 0.00081 
2 2.76628 0.16096 
3 2.20142 0.03778 

Table 2. Partial heat fluxes for pls = pld = ~2’ = pzd = 0.25, aT4 = r, T; = T2 = 0 and 70 = I. 

w = 0.2 w = 0.8 w = 0.95 
T K(7) q+(T) q-(T) q+(T) 4_(T) q+(T) 

0 0.4153 0.2076 0.2333 0.1167 0.8480(- 1) 0.4240(-l) 
0.1 0.4060 0.2485 0.2266 0.1343 0.8220(- 1) 0.4837(-l) 
0.2 0.3950 0.2811 0.2186 0.1499 0.7910(-l) 0.5378(-l) 
0.3 0.3823 0.3082 0.2096 0.1641 0.7566(-l) 0.5880(-l) 
0.4 0.3677 0.3311 0.1997 0.1770 0.7190-I) 0.6347(-l) 
0.5 0.3508 0.3508 0.1888 0.1888 0.6783(- 1) 0.6783(- 1) 

of the method for the case of strong absorption, w = 0.2, is somewhat less rapid. We have 
observed similar trends for the other cases discussed in Ref. I, i.e., the case of purely specular 
reflection with p,‘ = p2’ = 0.5 and the case of purely diffuse reflection with p,” = P:” = 0.5. It is 
also apparent from the results quoted in Tables 4 and 5 that the partial heat flux q-(O) for the case 
w = 0.2, no internal heat generation and T2 = 0 is the least accurate in this set of calculations. 

In conclusion we note that, in contrast to the findings of Garcia and Siewert3 in regard to the 
problem of a finite slab illuminated by a solar beam, we found for the considered problems that the 
Marshak projection scheme7 yielded better results than the projection scheme based on the 
functions ~P,(2p - 1). We also found that Eqs. (15) yield (for the considered problems and with 
N G 99) results for the intensity that are in general accurate, we believe, to four significant figures. 
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Table 3. Partial heat fluxes for p,’ = p,” = p?’ = pzd = 0.25. EICTT,~ = pi. T = Tz= 0 and :,,= I 

OJ = 0.2 w = 0.8 w = 0.95 

7 4 (7) q’(T) q (7) q’(r) y (7) q+(T) 

0 
0.1 
0.2 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.2655(-U 0.5133 0.1666 0.5833 0.3006 0.6503 
n.2782(-1) II.4402 0.1645 0.5520 0.2950 0.635 I 
0.2990(-l) 0.3823 0.1639 0.5245 0.2905 0.6213 
0.3259(-1) 0.3342 0.1644 0.4995 0.2866 0.6084 
0.3584(-1) 0.2936 0.1655 0.4764 0.2831 0.5962 
0.3969(-1) 0.2588 0.1673 0.4551 0.2799 0.5844 
0.4419(-1) 0.2288 0.1696 0.435 I 0.7769 0.5731 
0.4943(-1) 0.2028 0.1724 0.4164 0.2740 0.5621 
n.5556(-1) 0.1801 0.175i 0.3989 (1.7711 0.55 I! 
0.6277(-1) 0.1603 0.1793 0.3824 0.2682 0.5406 
0.7145(-1) 0.1429 0.1834 0.3668 0.2649 0.529x 

Table 4. The partial heat flux q (0) = q’(~o) for ~1' = PI" = pzs = pzd = 0.3, CUT” = T. T, = TJ = 0 and 
:,, = I. 

w N=9 N = 19 N = 39 N = 69 N = Y9 Exacl 

0.2 0.4160 0.4155 0.4153 0.4153 0.4153 0.415? 
0.8 0.2335 0.2334 0.2333 0.2333 0.2333 0.2333 
0.95 0.8483(-I) 0.8481(-1) 0.8480(-1) 0.8480(-I) 0.8480(-1) 0.8480(-1) 

Table 5. Partial heat fluxes q CO) and q+(m) for p,‘ = pld = pz‘ = p2” = 0.3. t,n~,” = 7~. r = ‘I’! = o 
and 7,) = I. 

Partial 
Heat 

w Fluxe\ N = 19 N = 39 N = 69 N = Y9 Exacl 

0.2 q-lo) 0.2621(-1) 0.2647(-1) n.2653(-I) 0.265%1) 0.2656(- I) 
q+(m) 0.1429 0.1429 0.1429 0.1429 0.1429 

0.8 qmKu 0.1665 0.1666 0.1666 0.1666 0.1666 
q i(TO) 0.3668 0.3668 0.3668 0.3668 0.366X 

0.95 q-(O) 0.3006 0.3006 0.3006 0.3006 0.3006 
q+(w) 0.5298 0.5298 0.5298 0.5298 0.5298 

In addition, we have observed that the PN formulation used in this work does not deteriorate as the 
slab thickness TV increases, and we have found, in general, that the computational methods used 
remain valid when 1 - o is very small, e.g., lo-‘*. Of course, some elementary modifications are 

required for the special case w = 1. 
For recent reviews of various semi-analytical and computational methods basic to radiative 

transfer we refer to papers by Sanchez and McCormick” and MengiiG and Viskanta,” and finally 
we remark that the developed PN solution is particularly easy to use and that it is adequately 
accurate for many applications. 
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