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Abstract—The Py method is used to compute the partial heat fluxes relevant to radiative transfer in an
anisotropically scattering, plane-paralle] medium with specularly and diffusely reflecting boundaries.

1. INTRODUCTION

In a paper published in 1980, Siewert, Maiorino, and Ozisik' used the Fy method® to compute
accurately the partial radiative heat fluxes for a general class of radiative heat-transfer
problems. Here we make use of exact particular solutions and the spherical harmonics method”
to compute the partial heat fluxes for the same class of problems.

We consider the equation of transfer?

a1, )+ 107, ) =—§; BPi(n) f Pi()(r,w) du' + (1= 0) 2 Tr) (M
and boundary conditions
10, u) =€ % T +p, 10, - ) +2p,* J;I [0, = p )" dp', n >0, (2a)
and
I(ry, —p) = e:% T+ o' I (1o, ) +2p2° Ll {7y, ' dp', p>0, (2b)

where T, and T, refer to the two boundary temperatures, p,' and p.%, @ =1 and 2, are the
coefficients for specular and diffuse reflection and €, and e, are the emissivities. Though we
intend ultimately to solve more general problems,” we consider here that the temperature
distribution in the medium T(7) is known®.

2. ANALYSIS

We express our Py approximation to I(r, u) in the form used by Garcia and Siewert’, viz.,

< 2A+1 4 —7/& { —(rg—TMHE
[{ECANEDY == Pip) X [A e ™+ (—1)'B;e ™ ™4]g (&) + L7, w), 3)
il

=0

where I,(7, u) denotes a particular solution of Eq. (1) corresponding to the inhomogeneous
source term

S(ry=(1- w)% T(7). (4)

The polynomials g,(¢) are those of Chandrasekhar?, i.e.,
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(1+l)gm(f):h,fg‘(f)-lﬂ; \(E) (S)

with go(é)=1 and h =21+1-wp. We consider that N is odd, so that the eigenvalues &,
i=1,2,...,J=(N+1)2, are the J positive zeros of gy, (£). Assuming that we can find a
particular solution I,(7, u), we must simply determine the arbitrary constants {A;} and {B;} so
that the approximate solution given by Eq. (3) satisfies, in some approximate way. the boundary
conditions given by Egs. (2). Substituting Eq. (3) into Eqgs. (2). we find, for p >0,

N2+
275

}

J
{0 = (=D TP =20~ Dp S, F D TA 4+~ Bje ™9)g(&) = K () (6a)
i

and
S 20+ 1 Lo Lo L i Tl
Z‘T{[l‘ 7‘)P2 ]PJ(P«)“?-(A”PZK Sn_;}Z[B,Jr(*l)AiC ”N]gi(f;):Kz(lLL (6b)
T 0 - i
where
K,(u):e,g’r4 L )+ p L0, — )+ 2p, 1,.(0 e du's (Ta)
i 13
]
Kop)= 63% T - LGro =)+ p-' (g p) + 205! J' I(r, i dp! {(7b)
)

and, in general,

|
S.y.r:f Po () P(p) dp. (8)

To convert Egs. (6) to a system of linear algebraic equations for the desired constants {A;} and
{B;}, we use the Marshak projection scheme’; thus we multiply Egs. (6) by Py, (n) and
integrate over p from zero to one to find. for a =0.1,.... (N - DJ2.

(894

+ J iy )
17 ]E{[l*(—l)lpl\]S,h,~2(4))'{JI‘IS”_fSI,_[,}[A,»+(*l)'B,e g =R (%)

il

M=

[}

and
S2A+T L i ! rlé
2 5 2 1‘(’”[3:\]5, 1("])0 9(1) n}[B )A,ﬁ W"i]gl(gi):Rz.l.- (9b)
o - i
Here
R =[a 2T+ 20/ j 1O~ d ] Soa= [ P G000 L0, < 0]
(10a)
and

i i
Reo = [@ 2 T+ 2000 [ Lro i s [Suo= [ Polbtnn )=o) i
i) o
(10b)

It is apparent that once we have found the constants {A;} and {B;}, we can readily compute
moments of the intensity from Eq. (3). For example, the net radiative heat flux

{
({(T):f I dp (1t
1
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and the partial fluxes
1
g7 (1) =f {7, = w)u du (12)
I\

are given by

J

1
a(r)=(1-w) X [Aje "5~ Bje ™ g +J IL(r ) dpe (13)
1

and

N
a"0= 3 2 1, S A e 0B e e @)+ [ w19

=0

On the other hand, if we wish to compute the intensity we can obtain an improvement to Eq. (3)
by substituting Eq. (3) into the r.h.s. of Eq. (1) and solving the resulting equation to obtain, after
using Egs. (2),

I, p) = L )+ Ia @ w) e ™ + 2 X (5, 0), >0, (15a)
and
I(r, —p) = L(7, — )+ Iy(ry, —p)e o7 +%Y(’T, —-u), u>0, (15b)
where
N J
Y(r, p)= ;} BiPi(n) ZI EIAC(T: w, &)+ (= 1By e ™ 748(7: , §)]gi(&) (16a)
and
N J
Y(r, —p)= 21) BiP(u) 2] EI(~1'Aje ™iS(ry— 7: p, &) + BIC1y— 1 . £)]gi(£)  (16b)
with
Clirip, &)= ™ -e"(p-§& - (17a)
and
S(r:pw, O =(1—e ™ e ™)(u + &). {(17b)

To complete the solution given by Egs. (15), we note that

L0, ) = (1= p1ps" e ) K () + py"Kalw) €™ + 2 pr (YO, —1) + 2" Y (o, ) 7]
£2Ap it ol le M} (182)
and

In(ro, =) =(1=p'p" e 7)) YUKo(p) + py' K () e " + % P2’ [Y(7o, p) + pr° Y (0, —pn) e 70¥]
+ 2[P:d-’: + pZApld]l 377"/“]}, (18b)
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where
® 1 1
Ji= 5-[ YO, - wip du +f Lytro, —w)e ™ u du (194)
0 "
and
© 1 |
]Z:EJ; Y (7o, wip du+J' 10, e ™™ u dp. (19b)
Q
It is apparent that the constants

{
H|:J [”('Tn. wM)e TW““M d}.l (202”
¥

(

and

1
HZ:J' L0, e ™ udu {20h)

(

can be found after we multiply Eqs. (18) by p exp(— 7,/u). integrate over w and solve the two
resulting linear algebraic equations.

UNUMERICAL RESULTS
In order to demonstrate the accuracy of our developed Py solution, we consider the specific
problem solved by Siewert, Maiorino and Ozisik,' viz., the case of constant internal temperature
T(7) = T. The required particular solution

[(r.p)=(o/mT" (21

is especially simple. We can now express Egs. (7) as

K,(u):%[elTﬁ\(l*pf*pl‘lﬂq] (22a)
and
Kz(u)zg[esz»(l —p = )T, (22h)

For this problem, we find that the r.h.s. of Egs. (9) become

R, . :%[emh(] — o =TS, (234)
and

R. = Z[G3T~‘4 ~ (1= pa* = p-THS, . (23b)

To start our numerical work, we first compute the eigenvalues {&}. To this end. we multiply
Eq. (5) by ¢ and rewrite the resulting equation. for [ =0.2,4.. ... as

+ )04 .
]g,(£)+(L—&J A6 = £ w(£). (24)

+l
hy o hy

Chec ke

b, g AE)+ n

-1 | [(Hlf &

It follows that the squares of the J positive zeros of gy . 1(£) are the J eigenvalues £ of the J ~ J
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tridiagonal matrix A obtained from Eq. (24), for =0, 2, 4, ..., (N —1), and the truncation
condition gy . ,(¢) = 0. We have used a FORTRAN program in the EISPACK program package®
to find the required eigenvalues of A. Having found the eigenvalues, we compute the poly-
nomials g (¢) by either forward (£ < 1) or backward (£ > 1) recursion.

We note that Dave’ has reported recursion relations that establish a very convenient and
accurate way to evaluate the constants S, ; defined by Eq. (8); we express our version of the
formulas required to compute all non-zero values of these constants as

S, i = H(da +3), (25a)
1=1+2a\( [+1 \(1+2+2a
S“"+2_(4+l+2a)(l+1—2a>( 152 )Sav' (25b)
and
1/2a +1
S(Ul\(): _§<—5+—2)Sn.1) (25C)

with Sy y=1/2and a, 1 =0,1,2,....

We are now ready to prescribe the data and solve Egs. (9) to find the required constants {A;}
and {B;}. We use here a scattering law, given in Table 1, that is the result of a Mie scattering
calculation™ " for size parameter =3 and index of refraction = 1.2. In Tables 2 and 3, we list
partial heat fluxes found from our Py solution with N <99 and correct, we believe, to within
+ 1 in the last digit given. In Tables 4 and 5, we compare our results for the partial heat fluxes
at the boundaries to the exact results of Ref. 1. It is clear from Tables 4 and 5 that for the
considered problems our Py solution yields for o = 0.8 and o = 0.95 boundary results that are
accurate to four significant figures for modest values of N. On the other hand, the convergence

Table 1. The scattering law.

l B Bisa Bi+s
0 1 1.24514 0.00667
1 2.35789 0.51215 0.00081
2 2.76628 0.16096

3 2.20142 0.03778

Table 2. Partial heat fluxes for p,’ = p1? = p° = p," =025, oT* =&, Ty= Ty =0 and 7o = .

w=0.2 w=028 =095
7 g4 (1) q'(r) q (7 q'(7) q (1) q'(n)

0 0.4153 0.2076 0.2333 0.1167 0.8480(-1) 0.4240(~1)
0.1 0.4060 0.2485 0.2266 0.1343 0.8220(-1) 0.4837(-1)
0.2 0.3950 0.2811 0.2186 0.1499 0.7910(-1) 0.5378(-1)
0.3 0.3823 0.3082 0.2096 0.1641 0.7566(~1) 0.5880(-1)
0.4 0.3677 0.3311 0.1997 0.1770 0.7190(-1) 0.6347(-1)
0.5 0.3508 0.3508 0.1888 0.1888 0.6783(~1) 0.6783(-1)

of the method for the case of strong absorption, w = 0.2, is somewhat less rapid. We have
observed similar trends for the other cases discussed in Ref. 1, i.e., the case of purely specular
reflection with p," = p," = 0.5 and the case of purely diffuse reflection with p,* = p.* =0.5. It is
also apparent from the results quoted in Tables 4 and 5 that the partial heat flux q~(0) for the case
o = 0.2, no internal heat generation and T, =0 is the least accurate in this set of calculations.

In conclusion we note that, in contrast to the findings of Garcia and Siewert® in regard to the
problem of a finite slab illuminated by a solar beam, we found for the considered problems that the
Marshak projection scheme’ yielded better results than the projection scheme based on the
functions wP,(2u — 1). We also found that Egs. (15) yield (for the considered problems and with
N =99) results for the intensity that are in general accurate, we believe, to four significant figures.
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Table 3. Partial heat fluxes for p,' = pld =p' = pgd =025, ol =m T=To=0and ro= 1.

w=02 w =08 w =095

T q (1) q'(n) g (7) q'(n) q (5) q'(n)
0 0.2655(—1) 0.5133 0.1666 0.5833 0.3006 0.6503
0.1 0.2782(-1) 0.4402 0.1645 0.5520 0.2950 0.6351
0.2 0.2990(-1) 0.3823 0.1639 0.5243 0.2903 0.6213
0.3 0.3259%(—1) 0.3342 0.1644 0.4995 0.2866 0.6084
0.4 0.3584(-1) 0.2936 0.1635 0.4764 0.2831 0.5962
0.5 0.3969(— 1) 0.2588 0.1673 0.4551 0.2799 0.5844
0.6 0.4419(-1) 0.2288 0.1696 0.4351 0.2769 0.5731
0.7 0.4943(-1) 0.2028 0.1724 0.4164 0.2740 0.5621
0.8 0.5556(—1) 0.1801 0.1757 0.3989 0.2711 0.5513
0.9 0.6277(-1) 0.1603 0.1793 0.3824 0.2682 0.5406
1 0.7145(-1) 0.1429 0.1834 0.3668 0.2649 0.5298

Table 4. The partial heat flux g (0} = q (7o) for p;’ = o=t =t =025 0T =5 T)= T2=0 and

7= 1.

w N=9 N=19 N=139 N =69 N =99 Exact
0.2 0.4160 0.4155 0.4153 0.4153 0.4153 0.4153
0.8 0.2335 0.2334 0.2333 0.2333 02333 0.2333

0.95 0.8483(-1) 0.8481(-1) 0.8480(-1) 0.8480(—1) 0.8480(-1) 0.8430(-1)

Table 5. Partial heat fluxes ¢ (0)and g (ro} for p’ = pr¥ = p2’ = p2 =025, 40T\ = 7. T = T = 0

and TH = 1.
Partial
Heat
o) Fluxes N=19 N=139 N =69 N =9 Exact
0.2 q (0) 0.2621(-1) 0.2647(~1) 0.2653(—1) 0.2655(-1) (1.2656(~1)
q" (1) 0.1429 0.1429 0.1429 0.1429 0.1429
0.8 q:(O) 0.1665 0.1666 0.1666 0.1666 0.1666
q (7o) 0.3668 0.3668 0.3668 0.3668 0.3668
0.95 “(0) 0.3006 0.3006 1.3006 0.3006 0.3006
q' (0 0.5298 0.5298 0.5298 0.5298 0.5298

In addition, we have observed that the Py, formulation used in this work does not deteriorate as the
slab thickness 7, increases, and we have found, in general, that the computational methods used
remain valid when 1 - w is very small, e.g., 10~"%. Of course, some elementary modifications are
required for the special case w = 1.

For recent reviews of various semi-analytical and computational methods basic to radiative
transfer we refer to papers by Sanchez and McCormick'' and Mengiig and Viskanta,'? and finally
we remark that the developed Py solution is particularly easy to use and that it is adequately
accurate for many applications.
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