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I. Introduction 

In a recent paper concerning the scattering of polarized light [1] Siewert and 
Pinheiro investigated the equation of transfer 

# I ( ' c ,#)+l(z ,#)=~ HI(#)B l ~ H,(#')I(z,#')d#' (1) 
/ = 0  - 1  

that defines the azimuthally symmetric component 

1 2= 
I (z, #) = ~ ! I (z, #, q)) d~o (2) 

of the complete solution. Here the density vector I (z, #, (p) has the four Stokes 
parameters I, Q, U and V as components [2, 3, 4], co ~ (0, 1] is the albedo for 
single scattering and 

Ht (#) = diag {Pz (#), gl (#), Rl (#), Pz (#)}, (3) 

denotes the Legendre polynomial of order l, R o (#) = R 1 (#) = 0 where Pl(#) 
and, for 1 > 

d 2 
R, (#) = (1 -- #2) ~ 2  P~ (#)" (4) 

In addition, 

, 

7 2) j 
the matrices 

fll 7z 0 0 I 
71 ~l 0 0 
0 0 {l - el 
0 0 el 61 

B l (5) 
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are defined in terms of the basic constants {c h, flz, ~, 6~, e~, ~t} that have been 
used [5] to represent a scattering matrix of the form considered by Hovenier [6], 
viz. 

a l ( ~  ) b l ( ~  ) 0 ~ [ 

f ( { ) =  bl(~) a2(~) 0 
0 a 3 (~) b 2(~)  " 

0 -b2(~)  a4(r 

(6) 

W e  n o t e  t h a t / 3  0 = 1 a n d  t h a t  eo = ~1 • ~o = 71 = Eo ~-- e l  = Co = ~1 = 0. 
Although I (r, g) is a four-vector, it is apparent from Eqs. (1), (3) and (5) that 

it is sufficient to investigate two two-vector problems. We therefore write 

p ~ ~ (z, #) + ~ (z, #) = ~ Pl (P) C, j" P~ (/-t') ~ (z, p') dp',  
l=0  - 1  

where 

(7) 

Pz (#) = diag {P~ (#), R, (#)}, (8) 

and consider two cases: 

I (z, #) with C, = fi' "/' (9 a, b) A: ~(z ,  ~) = (2 (T, p) ~,, c~, 

and 

V(r,p) [ with B: ~ (~, #) = u (~, ~) Ct 
I 

a, ~;l (9 c, d) 
- -  ~1 ~1 " 

In developing elementary solutions of Eq. (7), Siewert and Pinheiro [1] found 
that the required eigenvalues were the zeros of det A (z), z r [ -  1, 1], where the 
dispersion matrix A (z) was expressed as 

(l) 1 L 
A(z)=l +~z  ~ K(ll) Y~ P~(p)CzGt(z) d ~  

-1  t=o kt - z  
with 

(10) 

K(p) = diag {1, Ra(p)}. (11) 

In addition, the 2 x 2 polynomial matrices Gz (z) are defined as 

Go (z) = diag { 1, 0}, G1 (z) = diag {ko z, 0}, 

G2 (z) = diag {! (k ~ kl z 2 _ 1), 1} 2 

and, for l > 2, 

GI+ i (Z) = J /+ l  1 [z h l (~t (z) - -  Jl ~ / - 1  (z)] .  

(12a, b) 

(12c) 

(13) 
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Here 

and 
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k l = 2 1 +  1 - - c o C :  1, 

J, = diag {l, (1 - ,50, 3 (1 - bl,t)(/2 _ 4)1/2} 

h t = ( 2 / +  1)I - -  ( p C  l . 

(14) 

(15) 

(16) 

We now proceed to develop some addit ional  representations of A (z) and to 
deduce, for z r [ -  1, 1], a way to compute  the zeros of det A (z) that provides an 
alternative method  to that  discussed previously [1]. 

II. The dispersion matrix 

We now follow a procedure  used by in6nfi  [7] and Garcia and Siewert [8] 
in studies of the scalar form of the equat ion of transfer and let 

1 1 d# 
-- K (#) P, (#) (17) 

I- 

so that  we can write Eq. (10) as 

L 

a(z) = t - o J z  2 (is) 
l = O  

As previously reported [1, 5] the matrices Pl (z) satisfy 

(21 + 1) z P~ (z) = Jt+l P~+I (z) + Js Pz-1 (z) (19) 

and 

1 ( 2 )  (20) S Pt(/~) P r (# )d / t  = diag {1, (1 - 3 o 3(1 - 31,3} b z , ,  
- 1  2 ~  ' ' 

and thus we can readily deduce from Eq. (17) that 

( 2 / +  1)zQ~(z)=diag{3o, t,62,z} +J~+lQt+l(z)+JzQt_l(Z). (21) 

If we now multiply Eq. (21) on the right by G~ (z), then multiply 

h~ z Gz (z) = J~ + 1 G~ + 1 (z) + Jl G~_ 1 (z) (22) 

on the left by Ql (z), subtract  the resulting two equations one from the other and 
sum the result from 1 = 0 to 1 = L, we find we can use the ensuing expression to 
write Eq. (18) as 

A (z) = Jr. +1 [QL (z) G L +1 (z) - QL +1 (z) G L (z)]. (23) 
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In a similar way we can el iminate between Eqs. (19) and (21) to deduce that  

K (z) = JL +1 [QL (z) PL + t (Z) -- QL + a (z) PL (z)], (24) 

and we can el iminate between Eqs. (19) and (22) to obta in  

2 z ~ (z) = K (z) Jc+l  [PL+I (Z) GL (z) -- PL (Z) GL+ 1 (z)], (25) 

where 
(D L 

~P (z) = 5 K (z) ~2 P~ (z) C, G, (z). (26) 
/ = 0  

Mult ip lying Eq. (23) by PL + 1 (Z) and using Eqs. (24) and (25), we find 

PL + I (Z) a (z) = K (z) GL + t (z) --  2 z  K -1  (z) QL  + I (2) ~ (z) ,  (27) 

and then consider ing that  z r  [ -  1, 1], so that  det  PL+, ( z ) #  0, we can write 

A (z) = PL-+11 (z) [K (z) GL+ 1 (z) -- 2 z K - 1 (z) QL+ t (z) ~ (z)]. (28) 

As R l (z) can [4] be expressed as 

1 I'/+ 2)(/+ 1)11/2 11_ 2 (Z), (29) R , ( z )  = ~ l(1 - 1) (1 - z2) ~ 

where Pt <~'~) (z) is used to denote  a Jacobi  po lynomia l  [9] of degree l, we can, for 
z ~ [ -  1, 1], use the asymptot ic  formulas for the Legendre  polynomials  and the 
Jacobi  polynomials  that  are given [as Eqs. (8.21.1) and  (8.21.9)] by Szeg6 [10] to 
conclude  that  

lim PL-+~I (z) QL+ 1 (z) = 0, z ~/[-- 1, 1]. (30) 
L ~ o o  

We therefore can readily deduce  from Eq. (28) that  

A (z) = lira PL-+~ (Z) K (z) GL+ t (z), z + [-- I, 1]. (31) 
L-~oo 

It  follows that  the zeros o fde t  GL+ 1 (z), z # [-- 1, 1], will converge as L ---, oo to the 
zeros of det A (z), z + [ -  1, 1]. We thus can, for v~, ~ # [ -  1, 1], approx imate  the 
requi rement  [1] 

A (va) M (va) = 0 (32) 

by 
GN+ a (r 1 (r = 0 (33) 

for sufficiently large N and for ~ sufficiently close to v B. Here M ( v ~ )  and  
M N  + 1 (r are null  vectors of A (va) and  G N + 1 (~)  respectively. Finally we can use 
Eqs. (19), (22) and (31) to show that  

A(oo) = I=1-+~ 1=o 
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III. The eigenvalues 

We note that an Nth order generalized spherical harmonics solution of Eq. 
(7) requires as eigenvalues all of the zeros of det GN+ 1 (z). We therefore proceed 
to formulate a convenient computational technique that allows us to find all of 
the zeros of det GN+ ~ (z); in order to avoid a zero at the origin, we consider N 
to be odd. The method, which is a generalization of the one that has proved 
accurate and easy to use for the scalar case [11, 12], is based on the fact that the 
2 x 2 polynomial matrices G~ (z) for l > 0 are defined, after the first three are 
given, by Eq. (13). If we multiply Eq. (22) on the right by 

G ~ ,  (z) + G~:+I (z) (3s) 
MN+ 1 (Z) = 21 11 

- G N  + 1 ( z )  - -  G N +  1 ( z )  

and define 

Tz(z) = Gt(z)  MN+ I (z), (36) 

then we obtain the system of equations 

U 1 T 1 (z) = z To(z  ) (37a) 

L,T~_a(z ) + U , +  1T~+~(z)=zT~(z), l = l ,  2 , . . . , U - 1 ,  (37b) 

LN TN-1 (z) = z T~,r(z) (37c) 

where for l = 1, 2, ..., N 

V~ = h7_ ~ 4 (38) 

and 

Lt = h71 Jl. (39) 

Letting T(O denote the vector with elements T O (~), T 1 (0 , - . - ,  TN (0, we write 
Eq. (37) as 

W T(O = ~ T(r (40) 

where the (2 N + 2) x (2 N + 2) matrix W is 2 x 2-block tridiagonal; i.e. 

0 U1 LI~~ 
W =  (41) 

L N 0 

We note that the matrix W has two rows and two columns that are all zeros, and 
thus we conclude that the 2 N zeros of det GN + 1 (z) are the 2 N non-zero eigen- 
values of W. 
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In order to be specific we consider the I-Q problem and the V-  U problem 
separately. 

A: 7he I-Q problem. As there are available in the EISPACK package [13, 
14] efficient and accurate FORTRAN subroutines for finding the eigenvalues of 
banded, real symmetric matrices, we proceed to reduce our eigenvalue problem 
to that form. First of all, however, some restrictions on the constants {0q, fit, ?~} 
are relevant. We define 

h l = 2 l + l - c o f l t  and t h = 2 1 + l - c o e t  

and make the assumptions that 

h l > 0  and h t t / t _ c o 2 ? ~ > 0  

for all 1 > 0 if co r 1 and for all I > 1 if co = 1. Now since 

hz = h t - co 7t 
- -  co ?l t/t 

is symmetric we define 

= hy 1/2 _htco 7l A0' t Ht 

with 

A t = (ht t / , -  c0272)1/2 

so that we can write 

ht = Hz Hr. 

Now defining 

~ =  Hf_ 1, l = 1 , 2 , 3 , . . . , N + 1 ,  

we find that the transformation 

X = diag {$1, S 2 . . . .  , SN+j} Wdiag {S[ -~, $ 2 1 , . . . ,  S~7+~ } 

yields the symmetric 2 x 2-block tridiagonal matrix 

O. X 1 

XN 

X N 0 
where 

Xt = H L ~  4 H F T  

for l = 1, 2, 3 , . . . ,N .  

(42 a, b) 

(43 a, b) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 
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To develop an alternative and computationally more efficient method for 
finding the eigenvalues of X, we first let A0(4), A1(4) . . . .  , AN(4) denote the 
2-vector components of A (4), so that 

X A (4) = 4 a (4). (52) 

Then we can eliminate the odd components of A (4) in the system of equations 
represented by Eq. (52) to obtain an equivalent problem 

YB (4) = 42 B (4) (53) 

where the (N + 1) x (N + 1) symmetric Y matrix is given by 

Y = Y l r  D o ~  (54) 

with J = ( g  + 1)/2, 

De = x L _  2 x2~z_ 2 n t- x 2 e _  1 x L _ I ,  (55) 

for e = 2, . . .  J, and 

Y~ = X2~-1 X2~, (56) 

for c~ = 1, 2 , . . . ,  J - 1. Noting that the matrix Y has one row and one column 
with all zeros and that for N odd the zeros of det GN + 1 (Z) Occur in _+ pairs, we 
find that the N squares of the 2 N zeros of det G N+ 1 (z) are the N non-zero 
eigenvalues of 11. Of course, we can obtain an equivalent eigenvalue problem in 
a similar way by eliminating the even components of A (4). 

Finally we note from Eq. (51) that X 1 is unbounded for the special case of 
co -- 1, and thus a modification to the foregoing analysis is required for this case. 
We can readily deduce from Eq. (52) that two of the eigenvalues coalesce at 
infinity and that A 0 (~) and A 1 (4) ---' 0 as co ~ 1. We therefore can find all of the 
2(N - 1) bounded zeros of det GN+ 1 (z) for the case co = 1 by deleting the first  
four rows and columns of X and finding the eigenvalues of 

Xs = 

0 X 3 

X N 0 

(57) 
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Al ternat ive ly ,  the  squares  o f  the  2 ( N  - 1) b o u n d e d  z e r o s  are the  N - 1 e igen-  

va lues  o f  

= . ( 5 8 )  

B: The V -  U p r o b l e m .  Here 

h , =  coem~ 1 - c o e t  (59) 
nl 

and we assume that  

m z = 2 I +  1 - c o 8 1 > 0  and n z = 2 1 + l - - c o , ~ l > 0  (60a, b) 

for all I. We define 

ml 0 I (61) 
H l = m [ 1 / ;  _ c o e  z D 1 ' 

where 

D l = [mln  t + co 2 e2] 1/2 , (62) 

so that  we can write 

h I -- E H, E H r (63) 

where 

E -- diag {1, - 1}. (64) 

Now we let 

S 1 = diag {(1 - co 3o) 1/2, 1} (65 a) 

and 

1 0 Hzr 1, 1 = 2 , 3 , . . . , N + 1 ,  (65b) S t =  0 i 

and find that  

X -- diag {$1, $2, "" ', SN+I} W d i a g  {Si -1 , $21 , . �9 SN+~ 1} (66) 

yields 

X _ 

T X I "  I 

(67) 



o 

where 
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where 

X1 = diag {[(1 - CO3o)(3 - co31)] -1/2, 0} and X l = C*HF_~ E J z H F r C  *, 

for l = 2, 3 , . - . ,  N + 1. In addition (68 a, b) 

C* = diag {1, - i}. (69) 

It is apparent that Eq. (67) defines a banded symmetric matrix which, for N odd, 
has 2 N non-zero eigenvalues that are the desired zeros of det GN+ t (z). It is also 
clear that the N non-zero eigenvalues of 

X 1 X~ Yj 

Y = (70) 

Dr 
provide the N squares of the zeros of det GN + 1 (z). Here again 

Y~ = X2~-1 Jf2~ (71) 

for c~ = 1, 2,- . - ,  J - 1 and 

D~ = Xzc cT _ 2 X2~- z + X2~- 1 Xzr~- 1 (72) 

for ~ = 2, 3 , . . . ,  J. 
We note that for the I - Q problem the symmetric matrices X and Y are real, 

and so to find the eigenvalues we can use the EISPACK [13, 14] subroutines 
B A N D R  and 1 M T Q L 1  which make use of the fact that X and Y are banded (7 
bands). Although we have obtained symmetric banded matrices X and Y for the 
V - U  problem, we cannot use the subroutine B A N D R  to reduce either X or Y 
to tridiagonal form because they are not real (the 7 bands are alternately real and 
purely imaginary). As we do not at present have available a method for dealing 
efficiently with the X and Y matrices for the V -  U problem, we return our 
attention to the real non-symmetric banded matrix W as given by Eq. (41). If we 
carry out on W a "shuffle" two columns at a time and follow that by a similar 
row "shuffle", then we find the equivalent eigenvalue problem 

A I E = ~E (73) 
0 t 

A = 
L2 

L 4 ~ ~ L N  1 UN 

(74) 
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and 

L1 

B = 
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(75) 

 UN_l 
LN 

It is clear from Eq. (73) that  we can find the desired eigenvalues ~ by considering 

rE r = 32 E r (76a) 
or 

~ E  B = 32 E B (76b) 

where 1('= AB and -~ = BA. To be explicit, we write, for example, 

U1L1 ClU2 
L2 L1 U3 L3 + Lz U2 U3 C 4 ~  

Y :  L 4 L ~ ~ u ; - L ~ U N -  - - -1 (77) 

where we continue to consider N to be odd. 

IV.  N u m e r i c a l  results 

For  our numerical examples of the foregoing development,  we use the three 
basic scattering laws considered by Vestrucci and Siewert [15]. The first of these 
three problems (model I) was introduced by Kug~er and Ribari~ [16] for the 
scattering of light, with wave number  k, by small spherical particles of radius a. 
The basic constants {~, fl, ~, 6, e, ~} for this model are given in terms of 

= (k a) 2 (n 2 + 2) 2 [30 (n 2 -}- 2) + 36 (k a) 2 (n 2 - 2)]- 1 (78 a) 

and 
fl = 5 (]s a) 2 (n 2 -t- 2) 2 (2 ~/2 + 3)- 1 [30 (n 2 -~- 2) -~- 36 (k a) 2 (n 2 - 2)] - 1 (78 b) 

in Table 1. Here n is the index of refraction of the particle with respect to the 
surrounding medium. In Table 2 we list, for the specific case of n = 1.33 and 
ka= 1 5-, what we believe to be converged (as N -* 39) results for the zeros of det 
A (z) relevant to the I-Q problems for the two cases co = 0.99 and co = 1. These 
zeros, as well as those for the I -  Q problems for models II and III, were obtained 
by using the FORTRAN subroutines BANDR and IMTQL1 of the E I S P A C K  
program package [13, 14] to find all of the eigenvalues of both  the X and Y 
matrices. 
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Table 1 
The basic constants for model I. 
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0 0 1 0 2c~ 0 0 
a 0 0 1 0 3(e +~fl) 0 

1 1 - � 8 9  1/2 ~x+3f l  0 6(~ + gfl) 2 3 

3 4fl ~fl  6 -- ~ (30)1/2 fl 0 0 0 

Table 2 
The zeros of det A (z) for the I -  Q problem. 

Model ~ = 0.99 ~ = 1 

I 

II 

III 

5.943273020500 oo 

1.019535723105 1.025112345119 
8.052579861387 oo 

1.030780435341 1.032732805841 
1.038869411971 1.040948232700 
1.139072646734 1.143424021509 
1.153451577057 1.157940124966 
1,3925849252t6 1,406188855190 
1.454513843050 1,473542228691 

10.153828385407 co 

Model  II is for the Mie scattering of light, with wavelength 2 = 0.951 gin, by a 
gamma distr ibution [17] of spherical particles with an effective radius 
ref f = 0.2 gm, effective variance vef f = 0.07 and index of refraction n = 1.44. For  
this problem we use the constants {c~, fl, 7, 6, e, ~} reported, with L = 13, by 
Vestrucci and Siewert [15]. Model  III  is similar to model II but  for the case 
2 = 0.782 gin, ref f = 1.05 gin, Veff = 0.07 and n = 1.43. Again we use the con- 
stants {~, fl, 7, 6, e, (}, with L = 60, given previously [15]. We note that  the 
constants {c~, fl, 7, 6, e, ~} for all three of these test problems were deduced [16, 
18, 19] for the case of co = 1; however, to avoid tabulat ing more of these con- 
stants, we use these same constants for the case co = 0.99. 

We note that  the results given in Table 2 were obtained for model I I  as 
N ~  39 and for model  III  as N ~ 99; in all cases the results have been confirmed 
by using the method  of ref. 1 to compute  the zeros of det A (z). In addition, since 
a generalized spherical harmonics  solution of Eq. (1) requires all of the zeros of 
det GN + 1 (4), we have used forward recursion to compute the G polynomials and 
thus to conclude, by investigating det GN+ 1 (3 +_ e), that  the eigenvalues ~ e [0,1] 
of the Y matrix found for the considered I -  Q problems were correct to at least 
twelve significant figures for the values of N used. 

For  the V U problems we have used the driver subroutine RG in the 
E I S P A C K  package [13] to find the desired zeros of det A (z) by comput ing the 
eigenvalues of both  W and E It is clear, of course, that  the Y matrix is (N + 1) 
x (N + 1), with one row and one column of zeros, and so Y has an advantage 
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Table 3 
The zeros of det A (z) for the V- U problem. 

319 

Model ~ = 0.99 ~ = 1 

I 

II 

I l i  

1.190017413515 

1.896261279525 

1.028957515744 • i4.81030348741 ( - 3 )  
1.133801054671 • i2.359049300598(-3) 
1.364325970300 • i1.068168843827(-2) 
3.288868706929 

1.195085765596 

1.927064027809 

1.030742388691 • i4.97361854630 ( -  3) 
1.137760548820 • i2.434360980922(-3) 
1.376053759131 • i1.198389958861(-2) 
3.428684684420 

over the W matrix, which is (2 N + 2) x (2 N + 2), in that less computer storage 
is required for the calculation of the eigenvalues. We also found that we could 
use the subroutine RG even in very high order (N = 499) to find the eigenvalues 
of F. On the other hand, we were not able to use RG to find the eigenvalues of 
W for, say, N ~ 59. We list in Table 3 what we believe to be converged results 
for the zeros of det A (z) for the V-U problems corresponding to the three 
scattering laws considered. It is clear that for V-U problems we can have 
complex zeros of det A (z), z ~ [ -  1, 1]. We also found complex zeros of det 
GN+I(z ) that had a real part contained in the interval (0,1) of the real axis. We 
also found, as we expected, that the imaginary parts of these complex zeros 
appeared to diminish as N was increased. 
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Abstract 

Several representations of the dispersion matrix A (z) basic to analytical solutions for a theory 
of radiative transfer that includes the effects of polarization are reported, and a method for 
computing the zeros of det A (z) is discussed. Numerical results are given for several specific models. 

Zusammenfassung 

Verschiedene Darstellungen der Dispersionsmatrix A (z), welche grundlegende Bedeutung fiir 
die analytischen L6sungen der Theorie der Strahlungsfibertragung mit Polarisation hat, werden 
angegeben. Eine Methode zur Berechnung der Nullstellen von det A (z) wird diskutiert. Es werden 
numerische Ergebnisse ffir verschiedene Modelle angegeben. 
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