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I. Introduction 

In a recent paper [t] concerning radiation transport in finite plane-parallel 
media with nonuniform surface illumination, we developed a solution based on 
a two-dimensional Fourier transformation, a pseudo problem [2], an integral 
transformation technique [3] and the F u method [4] that is applicable to the 
classic searchlight problem, as considered, for example, by Rybicki [5]. Here we 
establish some additional analytical results relevant to the considered three- 
dimensional radiation transport problem, we discuss in detail the basic compu- 
tational aspects of the developed solution and we report some numerical results 
for the searchlight problem. 

As our initial analysis of the considered problem was reported in detail in 
Ref. 1, we assume that work to be available and thus give here only a sketch of 
the material introductory to our current development. 

For the searchlight problem we seek a solution of 

a ~ c 
# ~zz I (z, Q, ~ )  + e~. ~ I (z, Q, ~ )  + I (z, ~o, f/) = 4~ S~ I (z, Q, ~')  dr/ '  

subject to the boundary conditions 

and 

1 
I [0, q, a (u, 4)] = ~ -  a (e) a (u - ~o) ~ (4 - 40) 

zTc o 

i [a, ~, a ( -  ~, 4)] = 0 

(t) 

(2a) 

for # c [0, 1] and 4 c [0, 2re]. Following Refs. I and 5, we note that z c [0, a] 
and Q, which lies in the x - y  plane, locate in optical units the position in 
the homogeneous medium, and ~ = ~ (#, 4), with # = cos 0, is a unit vector 
that defines the direction of propagation (see the accompanying figure). In 

(2b) 
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Figure 1 
The Geometry for g], r Q and k. 

\ \  
\ \  

"x\\ 

y 
I ~ ~  ~ 

k 

add i t ion  m is the pro jec t ion  of  12 in the x - y plane,  g2 o = 12 (#o, ~bo) defines the 
d i rec t ion of  the incident  beam and  r < 1 is the m e a n  n u m b e r  of secondary  
particles per collision. 

As shown  in Ref. 1, the Four i e r  t r ans fo rm 

7 j (z, #, ~b) = ~ I (z, Q, (2) e ik'~ dQ (3) 

satisfies 

C 1 2n 

# ~z ~ (z, #, ~) § u (#, ~) 7' (z, #, ~) = 4nn _$1 o S ~ (z, #', ~') d~'  d#'  (4) 

and  the b o u n d a r y  condi t ions  

(0, #, ~) = 3 (# - #o) fi (~ - ~o) (5 a) 

and  

7 j (a, - #, ~b) = 0 (5 b) 

for # e [0, 1] and  ~b c [0, 2 n]. Here  we use k = I k] and  

u (#, ~b) = I - i k (1 - #2)1/2 cos (~b - ~O). (6) 

Wish ing  first to find the d i s t r ibu t ion  of  r ad ia t ion  exit ing the medium,  
I [0, Q, 12 ( - #, ~b)] and  I [a, ~, ~2 (#, ~)] for # c [0, 1] and  ~b e [0, 2 hi, we no te  f rom 
Ref. I that ,  for the cons idered  searchl ight  problem,  the t rans forms  of  the desired 
quant i t ies  can be expressed, for # c [0, 1] and  ~b c [0, 2 n], as 

r 
- - -  S *  ( U )  (7 a) ~/' (0, - # ,  ~b) - 4 n #  
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and 

C -a/U X* 
(a, Iz, O) = 6 (# - go) 3 (~ - q~o) e-~/v + -4 rc I~ e ( -  U) 

where U = #/u (l~, ~) and, for s r [ -  7, 7], 

(7b) 

7 
S* (s) = A -1  (s) *(s)  -t- cs S T~3 (T) (P [0, - - p  (2.)] - -  

o 

Here 

d72 

1 --  c s e -  a/s ! 72 ~3 (72) (D [a, p ('r)] ~ , (8) 

c 7 d2. 
A ( s ) = l + ~ s  S ~ b ( z ) - - ,  (9) 

-7  2" - - S  

(72) = (1 - k 2 2.2)- 1/2, (10) 

and 

7 = (1 + k : ) -  1/2 (11) 

p (2.) = 2. (I - k :  72:)- 1/2. (12) 

In addi t ion  

F*(s) - s U o [1 - e -~/~ e-air~ (13) 
s +  U o 

where U o = #o/U (go, ~bo), and  ~b (z, #) satisfies Will iams'  [2] pseudo  problem,  viz. 

/2 (1 -[- k 2 ~2)1/2 ~ c i l  I ~zz ~ (z, #) + (1 + k 2 #2) @ (z, #) = ~ _ �9 (z, #') d#'  + ~ F (z) 

with (14) 

F(z)  = e -z/v~ (15) 

�9 (0, #) = 0, ~ e [0, 1], (16a) 

and 

~b(a,- /~)  = 0, # ~. [0, 1]. (16b) 

To evaluate 7 j (0, --/~, ~b) and  ~ (a, #, ~b) as given by Eqs. (7) we clearly mus t  
solve the pseudo p rob lem to obta in  q~ [0, - p (z)] and  ~b [a, p (-c)] for 72 ~ [0, 7]- In 
Ref. 1 a pair of coupled  singular  integral  equat ions  and a pair  of integral con- 
straints that  together  define ~b[0,-p(72)] and  ~[a,p(72)], for 72 e [0, 7], were 
derived by applying an integral  t r ans format ion  technique to Eq. (14). As the 
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singular integral equations and constraints are basic to what  follows in this 
work, we list them here: 

dr  
2 v 2 (v) ~2 (v) 45 [0, - p  (v)] + c v P y r ~3 (z) �9 [0, - p  (z)] - -  

o Y - - ~  

dr 
+ c v e-"/~ ~ r q)3 (z) �9 [a,p (z)] - -  

o v + r  
and 

Y dr  
2v2(v) ~2 (y) ~ [a,p(v)] + c v P  ~ 27 ~3 ('/7) t~ [ a , p ( z ) ] -  

0 V - - T  

- F*  (v) (17 a) 

for v e [0, 7], and 

dz 
"]- C V e -a/v  ~ "f ~ 3  (Z) ~ [0,  - - p ( ~ : ) ] -  

o v + r  
= F * ( - v ) e - ~ / v ,  

(17b) 

~' dz 
CSo j~ �9 ~ (~),~ [o, - p  ('0] - -  

0 SO - -  ~" 

and 

dz 
+ cs o e -,/so y z ~b 3 (z) ~b [a,p (z)] - F* (So) 

o So q- "c 
(17c) 

dz 
cs 0 ~ z ~b 3 (z) ~b [a, p (z)] - -  

0 S 0 - -  "C 

dz 
+ CSoe-a/s~ - p ( z ) ]  - F * ( - S o )  e -a/S~ 

o S o + Z  
(17d) 

where s o is the positive zero of A (s) and 

c v ~ dz 
(v) = 1 + ~ P ~ ~ ( ~ ) - - .  (18) 

_~ " c - - Y  

We now proceed to develop approximate (but accurate) solutions of Eqs. (17). 

II. The  F N m e t h o d  

As we must  solve our  pseudo problem for enough values of k that  an 
accurate inverse Fourier  t ransformation can be achieved, we clearly seek a 
solution that  can be computed  with modest  effort. Thus, even though an F N 
solution of Eqs. (17) was reported previously [1], we prefer to use here a variant 
of the F N method  that  has some analytical and computat ional  strengths in low 
order. 
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Letting G o [0, - p ( v ) ]  and ~b o [a,p (v)] denote  the desired solutions for the 
case c = 0, we deduce from Eqs. (17a and b) that  

1 Uo ~b-2 Uo ) (19a) q'o [0, - p ( v ) ]  = ~ (v) S(a: v, 

and 

1 Uo ~b-2 Uo), (19b) ~b o [a, p (v)] = ~ (v) C (a: v, 

where 

S (a: x, y) = 

and 

C (a: x, y) - 

1 - -  c - a / x e - a / Y  

x + y  
(20 a) 

for v ~ [0, ~]. The basis functions H~(#) are to be chosen and the constants 
{a~, b~} are to be found so that  �9 [0, - p  (v)] and �9 [a,p(v)] will satisfy Eqs. (17) 
a t N + l  values o f ~ e [ 0 ,  V ] w s  o . 

Substituting Eqs. (21) into Eqs. (17), we find, after letting t 7 = v/7 and 

~1o = So~V, 
N 

Z [a~B~(~) + b~A~(r e -a/(~)] = R 1 (r (22a) 
~ = 0  

and 
N 

Z [b~ B~ (r + a~ A~ (r e-"/(Yr = R 2 (r (22 b) 
~ = 0  

for { = r /e  [0, I] or r = f7o = So~Y, which we hereafter abbreviate as { e P. We 
find that  the known r ight-hand sides of Eqs. (22) can be expressed as 

R, (r = U o t W ( r  74, Uo) 
M 

dx 
+ ~ x r (~ x) IS (a: ~ x, Uo) - S (a: o~ 3, Uo)] - -  

0 X - - ~  

i --e-~m'~) o x ~ ( T x )  C ( a : T x ' U ~  (23a) 

C N 
~0 [a,p(v)] = 4) o [a,p(v)] + ~ 7 ~ - e  (v) Z b~H~(v/7) (21 b) 

~ = 0  

e - "/x _ e - a/y (20 b) 
x - y  

Considering now the general case, c r 0, we write our  approximate  solutions to 
Eqs. (17) as 

C N 
~b[0, - p ( v ) ]  = ~bo[0,-p(v)]  + ~?~b-2(v) ~2 a~H~(v/7) (21 a) 

g = 0  

and 
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and 

R2(~ ) = U o {W(~)C(a: ~ ,  Uo) 

1 dx 
+ ]" x qi (7 x) [C (a: 7 x, Uo) - C (a: 7 4, Uo)] - -  

i - e -  ~/~' ~) 0 x ~b (7 x) S (a" ~ x, Uo) 

where 

(23b) 

~ dx 
W(~) = 2 ! ~b(y x ) d x -  ! x(b(yX)x + ~ .  (24) 

We note also that  the functions A a (~) and B a (~) here are defined as 

1 dx 
Aa (4) = c 7 .[ x ~b (7 x) H a (x) - -  ~ e P ,  (25) 

x + ~ '  0 

1 dx 
B~ (t/) = 22(7q)Ha( t / )  + cYP .[ x O ( T x ) H , ( x ) - - ,  (26a) 

b tl -- x 

for r/~ [0, 1], and 

1 dx 
B a (t/o) = c ~ S x ~b (7 x) H a (x) - - .  (26 b) 

o t/o - x 

N o w  to complete  our F N solution, we consider Eqs. (22) at N + 1 selected 
values of ~, e P, say ~p, fi = 0, 1, . . - ,  N, and solve the linear algebraic equat ions  

N 

E 
a = 0  

and 
N 

Z 
a = O  

[a a B a (~ )  + b a A a (~ )  e-a/(~r = R 1 (~r (27 a) 

[b a B a (~ )  + a a A a (~p) e-a/{~r = R2 (~)  (27b) 

to find the required constants  { %  ba}. We proceed therefore to a discussion of 
the numerical  methods  we use to compute  the functions A a (4) and B, (4) for a 
part icular  choice of basis functions H a (x). 

II1. Computat iona l  aspects  o f  the F N solution 

The ease with which we can evaluate the functions A~ (4) and B~ (4) defined 
by Eqs. (25) and (26), the numerical  stability of the linear system, Eqs. (27), and 
the accuracy of the final solut ion all clearly depend on the choice of basis 
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functions H s (x). As we ultimately must carry out a Fourier inversion by numer- 
ical integration, we use here only small values of N, say N < ~ 5, in order to keep 
the computer-time requirement within a modest limit. With such values of N in 
mind, we choose to use the basis functions Ha (x) = x s which lead to especially 
easily evaluated functions A s (~) and B~ (~). 

We now let r = 7 k and write Eq. (25) as 

1 dx 
As (4) = c 7 5 xS +1 (1 -- r 2 x 2)- 172 ~ '  f E P, (28) 

o x +  " 

from which we can readily deduce the recursion formula, for ~ > 0, 

A~+ I (~) = _ 4 As({) + cT Ms (29) 

where 

1 
Ms = S x s+ l  (1 -- v2 x2)-1/2 dx. (30) 

o 

We can integrate Eq. (30) to find 

1 
M 0 = 7 1 1  - ( 1  -r2)1/2],  (31a) 

1 
M 1 -- ~3r3 [Sin -1 r - r (1 - r2) 1/2] (31 b) 

and the recursion formula 

1 
M s ( ~ + 1 ) r 2 [ C ~ M s _ 2 - ( l - r 2 ) * / 2 ] ,  c~>2 .  (32) 

We have found that Eqs. (31) and (32) provide a fast and accurate way to 
compute the constants M k for k greater than, say, 2. For k < 2 we use the 
series 

M = -  + 2 +  ~ ~ + ~  ~ + ~  ~ + . . . ,  (33) 

that is readily available from Eq. (30), to compute the required {M~}. 
We can now use Eqs. (26) to deduce the recursion formula, for ~ >= 0, 

B=+I(r = { B ~ ( 4 ) - - c T M ~ ,  4 e P ,  (34) 

that provides a convenient way to compute the functions B=(r Of course a 
computation of the A~ (4) or the B= (4) by forward recursion requires the starting 
values A o (4) and B o (4), and thus we integrate Eq. (28) to obtain 

Ao(4)=cT{!Sin-lr-~(l- r2~2)-1/2 In [(1 + l ) Z ( ~ } ,  (35) 
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for r 2 ~2 < ], where 

Z (~) = [1 q- (1 -- r 2 ~2)1/2] [1 -{- r 2 ~ -F (1 -- r2) t/2 (1 -- r 2 ~2)1/2]- 1. (36) 

Now,  as ~ e P yields r 2 ~2 < 1, we can use Eq. (35) to evaluate Ao 0t), t / e  [0, 1], 
and A o (rio); and from Eq. (9) we find we can express B o (~) in terms o f A  o (3), viz. 

B o (~) = 2 A ( ~ )  + A o (4), 4 ~ P ,  (37) 

where 

A ( ~ )  = 1 - _c T a n -  1 k. (38) 
k 

We  have found that  the functions A~ (4) and B, (~) can be evaluated by 
forward recursion wi thout  significant loss of accuracy for all ~ = q ~ [0, 1] and 
4 = I/0 for t/o < 1.2, say; for ~ = t/o > 1.2 we use the series 

AM(~) = c ~ ~-~Mu + I+~MM+2-~MM+3+. . .  (39a) 

and 

BM(~)=c7 MM+~MM+I +~MM+2+~MM+3+'" , (39b) 

for some M > N, and use Eqs. (29) and (34) recursively in the backward  direction 
to find A~ (4) and B~ (~) for ~ = 0, 1, 2, . . . ,  N. 

In regard to the r ight-hand side of the linear system given by Eqs. (27), we 
note that  the integrals in Eqs. (23) must  be evaluated numerically; however,  we 
can integrate Eq. (24) to obtain,  for r 2 ~2 < 1, 

W ( ~ ) = - r l S i n - l r +  4(1 - r 2 4 2 ) - l / 2 1 n I ( l  + ~ ) z ( ~ ) J .  (40) 

We consider now that we can compute  accurately the functions A~ (~), B~ (4), 
R 1 (~) and R 2 (4) for ~ e P, and so to find the constants  {a~, b~} we must  simply 
specify a collocat ion strategy to define the points {4~} and solve the linear system 
given by Eqs. (27). We follow a previous work  [6] and use ~o = ~0 and the zeros 
of the Chebyshev polynomial  of the first kind T N (2 x - 1), i.e., 

1 1 (41) ~ = 2 + 2 c o s [ ( 2 f i - l )  zc/(2N)], f l = l , 2 , . . . , N .  

As the constants  {a~, b~} are now available, we go on to formulate our Four ier  
inversion to obtain  the desired final results. 

IV. The Fourier inversion 

N o w  that the bounda ry  fluxes for the pseudo problem are available we can 
evaluate the Fourier  transforms 7 j (0, -- #, ~b) and 7 j (a, p, ~b) as given by Eqs. (7). 
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Thus  we subst i tute  Eqs. (21) into Eq. (8) and  use the resulting expression in Eqs. 
(7) to obta in  our  F N approx imat ions  to T (0, - # ,  r and  T (a, #, r We write 
these results as 

and 

~, (o, - ~, r = ~q (o, - ~, r + % (o, - ~, r 

T (a, p, ~b) = T o (a, #, ~b) + IIJ 1 (a, ]g, r -]- ~t 2 (a, ]-/, r 

for # e [0, 1] and  r e [0, 2 ~]. Here 

and 

T O (a,/~, r = 6 (/~ - Po) 6 (r -- r e a/v, 

T l(0, - /~ ,  r = c U o [4  

T 1 (a, #, r = c g o [4  

% (o, - ~, r = 4 ~ u (~, r A (U)  Uo ~ (~, r 

7~u04 r S(a: U, Uo), 

7cu(#,r C(a" U, Uo), 

[ c2 ][ 
T2 (a, #, r = 4 7c u (p, r A (U) U o T(~, 0) 

where 

+ ~7Y(~, r  , 

(42 a) 

(42b) 

(43 a) 

(43 b) 

(43 c) 

(43 d) 

(43 e) 

=(/~, r = F (U) S (a: U, Uo) + i-7 [J (U/7) - K ( -  U/7 ) e-"/v], 2 

T(p,  r = C (V) C (a: U, Go) + }7 [K (U/7) - J ( -  V/7) e-~/v], 

N 

x(u ,  r = Z 
a = O  

and 
N 

r ( ~ ,  r = I2 
~ = 0  

[a~E~(U/7) - b~E~(- U / j  e -a/v] 

[b, E~ (U/y) - a~ E~ ( -  U / j  e-a/v]. 

(44 a) 

(44b) 

(44c) 

(44d) 

In addi t ion  we have in t roduced  

F(s) = 1 [1 - A ( s ) ] ,  
C 

(45) 

dx 
<(~) = c~  ~ ~ r  H ~ ( x ) - - ,  

0 X - - Z  
z,(O, 11, 

1 d x  
J(z) = ~ Xr S(a:Tx, U o ) - - ,  

0 X - - Z  
z,(O, 11, 

(46) 

(47 a) 
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and 
t dx 

K(z) = ~ x~b(Tx ) C(a:Tx, U 0 ) - - ,  z ~ (0, 1]. (47b) 
0 X - - Z  

Formal ly  our  results for the distribution of radiat ion exiting the medium are 
now available, and so we write for # e [0, I] and ~b e [0, 2 re] 

1 2r~ oo 
I[0,  Q , ~ ( - # , ~ b ) ] -  (2rc)2 ! ! 7~'(O,-#,~b)e-~k~176176176 (48a) 

and 

- 7 j (a, #, ~b) e -~~  ~~176 k dk d0  (48 b) I [a, Q, (] (#, ~b)] (2 ~)2 ! ! 

where 7 t (0, - #, ~b) and T (a, #, r are given by Eqs. (42). In the following section 
of this paper  we focus our at tention on the case of normal  incidence, tt o = 1, and 
proceed to simplify the Fourier  inversion indicated by Eqs. (48). 

V. The case of normal incidence 

For  the case tt o = 1 we note that Eqs. (43) can be written as 

7'o (a, #, ~b) = 6(#  - 1) 6(~b - ~bo) e -a ,  (49a) 

~ l ( 0 , - # , ~ b ) =  4rcu(#,~b S(a:U, 1), (49b) 

[ C )]c(a:U, 1), (49c) 7~1 (a' #' ~b) = 4 rcu (#, ~b 

c 2 1 

(o, - O) = I4 A (Vi] r + X (49d) 
3 

and 

7~2(a'#'~b)= 4rcu(#,-~)A(U T ( # , ~ b ) + ~ y Y ( # , ~ b  . (49e) 

Now generalizing the result given in Ref. 1 for the case #o = 1 and a ~ 0% 
we note that  we can find components  I o [a, Q, ~ (/~, ~b)], 11 [0, Q, ~ ( -  #, ~b)] and 
It [a, ~, ~ (#, ~b)] of the complete solution whose two-dimensional  Fourier  trans- 
forms ~o (a, #, ~b), 7Jl (0, - #, ~b) and 7/1 (a, #, ~b) are given, respectively, by 
Eqs. (49 a, b and c). We write these results, for # e [0, 1] and ~b c [0, 2 re], as 

~ ( ~ '  ~)] = 2@~ (~(~) ~ (~  -- 1) ~(q~ -- ~0) e -a ,  (50a) Io [a, Q, 

[ c 
I t [0 ,Q ,g2( -c t ,~b ) ]=  4 ~ ( 1 -  #2)t/ 6 ( e - -q} )e  -~ (50b) 
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for 0 < 0 < a (1 - 1 2 2 ) 1 / 2 / 1 2 ,  and 11 [0, q, ~ ( -  12, ~b)] = 0, otherwise, and 

I c 16(ez_~b)e_~e_o(l_~)/(~_~W~ (50c) I~ [a, .o, f~ (12, ~b)] = 4 rc O (1 - 122)  1 /2  

for 0 < ~ < a(1 - #z)~/~/12, and I,  [a, Q, f2 (12, ~)] = 0, otherwise. 
With the components /0  [a, Q, f2 (12, ~b)], I~ [0, if, (2 ( -  12, ~b)] and I~ [a, Q, ~ (12, ~b)] 

given by Eqs. (50), we can now express our desired solutions as 

x [o, e, ~ ( -  12, ~)] = ir~ [o, o, ~-t ( -  12, ~)1 + t~ [o, q, ~ ( -  12, ~)] 

and 

(51 a) 

I [a, Q, ~ (12, ~b)] = I o [a, Q, ~ (12, ~b)] + I~ [a, Q, ~ (12, ~b)] + 12 [a, e, ~ (12, ~b)] 

(51 b) 
for 12 e [0, 1] and ~b e [0, 2 7r]. Here the Fourier  inversion integrals 

and 

I2 [0, Q, ~ ( -  12, 4)] = - -  
] 2~ oo 

(2~) 2 ! ! ~P2(O,-12,~)e-~ke~176 (52a) 

1 2~ co 

I2 [a, Q, g? (12, ~,b)l - (2rc)2 ! ! ~2(a, 12,0)e-~k~176176176 (52b) 

are to be evaluated by numerical  methods.  
As a first numerical  implementat ion of our developed solutions, we wish 

to evaluate Eqs. (52) for the special case # = 1; for this case we note that 
T2 (0, - 1, ~b) and tP z (a~ 1, ~b) are independent  of ~, and so we can integrate Eqs. 
(52) to obtain 

and 

1 
12 [0, Q, ~ ( -  1, ~)] = 2 ~  .1 ~v2 (0, - 1, ~) Jo (k ~) k dk 

b 

1 
12 [a, Q, f l  (1, ~b)] = 12-~ ] ~u2 (a, 1, ~b) J0 (k 0) k dk,  

(53 a) 

(53b) 

where Jo (x) is used to denote the zero-th-order Bessel function of the first kind 
[7]. Making  use of Eqs. (49) and (44), we write Eqs. (53) as 

I 2 [0, Q, Y2 ( -- 1, ~b)] = ~ ~ M (x/Q) Jo (x) dx  (54 a) 
o 

and 

12 [a, Q, ~ (1, ~b)] = ~ ~ N (x/c) Jo (x) dx (54 b) 
b 
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where 

k 
M(k) = ~ {F(1)(I  - e -2") + y [ J ( 1 / y ) -  K ( -  l/y) e -a + X(l,~b)]}, 

(55a) 

k 
N(k) = ~ {2aF(1) e -~ + ' y [ K ( l / 7 ) -  J ( -  l/~')e -a + Y(I, ~)1}, (55b) 

l l t l )  

N 

X(1, ~b) = ~2 [a~E,(1/7) - b ~ E , ( -  1/7) e -a] 
o~=0 

and 

N 

Y(1,~b) = • [b~E~(1/y)- a~E~(-  1/7) e-a] .  
c t=0  

(56 a) 

(56b) 

VI.  N u m e r i c a l  results  

Proceeding with our  solution for the case #o = tt = 1, we note from Eqs. (55) 
that  

n (1 - e -2a) M ( o o )  = 

and 

(57 a) 

N (oo) = nae  -a, (57b) 

and so we choose to write Eqs. (54) as 

C 2 

- (1 - e -  2a) [1 - D (~)1 (58 a) I 2 [0, •, ~ ( -  1, ~b)] 32 n 

and 

C 2 

12 [a, Q, O (1, ~b)] - 16n0  a [e - a -  E(0)I (58b) 

where 

~[1 2 .  e_2a )_ 1M(x /o ) l Jo (x )dx  D = - - ( 1  - 
0 7C 

and 

E (e) = e-a N (x/Q Jo (x) dx.  
0 7 c a  

(59 a )  

(59b) 
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The integrals J(+_ 1/7) and K(_+ 1/7) appearing in Eqs. (55) must be evalu- 
ated by numerical methods; however we have available, from Ref. 1, 

1 I ~ - ~ ( 1 - - k 2 )  1/2] 
F ( 1 ) = ~ ( 1 - - k 2 )  -1/21n~ --(1 k2)l/ej, k < l ,  (60a) 

F ( I ) = I ,  k = l ,  (60b) 

and 

F ( l ) = ( k  2 - 1 )  - 1 / 2 T a n - l ( k  2 - 1 )  1/2 , k > l .  (60c) 

Finally we note that, as the definition given by Eq. (28) for A~ (4) can be extended 
to include any ~ > 1, we write E~ ( -  I/7) = As (1/7) and use the technique discus- 
sed in Sect. III to compute E ~ ( -  t/?); we also compute E~(1/?) from the recur- 
sion formula 

G +  I (t/?) = (i/7) G ( I / ? )  + cT (61) 

For i/? < 1.2 we use Eq. (61) recursively forward, with the starting value 

c k2)- i/2 [(1 + k2) 1/2 - (1 - 1/2] 
Eo (1/7) = ~ Tan -1 k + c (1 - In (i + k2) 1/2 + (1 k2)l/2J" (62) 

For 1/7 > 1.2 we use Eq. (61) recursively backward, using 

E~t(1/7) = -  c72 [MM + 7MM+~ + 72M~t+2 + ""] (63) 

for some M > N to start. 
We would now like to report a first demonstration that our formalism, 

developed in detail for the case/~o =/~ = 1, can in fact be evaluated with modest 
effort to yield the desired intensities 12 [0, Q, ~'~ (-- 1, q~)] and 12 [a, Q, ~ (1, q~)]. We 
consider the case c = 0.8 and a = 1.0 and note from various orders of the F N 
approximation, 0 < N < 20, that 

R (k) = I _ _2 (1 - e -  2a)-1 M (k) (64 a) 
7~ 

and 

1 
T (k) = e - a _ __  N (k) (64 b) 

)-ca 

are both positive and monotonically decreasing functions of k. We therefore use 
the method reported by Longman [8] to evaluate, for selected values of ~o, the 
integrals defined by Eqs. (59). Longman's method [8] is based on using the zeros 
o f J  0 (x) as break points to subdivide the integration interval [0, oo); subsequently 
an Euler transformation [9] is used to sum the resulting slowly converging series 
in a more rapidly convergent manner. 
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Table 1 
Components of the Exit Fluxes. 

0 12[0, Q, f~(-  1, ~)] I2[a, e, ~(1, O)l 

0.001 5.4902 4.6781 
0.01 5.3874 ( -  1) 4.6264 ( -  1) 
0.1 4.6331 ( - 2 )  4.1430(-2) 
0.2 1.9915 ( - 2 )  1.8281 ( - 2 )  
0.4 7.4794 ( - 3) 7.0846 ( -  3) 
0.6 3.79t0 ( - 3) 3.6552 ( - 3) 
0.8 2.1804(-3) 2.1251 ( - 3 )  
1.0 1.3470 ( - 3) 1.3219 ( - 3) 
1.2 8.7174(-4) 8.5945 ( - 4 )  
1 .4  5.8301 ( - 4 )  5.7661 ( - 4 )  
1.6 3.9959 ( - 4) 3.9609 ( - 4) 
1.8 2.7913 ( - 4) 2.7715 ( -  4) 
2.0 1.9797 ( - 4 )  1.9681 ( - 4 )  
2.2 1.4217 ( - 4) 1.4147 ( - 4) 
2.4 1.0316 ( - 4 )  1.0273 ( - 4 )  
2.6 7.5513 ( -  5) 7.5240 ( -  5) 
2.8 5.5692 ( -  5) 5.5518 ( -  5) 
3.0 4.1343 ( - 5) 4.1230 ( - 5) 
4.0 1.0031 ( -  5) 1.0017 ( -  5) 
5.0 2.6403 ( -  6) 2.6402 ( -  6) 

We list in the accompanying table our numerical results deduced from the 
formalism herein discussed. To establish our belief that the reported results are 
correct to within _+ 1 in the last digits given, we have used several orders of the 
F N approximation, 0 < N < 20, to compute the functions R (k) and T (k) and we 
have used several variants [defined by the specific zero of Jo (k) where we first 
employ the method and the total number of terms in the series we use] of 
Longman's method to evaluate the improper integrals given by Eqs. (59). Finally 
we have gained additional confidence in our reported results by finding agree- 
ment (to, say, two significant figures) with independent Monte Carlo calculations 
[10, 11]. 

The results we report in the table represent, of course, only a partial solution 
to the classic searchlight problem, and thus we hope to be able to report more 
general numerical results, 12 [0, Q, 12 ( - #, ~b)] and I 2 [a, ~, ~ (~, q~)] for all/~ and 
/~0, in future works. 
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Abstract 

Integral transformation techniques and the F N method are used to formulate a general solution 
to the classic searchlight problem for a finite plane-parallel layer. The special case of a normally 
incident beam is then considered, and the resulting expressions for the intensities exiting the two 
surfaces in the normal directions are reduced to one-dimensional inversion integrals which are 
evaluated to yield accurate numerical results for a selected case. 

Zusammenfassung 

Integrale Transformationstechniken und die F N Methode werden benfitzt um eine generelle 
L6sung ffir das klassische Durchdringungsproblem einer endlichen plan-parallelen Schicht zu for- 
mulieren. Der Spezialfall eines gew6hnlich zuf/illigen Strahles wird dann betrachtet und die sich 
ergebenden Ausdr/.icke fiir die aus den zwei Oberflfichen in Normalrichtung heraustretenden 
Intensit/iten werden auf eindimensionale Inversionsintegrale reduziert, welche ausgewertet werden 
um genaue numerische Resultate ftir einen bestimmten Fal! zu erbringen. 
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