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Abstract--Explicit expressions for the singular components of the solution to the searchlight 
problem are reported. 

1. INTRODUCTION 

In a recent study I of  the classical searchlight problem in radiative transfer, 2-5 Dunn and 
Siewert found, for the case of  a normally incident beam, explicit results for the singular 
components  of  the complete radiation field on the surfaces of  a finite plane-parallel layer. 
Here we develop the equivalent results for the case of  a beam incident in an arbitrary 
direction. We follow previous works basic to the searchlight problem 1'a'5 and seek, in 
general, a solution of  

p _~z i(Z, p, fl) + o~ . (9_ I(z, p, ft) + I(z, p, fl) ~ I(z, p, 12') d12' (1) 

subject to the boundary conditions 

1 
/ [ o ,  p ,  1 2 0 , ,  q , ) ]  = - - .Lrp 

and 

I[a, p, 12(-#, ~b)] = 0 

(2a) 

(2b) 

for # E [0, 1 ] and 4~ E [0, 21r]. Following Refs. 1, 4 and 5, we note that z ~ [0, a] and 
p, which lies in the x - y  plane, locate in optical units the position in the homogeneous 
medium and fl = 12 (#, ~b), with p = cos O, is a unit vector that defines the direction of  
propagation (see Fig. 1). In addition o~ is the projection of  12 in the x - y  plane, 12o = 
12o (po, 4~0) defines the direction of  the incident beam and c < 1 is the mean number  of  
secondary particles per collision. 

As the boundary condition given by Eq. (2a) is expressed in terms of  generalized 
functions, we find that the boundary solutions we seek, I[0, p, 12(-#, ~b)] and I[a, p, 
12(#, ~b)] for p E [0, 1] and ~b ~ [0, 2r] ,  also have components that are generalized 
functions. Here we report explicit expressions for these singular components. 

2. SINGULAR COMPONENTS 

In their analysis of  the searchlight problem as defined by Eqs. (1) and (2), Dunn and 
Siewert I expressed, for p E [0, 1] and ~ E [0, 2~r], the two-dimensional Fourier 
transformations 

• ( O , - # , ~ ) =  f f I [O ,o ,O( -# ,~ ) l e '~"dp  (3a) 

and 
/ ,  I" 

• (a, p, ~) = J J I[a, p, fl(p, ~)1 C ]''p dp (3b) 
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Fig. 1. The geometry for ~, w, p and k. 

Y 

as  

and 

where 

• (0, - u ,  ~) = ~ ( 0 ,  - u ,  ~) + ~z(O, - u ,  ¢) (4a) 

• (a, u, #) = ~o(a, t~, ~) + ~l(a,  #, ~) + q/z(a, #, q~) (4b) 

• o(a, u, ~) = ~(t~ - uo)6(4~ - q~o) e -a/U (5) 

is the transform of  the uncollided beam, ~Iq(O, -~ ,  ~) and ~ ( a ,  ~, $) are the transforms 
of the once-collided exiting intensities and ~2(0, -t~, 4~) and #2(a, ~, $) are the transforms 
of exiting intensities resulting from two or more scattering events in the layer. Here 
U = u / u ( u ,  4)), 

and 

u(#, 4)) = 1 - ik(1 - #2)1/2 COS ((~ - -  ~) ,  

~1(0,-U,  ~ ) =  cUo(41ruOz, ~))S(a: U, Uo) 

(4' ) qll(a, ~, 4~) = cUo 7ru(#, 4~) C(a: U, Uo), 

for ~ ~ [0, 1] and ~b E [0, 2~r], where Uo = #o/U(~o, ~bo), 

and 

(6) 

(7a) 

(7b) 

1 - e - a / x  e -a/y 
S(a: x, y) = (8a) 

x + y  

e - a / x  _ e - a / Y  
C(a: x, y) = (8b) 

x - - y  
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The complete  solutions are given by  the inverse Fourier  t ransformations 

l f / f ?  110, O, fl(-~t, 4))] = (2~.)2 ~(0 ,  -/~, 4)) e-ik'~°~('~-~)k dk d~b (9a) 

and 

l[a, O, fl(g, 4))1 (2~r)2 . ~ (a ,  ~, 4)) e-tkP~°~(~-~)k dk d~, (9b) 

for # ~ [0, 1] and 4) ~ [0, 27r]. 
N o w  substituting Eqs. (4) into Fxls. (9), we write, for u E [0, 1 ] and 4) G [0, 2~r], 

and 

2 

110, p, f l ( - u ,  4))1 = ~ /~[0, O, ll(-t~, 4))1 (10a) 
t~=l 

2 

l[a,  o, fl(u, 4))] = Z /~[a, P, r io  t, 4))], (lOb) 
a=O 

where the singular 

G[a,  a, fl(#, 4))] = 1 ~[p _ a(l  - -  $/,o2)1/2///,0]~(ot - -  4))~(/,t - -  /d ,o)~(4 ) - -  4)0) e -a/v* (11) 
P 

is the uncoll ided componen t  of  the solution. The componen t s  1210, o, f l ( - # ,  4))] and 
/2[a, 0, fl(/z, 4))] in Eqs. (10) represent t ransforms of  #2(0, -/z,  4)) and 92(a, /~,  4)) and 
thus, as previously discussed, I are to be evaluated by numerical  methods.  However ,  we 
have deduced singular componen t s  1~[0, o, t2(-/~, 4))] and 11[a, O, fl(#, 4))], for # E [0, l] 
and 4) E [0, 2,r], whose Fourier  t ransforms yield 91(0, -~t, 4)) and 91(a,/~, 4)). 

W e  first consider the surface at z = 0 and express, for ~t E [0, 1] and 4) ~ [0, 2,r], the 
singular componen t  of  the exiting intensity as 

czo )~[a  - x(z, 4))] e -"%+")/~"'*) 
1 I [ 0 ,  p ,  a ( - - U ,  4))1 = 4 " / 1 " ~ 0 ~ ,  4)) (12a) 

for 0 < p _< aD(/z, 4))/(#uo) and 

1110 ,  p ,  • ( - - / z ,  4))] = 0 (12b) 

for p > aD(/z, 4))/(#~o). Here  

DOt, 4)) = [/~2(1 - -  # 0  2) "~" #o2(1 - / z  2) + 2/~/~0(1 - / z2 )1 /2 (1  - -  1£02) 1/2 COS (4) - -  4)0)] 1/2 (13) 

and the angle X(#, 4)) is such that 

and 

cos X(/z, ~) = [/z(1 - m2) 1/2 cos 4)0 + / z o o  - /£2)1/2 COS ~]/D0./, ~) (14a) 

sin x(~, ~) = [/z(1 - / . / 0 2 )  1/2 sin 4)0 + ~o(1 - #/2)1/2 sin 4)]/D0z, 4)). (14b) 

In order  to express our  result for the second singular componen t  of  the intensity exiting 
the surface z = a [the first is given by  Eq. (l 1)], we first define 

E ( j  p. (p ,  c0 -- p2 + (1 -- N 2) - 2 p(1 - -  /./02) 1/2 COS (O~ - -  ~0)1 I/2 (15) 
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and the angle at,(p, a) such that 
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and 

COS at,(P, at) = [p cos at -- ( ~ ) ( 1 - -  #02)l/2 cos dPo]/P,(P, at) (16a) 

s i n a t . ( p , a ) = [ p s i n a t - ( ~ ) ( 1 - # o 2 ) l / 2 s i n ~ o ] / p , ( p ,  at). (16b) 

N o w  we can write, for # ~ [0, 1 ] and ~b E [0, 2~r], 

11[a, p, fl(#, ¢)] 

= (  c~  ) e_a/.o~[a.(p, at) _ ×(_#, ¢)] e_p.~p,~×,,o_~)/nt_~.~) 
41rp.(p, at)D(-#, ¢) (17a) 

for 0 < p.(p,  at) < t /D( -# ,  t~)/(##o) and 

Ii[a, p, fl(#, ~b)] = 0 (17b) 

for p.(p,  a )  > aD( -# ,  ~)/(##0). 
We note  that  the expressions given by Eqs. (1 1) and (17) reduce for the special case 

#o = 1 to the results reported in Ref. 1. 

3. COMMENTS 

TO conclude  this note  we record a few remarks concerning this work: (i) Though  we 
have not  been able to obtain Eqs. (12) and  (17) directly f rom Eqs. (9), we can readily 
show that  the Fourier  t ransformat ions  o f  Eqs. (12) and (17) yield Eqs. (7). (ii) While the 
presence o f  the singular c o m p o n e n t  Io[a, p, fl(#, ¢)] can be immedia te ly  seen, it is perhaps 
only  on second thought  that  it becomes  apparent  that  there can be addit ional singular 
componen t s  on both  surfaces. (iii) It is, o f  course, essential to  remove all singular 
componen t s  o f  the desired solution before a t tempt ing any  numerical  inverse Fourier  
t ransformat ion  calculations (this was the basic mot iva t ion  for this work). (iv) Finally, it 
is clear that  Eqs. (12) and  (17) can be multiplied by an appropriate  scattering probabili ty 
to  obtain  analogous results for the case o f  anisotropic scattering. 
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