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Abstract-The one-speed critical problem is solved for a two-region sphere, where the total cross 
section is common, but different multiplication parameters in the two zones are permitted. A trans- 
form procedure is used to reduce the integral transport equation to a pseudo problem in slab geometry. 
This, in turn, is solved by Case’s method of normal modes. The analysis leads to a Fredholm integral 
equation for the only unknown expansion coefficient. In addition, a critical condition, from which 
the allowable parameters of the problem are to be determined, is obtained. 

1. INTRODUCTION 

THE normal-mode expansion technique introduced by CASE (1960) has frequently 
been used to develop exact solutions to problems in neutron transport theory and also 
to radiative transfer problems in astrophysical applications; see, for example, CASE 
and ZWEIFEL (1967), SIEWERT and ZWEIFEL (1966), SIEWERT and FRALEY (1967), and 
MCCORMICK and KUSEER (1965). Since the class of problems that have been solved 
explicitly has basically been restricted to those involving plane symmetry, there is a 
need for more comprehensive solutions to problems with spherical or cylindrical 
symmetry. 

DAVISON (1945), in one of his classic papers, found the eigenfunctions of the 
homogeneous one-speed transport equation in spherical geometry. Hence he was able 
to construct an exact solution to the infinite-medium point-source problem. More 
recently MITSIS (1963) developed an ingenious transform technique which he used to 
generate solutions to single-region critical problems for spheres and cylinders. 
LEONARD and MULLIKIN (1964) as well as ERDMANN and SIEWERT (1968) have also 
solved several single-region problems for spheres. 

Inherent in the above, however, is the need to note a similarity between the 
spherical problem of interest and a judiciously chosen slab problem. Once a cor- 
respondence between spherical and slab problems has been established, the solution 
to the latter can usually be constructed. Though similarities exist between transform 
procedures already successfully employed, the technique for solving exactly an 
arbitrary problem in spherical geometry is yet desired. 

The problem considered here is a special case of a general two-region sphere; 
viz. we assume that the total cross sections in the two zones are identical, though we 
do allow different multiplication properties in the two regions. It is thought, however, 
that the problem considered here is the most meaningful extension to two-region 
spheres for which semi-analytical solutions can currently be obtained. 

In Section 2 we indicate a method by which the spherical problem of interest may 
be reduced to a corresponding pseudo-slab problem. In Section 3 the singular eigen- 
function expansion technique (CASE, 1960) is used to obtain the necessary critical 
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condition as well as a Fredholm integral equation for the remaining unknown ex- 
pansion coefficient. Finally, the last section is devoted to an investigation of special 
cases and approximations that lead to considerably more tractable solutions. 

2. THE TRANSFORM TECHNIQUE 

We seek the sohttion to the integral transport equation for the neutron density 
in a spherical medium consisting of an inner core and a surrounding outer blanket; 
the two regions are assumed to have the same total cross section, but different multi- 
plication properties are allowed. Within the assumptions of spherical symmetry, the 
one-speed transport equation for an isotropically scattering medium takes the form 

rp(r) = ; s o R1 ~P(O(E,(I r-tj)-E,(r+t)jdt 

c2 

s 

RS 

+T RI 
~P(+OI(I~ - 4) - El0 + t)} dt, 0 I r i; R2 (1) 

where ci denotes the mean number of secondary neutrons per collision in the i-th 
region; RI and R2 are the radii of the inner and outer regions, respectively. In 
addition, we note that 

s 

1 
E,(x) = e-ZIP diu . 

(2) 
0 P 

As MITSIS (1963) did for single-region spheres, we extend equation (I) to include 
negative r, -R2 I r s R,, by defining p(-r) = p(r); thus 

rp(r) = “z” 
s 

f’ tpWMr - tl) dt 
I 

tp(t)-&(lr - tl) dt + “2’ 
s 

_“d. 
1 

R2 

+ ;s,, tp(t)E,(lr - tl) dt, -R, < r I R,. (3) 

Substituting the definition of El(x) into equation (3) and interchanging the order of - - 
integration, we obtain 

r&9 = i s 

1 
_-l Yi(r,p)dp, i = 1 or 2, 

where pi(r) is the density in the i-th region; in addition, we have defined 
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Selecting similar definitions for negative r, we find that Yi(r, p) satisfies the transport 
equation for plane geometry, i.e. 

aYi 
,u x (r, p) +yk, p) = ; /:l’I”&, p) dpu, ‘E(--R,, R,) 

and PE(-1, 1). (6) 
The boundary conditions which uniquely determine the solution of equation (6) may 
be found from equations (5) and their analogues for negative r: 

y,(r, p) = --yPk-r, -p), rE(-%, &), rUE(-I, 1) (7a) 

y#,, /J) = y,(R,, /& rUE(--I, 1) (7b) 
and 

Y&G, -/J) = 0, IUE(% 1). (7c) 

We turn now to the solution of equation (6), from which the density for the considered 
problem may readily be obtained, as indicated by equation (4). 

3. SOLUTION TO THE PSEUDO-SLAB PROBLEM 
As was previously shown, we must solve equation (6) subject to boundary con- 

ditions given by equation (7). It is sufficient, however, to consider only positive r and 
the conditions, 

Yp1(0, lu) = -Y,(O, -& IUE(--131) @a) 

Yl(R,, p) = Y,(% p), F(- 1, 1) @b) 
and 

%(R,, -p) = 0, ,@, 1) (8~) 

with the proviso that the solution for negative r (although it is not needed explicitly) 
is to be obtained in the manner indicated by equation (7a). 

Were it not for the anti-symmetry condition, equation @a), the solutions for 
YJr, p) would be those found by KUSZELL (1961) for a finite two-region slab. This 
condition clearly indicates that a negative flux is allowed; hence, the terminology 
‘pseudo-slab problem’ is used. The solution here is constructed in a manner similar 
to that used by KUSZELL (1961); we thus write the solutions in terms of the normal 
modes introduced by CASE (1960), i.e. 

Y,(r, p) = A+[@(p)e-‘/“ol - $?(p)e”“ol] + 
s 

’ A(v)[&l)(p)e-r’” 

- qh,,(,u)er~“] dv, 0 I r I R, (9a) 
and 

Yz(r, p) = B+~(:)(p~e-~~y~~ +B_qP(p)e’~“~2 + 
s 

’ B(v)@‘(,u)e-‘I” dv, 
-1 

Here 
RI I r I R,. (9b) 
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A,(Y) = 1 - civ tanh-l (v) 

and voi is the positive zero of 

1 

(lh) 

A,(z) = 1 - ciz tanh-l - . 
0 (104 
Z 

In addition, the symbol P indicates that integrals involving these functions are to be 
evaluated in the Cauchy principal-value sense, and 6(x) denotes the Dirac delta 
function. 

The first boundary condition is clearly satisfied by equation (9a). The remaining 
expansion coefficients, A+, A(v), B_, and B(v) are to be determined from the second 
two conditions. (One parameter is arbitrary; we take B+ = -1.) Application of 
the free-surface boundary condition yields 

s 1 
+(2)(p)e-R21Y02 - B(v)epRa’” $f? (p) dv = B_ eRa’“o* #) (p) 

0 

s 1 

+ B(-v)eRa” $i2) (p) dv, &O, 1). (11) 
0 

The half-range completeness theorem (CASE and ZWEIFEL, 1967) states that equation 
(11) is a valid expansion; B_ and B(-v) can thus be found in terms of B(v), v >0, 
by taking half-range scalar products (KuS~SER et al., 1964). We find 

_e_Rzlvo2 
B_ = 

s 
’ Q) wZ(lu)@ (p) dp 

O 
@a) 

and 

B(-v) = Wb) 

where 

s 

1 
F(p) e $!?(p)e-R~'Uo2 - B(v’)e- R2’Y’ $‘_“i, (,u) dv’. (13) 

0 
Also 

W,(v) = 
c2v 

20 - C2)(% + v) &J-y) ' 

and 

x2(z) = Gz exp (xtad&!!kJ~ 

gtci, v> = 4 (4 + ( 2 (y)“y, i=lor2. 

(144 

(14b) 

(14c) 

If B(v) were known, B_ and B(-v) would also be determined, as is indicated by 
equations (12). 

Considering the final boundary condition, equation (8b), we are led to the following 
full-range expansion : 

G(p) = A+[+y) (,u)e-R1’“ol - #? (,u)e Rl’vol] + I1 A(v)[&l) (p)eFRJY 

- +“‘& Y eRll’] dv, ,&-I, I), (1% 
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where 

G(P) ,” -4:) (p)e-RIIVaa + B-#(J) (p)eW"oa + J’, B(v)#,~) (,u)esR1” dv. (16) 

In order for equation (15) to be a valid full-range expansion, two restrictions must be 
imposed on the expansion function, G&), viz. 

s 

1 1 
pG(p)+y) (p)dp = e-2Rhl ~%4d'l'o1)+ (174 

-1 s -1 
and 

s 

1 
,uG(,u)@) (,u) dp = e-2Rl’” 

-1 s 
’ PGQ#‘~? 8 dv, VE(0, 1). (17b) 
-1 

Once the above two conditions have been satisfied, the expansion coefficients A+ and 
A(v) are found trivially by taking, this time, full-range scalar products (CASE and 
ZWEIFEL, 1967). Thus, 

eRJ”,l 1 
A+ = - 

s N+ -1 
PGO+':)Cu)dP W) 

and 

f$c,, v) 
s 

1 
A(v) = /44b?’ Q dp (18b) 

-1 

where 

. (W 

The restrictions on G(,u) given by equations (17) form the basis for the remaining 
analysis needed to complete the solution we seek. The first, equation (17a), is the 
critical condition from which the allowable parameters of the problem (c,, c2, RI and 
R2) are to be determined. Equation (17b), as shall be shown, can be reduced to a 
Fredholm integral equation for the remaining unkown expansion coefficient, B(v), 
v > 0. The function G@), we note, may be written explicitly in terms of only B(v), 
v > 0, by utilizing equations (12) and (13). However, since at this point to do so 
only complicates the equations involved, we prefer to keep B_ and B(-v), v > 0, in the 
equations until the majority of the simplifying manipulations have been performed. 

To reduce equations (17) to an explicit form, we make use of the cross-product 
integrals, 

s 

1 

_lp#'Q@t,ddp = E'&ty + W5)4(t - 07, (19 

where 

MO = W)&(~) + f CrCsP, t = -+yol or 4-1, l), 

5’ = fyo2 or ~(-1, l), 
to write equation (17a) as 

s 

1 
--H(R,, ~01, ~02) + B-W--R,, ~01, ~02) = - dv {WWUL VOI,$ 

0 
+N-+M--RI, ~01, r)], W-9 
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where we have defined 

H&, 5, t’) = (c2 - cd ewRll[’ 6’ A. [E’ cash RI/5 

+ 5 sinh &/&I + M(t)&5 - 0. 
In a similar manner, we write equation (17b) in the form 

s 

1 
-H(R,, Y’, vo2) + B-H(-RI, Y’, v,,J = - +[B(dH(R,> ~‘9 4 

+ B(uS)H(-RI, y’is ?)I, y’, ‘I > 0. (21) 
The final form of the critical condition may be determined by substituting the 

expressions for B_ and B(-_r) given by equations (12) into equation (20). In ex- 
panded form, equations (12) become 

and 

where 

(22a) 

B(-7) = F((r, ~02) - 
s 

WB(r')% rl?, Wb) 
0 

F(;(E, 5’) = 4 e-Rz15 vo2 + 5’ 
c2(l - c2W2(-5)g(c2, 0(~02 + 5)eeRziS' x,(-F) m F 

( 1 
and 

R,’ = R, + 6, 

6 being the Milne problem extrapolated endpoint (CASE and ZWEIFEL, 1967). 
Effecting the above substitutions, we write the critical condition as 

s 

1 
-H&, vol, vo2) + e-2Ri'"oz H(-R,, vol, vo2) + dTJH(-RI, vo19 ?@I% yo2) 

0 

s 1 
- d$W--R,, ~01, $)F(r’, V) 

0 

The equation from which B(q) is determined follows similarly 

s 1 
dyB($e-R1’q T(r, Y’) = e-RIIY’ (WL ~‘3 ~02) + J(yo2, y'> 

0 

s 1 
- dy’B($) [eWRl’“’ y &, e-Rl’q’ + J(q’, v’)]> (24) 

0 

where 

45, F) = 
e-RQ2(-t)t 

eRz’“oa X2(~02)~02 H--R,, E’, q,‘o2) 

- [ dqeRl/V ry eRllt’ & + eeRIIC’ T(q, E’)] r;(q, i) (25a) 
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and 

We note that equation (24) is a singular integral equation for B(q). We follow a 
procedure similar to that used by KUSZELL (1961) for a reIated slab problem to 
reduce equation (24) to the form, 

B(q) = - 
s 
o1 dq’B($)e(q, Y’) (e-sRJ” ‘q & e -fiJrl’ + J(q’, y’)e--Rllv’) 

+ -UC y’> (e- R1’“’ H(R,, v’, vo2) + e- Rl’“‘J(~O’OZ, v’)> . (26) 

Here e(,, Y’) operates on a functionf(G) as follows: 

where y(y) is the appropriate half-range weight function used by KUSZELL (1961). 
Equation (26) is a Fredholm integral equation for B(q) for which closed-form 

solutions are not available. However, a numerical procedure should be applicable to 
effect a solution to any desired degree of accuracy. Once B(q) and the critical para- 
meters determined by equation (23) are known, the other coefficients follow readily 
from previously derived results. In the subsequent section we analyse these results 
by invoking several approximations which provide a check on the validity of the 
results obtained in this section and render an insight into the physical aspects of the 
problem. 

4. ANALYSIS OF RESULTS 
From the results of the previous section it is clear that the expansion coefficients 

cannot be written in explicit form. However, the formulation of the Fredholm 
integral equation for B(q) permits a systematic approximation to the sohrtion, 
whereby any desired degree of accuracy may be obtained. Analogous to the well- 
known Neumann series method, a technique may be employed which uses the free 
term in equation (26) as an initial estimate of B(q); an iteration scheme may then be 
used to improve the accuracy. Because of the complexity of the integrals involved, 
analytical results become unwieldy for the first-order correction; thus a numerical 
procedure is preferable. 

A zeroth-order solution may be obtained, however, permitting analytical formu- 
lations for the coefficients and providing an insight into the basic form of the solution. 
In this approximation we take B(q) = B(-_r) = 0. From equations (1Sa) and (22a) 
the discrete coefficients take the forms (AC = c, - c,) 

B_ = e-%l+‘oz (28a) 
and 

A+ = _ g e-R;lvoz eRJvo1 :? [yoyo2 sinh AR/vo2 + vol cash AR/vo2], (28b) 
+ yo2 VOl” 

where AR = R, -/- 6 - R,. 
The critical condition reduces to the diffusion theory results, i.e. 

1 1 - 
vo1 

coth R1/voYO1 = - - coth AR/V~~ 
vo2 

(29) 
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where yoi2 is analogous to the buckling in the i-th region. Also, the diffusion theory 
density is obtained from equations (9): 

pr(r) = - A+ 
sinh r/~,,r 

r 

and 
p2(r) = -e-R:lu 2 o* sinh (R,’ - r)/vo2. W’b) 

We note from equation (30b) that the density goes to zero at the extrapolated 
boundary. In addition, using equations (30), we find 

(31) 

For weakly absorbing media, the right-hand side of equation (31) approaches one; 
hence, the density is continuous at the inner boundary, and diffusion theory results 
thus provide a good approximation to the true transport solution for this limiting 
case. 

As previously mentioned, the next higher order approximation, i.e. letting B(q) 
equal the free term in equation (26), leads to results too cumbersome to permit a 
simple statement of the physical implications. However, as a check on the validity of 
the analytical results, we let c2 approach c1 which reduces equations (23) and (26) to 
those obtained by MITSIS (1963) for homogeneous spheres. 

In conclusion, even though the expansion coefficients cannot be determined 
explicitly, the reduction of the initial integral equation for the density to a Fredholm 
equation for the expansion coefficients has greatly enhanced the possibility of ob- 
taining a rapidly converging solution. The integrals involved in the final formulation, 
although formidable analytically, present no special problems for modern day 
computer techniques. Numerical calculations for this problem have been initiated 
and will be reported at a later date. 
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