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Almtraet--Elementary considerations are used to develop a computational method for establishing the 
discrete spectrum for a general multi-group model basic to radiation transport. 

I N T R O D U C T I O N  

We consider here the multi-group transport equation written as 

~Z0 =0L f l  # ~(z, #) + S~P(z,/~) = ~] Pt(#)Tt Pt(# ' )~ (z , /~ ' )  d#' (1) 
I -1 

where the Legendre polynomials are denoted by Pt(/~) and the transfer matrices Tt are such that 
particle transfer (by, say, scattering and/or fission) between and within all energy groups is allowed. 
In addition, the elements ~k~(z, #), •2(2,/ . t)  . . . . .  I[IM(Z, la) of the M-vector ~(z, #) are the group 
angular fluxes, the elements Sl, s2 . . . . .  SM of the diagonal S matrix are the group total cross 
sections, z is the position variable measured in cm and/~ is the direction cosine, with respect to 
the positive z axis, that defines the direction of motion. 

In order to use dimensionless units we introduce an optical variable x = ZSmin, where Sm~. is the 
minimum of the set {s;}, and rewrite equation (1) as 

rxx  # ~'(x, #) + ,~ (x , /~ )  = ~ Pt(#)Ct Pt(l~ ' )~(x,  #') d/~' (2) 
1 1 

where the diagonal matrix Z has entries ai = si/Smin and where the dimensionless transfer matrices 
are defined by Ct = Tt/smin. 

THE DISPERSION FUNCTION 

In order to find elementary solutions of equation (2) we start by substituting 

~(~ :x, g) = exp( -x /~)~(~ ,  g) 

into equation (2) to obtain 

where we have defined 

L 
(~27 - #I)O(~, #) = ~ ~ PK(IZ)CkGk(~)M(~) 

k=0 

Gk(~)M(~) = ~ ,  Pk(/~)@(~, #) d#. 

(3) 

(4) 

(5) 
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We can now multiply equation (4) by Pt(#) and integrate over/~ from - 1  to 1 to find 

[~htGt(~) - (l + 1)Gt+ t (~) - IGt_~ (~)]M(¢) = 0 (6) 

where we have defined 

ht = (21 + 1)Z - 2Cl. (7) 

We now define 

so that 

G0(l) = I (8) 

f # (¢ , /~ )d#  = M(~). (9) 
1 

We thus consider the polynomial matrices Gt(~) to be defined for all ¢ by equation (8) and the 
recursion formula 

ChtG,(~) = (l + 1)G,+ ~ (~) + lG,_1 (¢) (10) 

for l~>0. 
For the discrete spectrum ~ $ [ - 1 ,  1], we can solve equation (4) to obtain 

¢ ( ~ ,  #)  = ¢(¢2~ -- # I ) - IG(~ ,  # )M(~)  (11) 

where 

L 

G(~,/z) = ~ C, Gt(~)P,(#), 
/ = 0  

and we can integrate equation (11) to find 

where 

(12) 

A ( ~ ) i ( ¢  ) = 0 (13) 

f a ( ~ ) = I + ¢  (pI  - ~,F)-'G(~,/~) d#. (14) 
1 

We therefore take our dispersion function to be A (¢) = det A (~), so that the discrete spectrum here 
can be defined as those values of ¢ $ [ -  1, 1] such that 

a(¢)=o.  (15) 

BASIC IDENTITIES 

We now follow a procedure reported by ln6nii I and Garcia and Siewert 2 for the one-group model 
and develop for the considered multi-group model a set of identities that provides the basis of our 
computational method for establishing the discrete spectrum. 

We define, for ~ ~ [ - 1 ,  1], 

f_ Q,(~) = (#I  - ~$) - 'P , (# )  d/z (16) 
I 

so that we can write the A matrix as 
L 

A(~) = I + ~ ~ Qt(~)CtGt(~). (17) 
I = 0  

Multiplying equation (16) by (2l + 1)~ and using partial-fraction analysis and the recursion formula 

(2l + 1)#Pt(/z) = (l + l)Pt+, (#) + IPl_l (#), (18) 
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we find that the Qt(~) satisfy the recursion formula 

(2l + 1)~,~Q,(~) = (l + 1)Qt+ 1 (~) + lQ,_ t(~) - 260.ti. (19) 

We can now multiply equation (10) on the left by Q~(~), multiply equation (19) on the right by 
Gt(~), subtract one of the two resulting equations from the other and then sum the resulting 
equation from l = 0 to l = L to find, after noting equation (17), 

A (~) = ½(L + 1)[QL +1 (~)GL (~) -- QL (~)GL +1 (~)]- (20) 

Introducing matrices Ht (~)=  diag{Pl(~rl~), Pt(a2~) . . . . .  Pt(au?,)} and noting equation (18), we 
now write 

( 2 / +  1)~2://,(~) = (l + 1)Ot+l(~) + 11-1t_1(~). (21) 

Now multiplying equation (19) by llt(~), multiplying equation (21) by Qt(~), taking the difference 
and then summing over l, we find the identity 

I = ½ (L + 1)[QL +l (¢)HL (~) -- QL (¢)HL + 1  (¢)]- (22) 

In a similar manner we can find from equations (10) and (21) that 
L 

~/ / , (~)CtGt(¢)  = I(L + 1)[/'/L + l (~)GL(~) -- / /L(~)GL+ I (~)]. (23) 
I = 0  

Finally we multiply equation (20) by IlL+ 1(~) and use equations (22) and (23) to obtain 
L 

//L+I(~)A(¢) = Gz+l(¢) + ~QL+t(¢) ~ llt(¢)CtGt(¢). (24) 
I=0 

If  we consider that C1 = 0 for l > L, we can write, for ~ ¢ [ -  l, 1], 

A(')=flNll(')[ GN+I(')+'QN+](')~I-It(')CtGt(') ] t = o  (25) 

for any N i> L. In particular since Robin 3 has shown that the Legendre function of the second kind 

1 ~ d# 
Q~(~') = 2 J -  l P ' ( v )  ~ - 

(26) 

vanishes as l --* oo for all ~ ¢ [ -  1, 1] we conclude from equations (16) and (25) that 

A(~) = lim II~+I(~)GN+,(~), ~ ¢[--1,  1]. (27) 
N--* oo 

It thus follows that the zeros of det Gu+ 1(~) that lie outside the interval [ - 1 ,  1] will approximate 
the desired discrete spectrum with better and better accuracy as N increases. 

A COMPUTATIONAL METHOD 

As we wish to approximate our exact problem 

A ( ¢)M(~ ) = 0 

by 

GN+, (~)N(~) = 0, 

we now let 

Tt(¢) = Gt(~)N(~), 

for l = 0, 1, 2 . . . . .  N, and multiply equation (10) by N(~) to obtain 

/ht--tTt-l(~) + (l + 1)h71Tt+ 1(¢) = ~T/(~) 

for l = 0, 1 . . . . .  N. Equation (31) 

(28) 

(29) 

(30) 

(31) 

along with the termination condition T N + I ( ~ ) = 0  can be 
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expressed as an eigenvalue problem for the M ( N  + 1) zeros of  det GN+t(~). However, we prefer 
first to consider N to be odd and to eliminate the odd-order Ts in equation (31); we find, for 
l = 0 , 2 , 4  . . . . .  N - l ,  that 

where 

and 

X/Tt-2(¢) + VtT~(~) + ZtT/+2(~) = ~2T,(~) (32) 

Xt = 1(l - 1)h7 lht-_l 1 , (33a) 

Y, = lEht- ~h?_l~ + (l + 1 )2h t- th/-+~ (33b) 

Z, = (l + 1)(l + 2)h7 ~hT+~l . (33c) 

Equation (32) and the truncation condition TN+I(~)= 0 can now be expressed as the eigenvalue 
problem 

AX = ¢2X (34) 

A =  

Yo Zo 

X2 Y2 Z2 

XN- 3 YN- 3 ZN : 

XN I YN-I 

(35) 

where 

is M ( N  + 1)/2 square and the X vector has entries T0(~), T2(~) . . . . .  TN_ ! (~). It follows that the 
J = M ( N  + 1)/2 eigenvalues of  A provide the squares of  the J + pairs of  zeros of det GN+ 1(¢)- 

N U M E R I C A L  RESULTS 

Having generalized previous works, 4-7 on scalar problems, and works on a four-vector 
polarization problem in radiative transfer s,9 to the case of  multi-group transport theory, we now 
report some numerical results that indicate the accuracy with which the zeros of  det GN+ l(~), 

# [--1, 1], approximate the discrete spectrum defined by det A (~) = 0, ~ ¢ [ - 1 ,  1]. 
Although the matrix A defined by equation (35) is banded (and sparse for N>>M) we have not 

made use of  this structure here. We have simply used the driver program RG in the EISPACK 
collection ~°'H to compute the eigenvalues. 

For  our first set of  numerical examples we consider the four L = 0 data cases that were defined 
by Forster ~2 and used by Kriese, Siewert and Yener )3 for two-group critical calculations in neutron 
transport theory. Thus we write 

(T0)t~ = ½[al~s + (1 - Z)~I try/] (36a) 

(T0)12 = 110"12 s "-}- (1 -- Z)~2a:f] (36b) 

( T o ) 2 1  l - = ~Zvl trlf (36c) 

and 

1 
(T0)22 = ~[0"22 s "-~ ~ 2 0 " 2 f ]  (36d) 

and use the data in Table 1 to define the S and T O matrices basic to equation (1). In Table 2 we 
list the exact results 13 for the discrete eigenvalues for these four cases and the values of  N we require 
here to duplicate, to the given degree of  accuracy, these discrete eigenvalues. 

To have a more challenging test case we considered the analytical 20-group model, with L = 10, 
that was used by Garcia and Siewert. 14 This 20-group model, defined in Ref. [14], was used for a 
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Table 1. Two-group macroscopic cross sections (in cm -t) 
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Case $1 ffl is ~1 ~ ~1~ s2 ~22s ~2 G~ Z 

I 0.54628 0.4241 0 .2425  0.0045552 0.33588 0.3198 0.0070425 1.0 
II 2.52025 2.44383 0.12658 0.029227 0.65696 0.62568 0.002621 1.0 
III 0.3456 0.26304 0.1728 0.072 0.216 0.07824 0.167184 0.575 
IV 0 . 3 3 6  0.23616 0.2503392 0.0432 0.2208 0 .0792 0.29016 0.575 

Table 2. Discrete eigenvalues 

Case Eigenvalue N 

I i 1.81477 (2) 5 
II  i 3.54785 5 
III  i 6.72584 ( -  1) I 1 
IV i 4.80216 ( -  1) 15 

r a d i a t i o n  sh ie ld ing  s tudy ,  a n d  so there  is n o  f iss ion n o r  a n y  up - sca t t e r i ng  in  the mode l .  F o r  this 
p r o b l e m  there  is o n l y  o n e  discrete  e igenva lue  ~ ¢ [ -  1, 1]; for  N = 69 we o b t a i n e d  a resul t  tha t  
agreed  wi th  the  p u b l i s h e d  resul t  to  n i n e  s igni f icant  figures. 

T o  c o n c l u d e  we n o t e  tha t  the  A m a t r i x  def ined  by  e q u a t i o n  (35) can ,  especial ly  for  m a n y - g r o u p  
p r ob l ems ,  b e c o m e  very  large as N increases .  I t  is c lear  t ha t  there  c an  be cases where  the  size o f  
A b e c o m e s  u n m a n a g e a b l e  before  N is sufficiently large so as to yield very  accura te ,  say 10 figures,  
resul ts  for  the  des i red  e igenvalues .  F o r  these cases s o m e  a l t e rna t ive  c o m p u t a t i o n a l  m e t h o d ,  e.g. 
N e w t o n ' s  m e t h o d  app l i ed  to A (~), m a y  be  requi red .  
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