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Abstract—Elementary considerations are used to define and analyze the discrete spectrum for a general
radiative transfer model that includes polarization effects

INTRODUCTION

In regard to radiative transfer models that include polanzation effects. we consider the vector
equation of transfer'

(-.) n |
ucq—l(r.u,¢)+l(r.u~¢)=2j f P, '. ¢ — @) (r,p1'. ¢ydu do’ (D
T . )y |_,

where the Stokes vector I(t, u, ¢) has the four Stokes parameters /(7. u. @), Q(7, 1, ). U(z, i, ¢)
and V(r.u,¢$) as components Here we(0,1] 1s the albedo for single scattering and
P(u,pu’.¢ —¢’) 1s the phase matnx As noted in previous works’™ we can use the analytical
representation

1

L
Pu,p'cd —¢)=5 3 (2=6 ) [C"(u.p)cosm(dp — )+ S™(u, n)ysmm (¢ — )] ()
“m=10
to carry out an analytical Fourier decomposition of the Stokes vector I(z, u, ¢) Here
C™(p ') =A"(u, u" )+ DA™ (. p')D (3a)
and
S7(u, ) =A"(p, u)D — DA™ (p, p’) (3b)
where
L
A"(p )= Y, O7 ()BT (1) 4)
l=m
and D = diag{l, 1. —1. —1} In addition
P () 0 0 0
(/—m)':l” 0 R (u) —T7(n) 0
nm( o 5
r [<1+m)' 0 —Trw RMW) O ©
0 0 0 P (n)
where
m 2ym2 d’"
Py =(1—p*) ‘a—,,,Pl(Il) (6)
u

1s used to denote the associated Legendre functions and the functions R7(u) and T7"(u) are as
defined and used in Refs [2] and [3] We note that t € [0, 7,] 1s the optical vanable, u is the direction
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costne of the propagating radiation and that the scattering law 1s defined by the Greek constants
(%, By, 11~ 01 €, i) so that

/31 ri 0 0

: 0 0
B — I X 7
! 0 0 I —¢ 7

0 0 ¢ d,

23

Referring now to some of our previous work.,”'” we note that in carrying out the Fourier
decomposition of the Stokes vector /(z. u. ¢ ) we find that the Fourier components can be expressed
in terms of solutions to the vector equations

al |
u (:—Tl(r. wy+ It p) = H—:J K(p - )t p)ydu’ (8)
= J-1
form=0.1 . L Here the scattering kernel 1s
L
K" —py= 3 OB (1) 9)

f=m

We consider here only L = 2 since equation (1) for L < 2 reduces to uncoupled equations that have
been considered previously ¢’

In this work we focus our attention on the Fourier components of I(z, u. ¢) and report some
observations concerning the discrete spectrum basic to equation (8) Since one of the fundamental
aspects of developing exact or approximate solutions of equation (8), say by the method of
elementary solutions® or by the F, method.® 1s a computation of the discrete spectrum, we develop
here the dispersion function appropriate to studies of equation (8), and we prove that the zeros
of this dispersion function can be approximated by the zeros of certain polynomials Having 1n
mind a completeness proof”® for the elementary solutions of equation (8), we also prove that the
boundary values of the dispersion matrix cannot be singular on a certain subset of the real axis

ELEMENTARY SOLUTIONS

In order to define the discrete spectrum for the Fourier-component problems, we first substitute
the proposed solution

L(t,u) =P pexpl -1 &, (10)
mto
0 w !
Hﬁ_rl(r' W+ (. u) = 7J K™(u = u)l(t,u’ydy’ (1
< J-l
to find
) IUQ‘: - m¢ £ £
E-wWeE py== Y OP(WBGIEM(E) (12)
“ h=m
where we have defined
1
T(S)M(C)=J ()P (& p)du (13)
-1
Now upon multiplying equation (12) by I} (u), integrating over u from —1 to 1 and using the
fact ' that
(27 + D+ viry€) = ur, 1y, (&) + Ul (&) (14)
where

Up=("—m") dag{l, [ =42, 17" (F =4 1} (15a)
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and
0000
w 2m2+1) [0 01 0
T+ o1 00|’ (150)
00 040
we find
76T ()= (Eh+ VTHYGT(E)+ UT, \GT (E)IM(E) =0 (16)
where
h =2+ 1)l — wB, (17)
Considering that & ¢[ — L, 1], we solve equation (12) to find
WC I - m "
P =57, Y M) B.GL(E)M(E), (18)
C—Hji e
and after muluplying equation (18) by () and integrating over y, we find
wé [ . d
[GF"(SHT"J ﬂ?”(#)G(;,#)J—,JM(€)=0 (19)
-1 H—c
where
L
G )= ) Oru)BGr (&) (20)

I=m

As we would hke to use the matnices G7'(£) without restrictions on &, we follow Refl [5] and
consider equatton (16) without the factor M(&) We therefore take the matnices G7{¢) to be defined
by

GI ()= (U, ) ' [(Ch + VTYGT() = UTGT ()] (21)
where /=2, 3, .form=0and I, and I =m m+ |, , for m =2 Here, 1n contrast 10
Ref [5]. we use the starting values
GY(¥) = diag{1.0,0, 1} (22a)
GY(&) = dagl(l — )& 0.0, (1 — @5,)% ) (22b)
GAUE)=diag{s[(1 —m)3 —@B)E" — 1. 1. L3[(1 — w8y} (3 — wd )E2 — 11}, (22c)
Gi(¢)=2""'""diag{1.0.0, 1} (22d)
G =dag{6 "3 —wh ) 11,67 (3 —wd, )¢} (22e)
and, for m = 2,
Gh(i)=4,=S,dag{l,R,. R,.1} (22f)
where
S, =02m — D)"[(2m)']~"" (23)
and
_ 12
We can now use equations (14) and (21) and the fact that
j A7 (7 (1) Ay = (2—,%) A, (25)
where

Ay =6, diag{l, (1 =3y )1 =& ) (1 = )(1 =6, ), 1} (26)
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to show that

Wre) =G + % f‘lnrw)o‘(z,u) dff 2"
satisfies
(20 + DT+ VW =Ur W () + UTWTL L (S) (28)
Considering first of all the cases m > 2, we can write
Wi =7 WhE), Se[- 11 (29)
l=mm+1, Using equations (22f) and (29) and the fact® that for m > 2,
o) =3, 2" (w) (30)
where
(1 0 0 0)
, 0 : fz 1 iﬂu"
EMp) =1 —p*) . 2 R 31
1 —pu° 1 —pu’
LO 0 0 1)
we can rewrite equation (19) as
A"EYM(EY=0 (32)
where, 1n general,
Am<:>=l+%§f|sm<u>c(c.u>ud—f5 (33)

The cases m =0 and m = | require separate considerations since the matrices IT3(¢). M%(¢) and
I1}(&) are not inveruble For m =0 we find we can write, for £ ¢[—1,1]and / =0 |,

W& =ML diag] Po(S). 1. L. Po(E)}A%E) (34)

where we have defined

z 1 d
.1“(:)=1+‘”—:J E2u)G (&) — (35)
- J- u—=
and
E°%u) = diag {1. R3(u). RS(u), 1} (36)
In a similar manner we find for m = | that we can write, for $¢[—1.1]and / =1, 2, ,
WiHE) =M} ()ITNE)) "diag{1Z6' " 1.1.1£6'*}4'(¢) (37)
where
14 | d
M@ =1+ | Z(0GE w—= (38)
2 . T
with
(1 0 0 0)
1
0 —‘5‘ 5 0
Eu)=(1—p*)" | ; (39)
0 5 ~3 0
o o o 1]
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It now follows that we can define the discrete spectrum for each Fourter-component problem as
those values of & ¢[— 1, 1] such that

A™MEIM(S)=0 (40)

Clearly £ must be a zero of det A™(£), and M(£) must be a resulting null vector of 17()

BASIC IDENTITIES

We now follow a procedure used by Inonu,® Garcia and Siewert” and Siewert and Thomas'" and

develop a set of identities that will prove helpful 1 our analysis of the discrete spectrum for this
polarization problem First of all we introduce, for / = m

1" . d
r@>=;f GO (41)
4 -1 [
and rewrite equations (33), (35) and (38) as
L
A" =1-w¢ Y QM) BGT() (42)
I=m

We can multiply equation (41) by (2/ + 1)Z and use equation (14) to obtain

(1 + DET+ VTQT(E)=UT Q7 (S + UT'Q ((S) + KT (43)
where
K?=diag{d, 1. 02 ,.0: .9y ,}. (44a)
K| =diag{2' 6, ,.5.,.0,,.2"°9, ! (44b)
and
K'=9,,A,'. m=2 (44c)

Noting that @7'(&) 1s symmetric, we first multiply the transpose of equation (43) on the right by
G7(E). we then muluply

b+ VG ()= U7 G (8) + UT'GT(S) (45)

by Q7'(£) on the left, subtract the two equations, one from the other, and then sum the resulting
equation from / =m to [/ = L to obtain, after we note equations (42) and (44),

A™(E) = U7\ [Q1(€)GT 4 1(S) — Q7 (E)GT(E)] (46)
for all m 20 We carry out a similar elimination between equation (45) and
(21 + DS+ V7T = U 17, (8) + UTITT ((©) (47)
to find
EPT(&) = Em(EUT. T (OGT(E) ~ MT(E)GT, ()] (48)
where
PE) =S ENOGE $) (49)

We also find. from equations (43) and (47), that
E7E) =07, I7,.(§)QT()—M7()Q7 . (£)] (50)

Finally we use equation (50) to eliminate Q7 (¢) from equation (46) and equation (48) to eliminate
G7(¢) from equation (46) so that we can obtain

EMEOML () A™E) =[E"NGT. (&) — 2207 . (§)P™ (&) (51)
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BASIC RESULTS

Having established a set of identities. we now can prove two basic results concermng the .4
matrix We first wish to show that the boundary values [4™(y)]* cannot be singular fornp e (—1. 1)
This proof s by contradiction and follows the one given in Ref [7]. and so for a given rm we assume
there 1s a nonzero null vector M(y,) so that

A" )] M) =0 (52)

for some noe (— 1, 1) We can use the Plemelj formulas'' to deduce from equations (33), (35) and
(38) that

[A™(n))= = 4" () £ rm¥™ () (53)

for y e (—~1.1), here

on ! du
l"'(q)=l+7’7:[ 260 ) a (54)
- _1 -
and the symbol } 1s used to indicate that the integral 1s to be evaluated in the Cauchy

principal-value sense Considering equation (52) to be valid we conclude from equation (53) that

A" M (n,)=0 (55)
and
¥ "(nIM(n,)=0 (56)
We can again use the Plemelj formulas to deduce from equation (51) that
E™(mAT (mA™n) = [E"MFGY . (1) — 2ng? (M) ¥ (1) (57)
where, 1n general,
q:"('l):%{l ErqoAar(p) du (58)
21, n—u

We can multiply equation (57), for n =15, by M(n,) and use equations (55) and (56) to obtain
G7. (n)M(ny)=0 (59)

-

since Z™(n) 1s nonsingular for n € (—1.1) We can also set £ = #, in equation (48) and multuply
the resulting equation by M(n,) to obtan, after we use equation (59),

ny. ()G () Mn,) =0 (60)
It 1s clear from equation (45) that G7(no) M (na) #01f G7' . (1,) M (1) = 0. and so we let
N(no) =GT(10)M (n,) (61)
be the nonzero null vector of M7, ,(n,) and write equation (60) as
ny . (ne)Nn,)=0 (62)
Equation (46) yields
Am(n) =UT,,\[q7(n)GT . \(n) — q7 . (n)GT(n)] (63)

for 5 € (— 1. 1). and so we set 4 = 5, and muluply by M(#,) to find from equation (63), after noting
equations (55), (59) and (61).

97 ()N () =0 (64)
The Plemely formulas allow us to conclude from equation (50) that
E"n)=UT, [T, (n)q7(n)—MT(n)q7 . (n)] (65)

Setting n = 5, 1n equation (65) and multiplying by N(n,). we find
E"(ne)N(no) = U7 . 17, \(no)qT(no) N (no) (66)
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after we note equation (64) Finally we observe that IT7, (,) and ¢7(n,) commute, so that we
can use equation (62) to conclude from equation (66) that

E7 ()N (o) =0 (67)

which clearly 1s impossible since Z™(5,) 1s nonsingular for n,e(—1, 1) and N(y,) 1s nonzero It
therefore follows that our premise of equation (52) s false
We consider now the discrete spectrum defined by

A™(OIM(E) =0 (68)

where £ ¢[—1,1] By using the asymptotic formulas for the Jacob: polynomials and Jacobi
functions of the second kind given by Szego.'* we have concluded that

Lll_l:n UT7 (E)]7'QT. (E)=0 (69)

for all £ ¢[—1.1]. and so we deduce from equation (51) that the discrete spectrum defined by
equation (68) can be approximated by

’\'.'+|(5:)M\+|(s:)=0 (70)

with better and better accuracy as N > L tends to infimty In Ref [5] we used the generalized
spherical harmonics method to solve equation (1) subject to appropriate boundary conditions, and
in the process of constructing our solution we were required to develop an algorithm to find all
the zeros of det G7 (). for N odd It follows then that this same algorithm can be used to
compute an approximation to the discrete spectrum defined here by equation (68)
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