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THE DISCRETE SPECTRUM FOR RADIATIVE TRANSFER 
WITH POLARIZATION 
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Abstract-Elementary consrderatrons are used to dehne and analyze the discrete spectrum for a general 
radratlve transfer model that Includes polarlzatmn effecls 

INTRODUCTION 

In regard to radlatwe transfer models that Include polarlzatlon effects. we consider the hector 
equation of transfer’ 

:n I 

ss 
OF, 11’. 4 - cb’)l(r, P’. 4’)dp W’ (1) 

II -I 

where the Stokes vector I(r. p, 4) has the four Stokes parameters /(r. p. 4), Q(r, /.I, 4). L:(r, p, 4) 

and V(r. p, 4) as components Here m ~(0, I] IS the albedo for smgle scattermg and 
P(,u, p’. 4 - 4’) IS the phase matrlr As noted m previous work?’ we can use the analytical 
representation 

P(P,P’.~ -b’)=i i (2-6,,)[C”(~.~‘)cosm(~ -4’)+Sm(ji,p’)sinm(d -@‘)I (2) 
-m=fJ 

to carry out an analytical Fourier decomposltlon of the Stokes hector f(r, p, 4) Here 

and 

Cm@. jl’) = A”(ji, p”) + DA”(ji. p’)D 

where 

Sm(/l, 11’) = A”(P, P’)D - DA”(P, P’) 

and D=dlag{l, I. -1. -1; In addition 

r K(P) 0 0 

where 

(l-m)’ I2 0 
f7;l(jl)= ~ ’ ‘I R;“(P) -T,“(P) 

(I + m)’ 0 - V(P) R;“(F) 
0 0 0 

CW)=(l -P’Y+w) 

0 

0 

0 

P;“(P) I 

(34 

(4) 

(5) 

(6) 

IS used to denote the associated Legendre functions and the functions R;“(p) and T?(p) are as 
defined and used m Refs [2] and [3] We note that T E [0, r,,] IS the optlcal vanable. p IS the dlrectlon 
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cosine of the propagating radlatlon and that the scattering lau IS defined by the Greek consrants 
(a,, fi,, f,. b,. C: ;,I so that 

(7) 

Refernng now to some of our preblous uork.” we note that m carrying out the Founer 
decomposltlon of the Stokes kector /(r. p. 4) we find that the Fourier components can be expressed 
m terms of solutions to the hector equations 

K”‘(p’ -p)/(~ /l’)dp’ (8) 

for m = 0. I . L Here the scattering kernel 1s 

K”‘(p +p)= i n;,(p)f?,n:(p ) (9) 
I = “, 

We consider here only f. 2 2 smce equation (I ) for L < 2 reduces to uncoupled equations that have 
been considered prevIousI) 6’ 

In this aork He focus our attention on the Fourier components of I(T, p. 4) and report some 
obser\atlons concerning the discrete spectrum basic to equation (8) Smce one of the fundamental 
aspects of developing exact or approximate solutions of equation (8). say by the method of 
elementary solutions” or by the F, method.’ IS a computation of the discrete spectrum. we develop 
here the dlsperslon function appropriate to studies of equation (8). and we prove that the zeros 
of this dlsperslon function can be approximated by the zeros of certain polynomtals Having m 
mmd a completeness proof’ for the elementary solutions of equation (8), we also prove that the 
boundary values of the dlsperslon matrlY cannot be singular on a certain subset of the real axls 

ELEMENTARY SOLUTIONS 

In order to define the discrete spectrum for the Fourier-component problems. we first substitute 

the proposed solution 

Into 

to find 

where we have defined 

Now upon multlplymg 
fact ’ that 

(10) 

(11) 

(1.2) 

(13) 

equation (12) by /7?(p), Integrating over p from - I to I and using the 
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and 

we find 

where 

I/7' = 
2 m ( 2 1 +  I) 

I(/ + I) 

0 0 0 0 

0 0 I 0 

0 I 0 0 

0 0 0 0 

, ( t S b )  

[UTGT,_ ,(~) _ (~h, + -~v" ~,7.,., ; , . . ,  t,. ) + U? . ,  G~'+ , (¢ ) ]M (~) = 0 (16) 

h, = (21 + I)/- roB, (I 7) 

Consider ing that  c~ ¢ [ -  I, I], we s o b e  equauon  (12) to find 

~ ( ~ .  p )  = I ~ HT(p)BkGr(¢)M(~), (18) 
/~ = m  

and after  m u l u p l y m g  equat ton  (18) by H';'(p) and mteg ra tmg  over  p, we find 

[G'F(~)+~-m~ f I ,  HT'(p)G(~.p) d-~lM(~)=O_ (19) 

where 

L 

G(¢, p) = ~ 117(p)B, GT(~) (20) 
I = m  

As ~ e  would hke to use the matr ices GT(~ ) wi thout  restncUons on ~, we follow Ref  [5] and 
constder equa tmn  (16) without  the factor  M ( ~ )  We therefore take the matr ices G~'(~) to be defined 
by 

GT+ ,(~) = (UT+ ,)-' [(,~h, + VT)G'/'(~) - UTGT_ ,(~)] 

where 1 = 2 , 3 ,  . for  m = 0  and I, and I = m , m + i .  , for m / > 2  Here,  
Ref  [5]. we use the start ing values 

0 G0(s ) = drag{ I. 0 .0 .  1} (22a) 

G°(~)  = dmg{(I  m ) ~ . 0 . 0 . ( l  " ~ - - m00),., (22b) 

G ° ( i )  = d,ag[½[(I - re)t3 - mfl,)~'- - I]. I. 1, ~[(I - m6o)(3 - m6,)~ 2 - I]}, (22c) 

G~ (~) = 2 - ' - '  dmg[ I. 0. 0, I ~, (22d) 

' ~ drag{6- '  - G . , ( s ) =  ' (3  mfl,)~, I. 1 , 6 - ' 2 ( 3 - m 6 t ) ~ }  (22e) 

and.  for m >i 2, 

m ,~ G,.(~. ) = a. ,  = S.. d,ag{ I, R.,. R... I} (22f) 

where 

Sm=(2m - l),,[(2m),] -': 

and 

m(m - I) ], 2 
R,,,= (m~-~(-nl -+ 1) 

We can now use equaUons (14) and (21) and the fact that  

nT(~)nT(~)d~= 2-7-i-7 A,, 

(21) 

in contras t  to 

(23) 

(24) 

(25) 

where 

All = 611 d t a g { I , ( I  - 601)(I - 61 i), (1 - 60 i)(I  --dil i), 1} (26) 
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to show that 

sansfies 

[(2,+ I)//+ V;l]W;‘(E)= C’y:,W;:,(i)+ L:;“Wy_,,<) 

Consldermg first of all the cases nl 2 2. we can write 

W;1(5)= ny(<,[n:(5)]-‘w:(4,. 5 9[- 1. I]. 

I=m,m i- I, Usmg equations (22f) and (29) and the fact’ that for m >, 2. 

n::(jl) = AmE”’ 

we can rewnte equation (19) as 

where, m general. 

(‘7) 

(28) 

(29) 

(30) 

(32) 

(33) 

The cases m = 0 and m = I require separate conslderatlons since the matrlces /7:(r). n:(t) and 
n;(5) are not mvertlble For no = 0 we find we can write. for : 6 [ - I. I] and I = 0 I. 

WY(<) = np(5)[nq(r,]-‘dlag(P2(;). I. I. P?({)}A”(<) (34) 

where we have defined 

and 

E’(rl) = dlagi I. R’?(p). R!(p), I I (36) 

In a slmllar manner we find for m = I that He can write. for < 4 [ - I. I] and I = I, 2. , 

W:(r) = f7:(<)[/7!(<)]-‘dlag{ !<6’ ‘. I. I. fj6’ ‘!A’(<) (37) 

where 

with 
rl 0 0 oy 

O-i! ’ 0 

3’(p)=(l -/P)‘? 
2 z 

I 
0 j-; 0 

,o 0 0 I, 

(38) 

(39) 
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It now follows that we can define the discrete spectrum for edch Fourier-component problem as 

those values of 5 # [ - I. I] such that 

n”(<)M(;) = 0 (40) 

Clearly r must be a zero of det A”‘(<). and M(r) must be a result,ng null hector of I”‘(;) 

BASIC IDENTITIES 

We now follow a procedure used by Inonu,’ Garcia and S,ewert- and S,ewert and Thomas”’ dnd 
develop a set of ,dentltles that WIII prove helpful rn our analqsls of the discrete spectrum for this 
polanzatlon problem First of all we Introduce, for I B no 

(41) 

and reante equations (33), (35) and (38) as 

/Im(r) = I - rn< i Q;“(<,B,G;l(:) 
/ = “, 

(42) 

We can multiply equation (41) by (21 + I)< and use equatton (14) to obtain 

[(21 + I):I + V;l]QT’(t) = L’;: ,Q;: ,(;) + L’;‘Q;‘,(: I+ K; (43) 

where 

K’: = d,ag(d, ,. 6, ,. 6, ,. 6,, , I. (Ma) 

K: = dlag(2’ -‘6, ,. 6, ,. 6, ,, 2, ‘6, ,I (44b) 

and 

K;‘=S,.,A;‘. m 22 (44c) 

Noting that Q;(t) IS symmetnc. we first multiply the transpose of equation (43) on the right by 
G;“(i). we then multIply 

({/I,+ v;)G;“(r) = L’;:,G;:,(r) + U;‘G;‘,(<) (45) 

by Q;“(S) on the left. subtract the two equations. one from the other. and then sum the resulting 
equation from I = m to I = L to obtain, after we note equations (42) and (44). 

n”(i)= K’+,[QZ’((:W;+,(,c)- QY’+,(:NZt4)1 (46) 

for all rn >, 0 We carry out a similar ehmmatlon between equation (45) and 

[(21+ 1)51+ vTln;l(:)= u;+,n;:,(r)+cl;n;1,(5) (47) 

to find 

r~m(r)=~~m(r)~~~+,[~~*,(r)G’;(5)-~;(i)~~+,(,;)l (48) 

where 

V(r) = ;Z”(T)G(; 5) (49) 

We also find. from equations (43) and (47), that 

E”‘(r)= ~‘;+,MK’+,(5)QYYls)-~?‘(~)Q~+,(~)l (50) 

Finally we use equation (50) to eliminate Qr({) from equation (46) and equation (48) to ehmlnate 
G?(r) from equation (46) so that we can obtain 

s’Yr)nY+ ,(On”‘(O = P”(~)l*C~+ ,(O - XQ’;, ,(OY”‘(i) (51) 
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BASIC RESULTS 

Havmg estabhshed a set of IdentItles. me now can prove tUo haslc results concerning the ,I 

matrix We first wish to show that the boundary values [A “(r/)1 t cannot be singular for rl E ( - I. I ) 
This proof Is by contradlctlon and follows the one given In Ref [7]. and so for a given 111 we assume 
there IS a nonzero null hector M(qo) so that 

[A “‘(V,, )I t M(r1,, 1 = 0 (5’) 

for some qoe (- I. I) We can use the PIernell formulas” to deduce from equations (33). (35) dnd 
(38) that 

for ‘1 E ( - I. I). here 

(54) 

and the symbol j IS used to Indicate that the Integral 
principal-value sense Consldermg equation (52) to be valid 

I”‘(rln)M(Yln) = 0 

and 

IS to be evaluated In the Cauchq 
we conclude from equation (53) that 

(55) 

+,Y”‘(rl,,)M(r/,,) = 0 (56) 

We can again use the PIernell formulas to deduce from equation (51) that 

E”‘(rl)nI;+,(rl)A”‘(V) =[E”(rl)l’G;‘+,O1) - 2&+,(vl)Y”‘(4) 

where, In general, 

We can multlply equation (57). for 4 = Q by M(r],,) dnd use equations (55) and (56) to obtain 

G;‘+ ,(rl”)M(V”) = 0 (59) 

since E”‘(rl) IS nonsmgular for 11 E ( - I. I ) We can also set < = ‘lo In equation (48) and multlply 
the resultmg equation by M(Q,) to obtain. after we use equation (59). 

nT+ ,(V,,)G(rlo)M(rl,,J = 0 (60) 

It IS clear from equation (45) that G’;(qo)M()ln) # 0 If G ;‘+ ,(t\,))M(rl,,) = 0. and so we let 

N(vo) = G’;(4~)~h,,) 
be the nonzero null vector of /7;l+,(qo) and write equation 

fll;l+ ,(kB)N(IlI,) = 0 

Equation (46) yields 

(60) as 

(61) 

(62) 

l”(rl)= L”;+,[q’;(l~)c’;+,(~)-qq);+,(rl)G’L(rl)l (63) 

for q E (- I. I). and so we set r] = Q, and multiply by M(qo) to find from equation (63), after noting 
equations (55), (59) and (61). 

f?;+ ,(kJ)N(%) = 0 (64) 

The PlemelJ formulas allow us to conclude from equation (50) that 

Z”(q)= v;+,[n~+,(rl)4~(‘1)-n~(~)4’;+,(‘1)1 (65) 

Setting q = Q, m equation (65) and multlplymg by N(q,,). we find 

emu = UT+ I n;+ I(‘l”bm”)~(‘l”) (66) 
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after we note equation (64) Fmally we obsene that /7 ‘;+,(q,,) and q;(vo) commute. so that we 
can use equation (62) to conclude from equation (66) that 

::“(%)N(%) = 0 (67) 

which clearly IS lmposslble since a”‘(~~) IS nonsingular for )10 E (- I, I) and N(rlo) IS nonzero It 
therefore follows that our premise of equation (52) IS false 

We consider now the discrete spectrum defined bq 

A”(<)M(<)=O (68) 

where < .$ [- I. I] By using the asymptotic formulas for the Jacobi polynomials and Jacobi 
functions of the second kmd given bq Szego.” we have concluded that 

hm [f7?+ ,(:)I-‘Q;I+ ,(<I = 0 (69) 
L-, 

for dll 4: # [ - I. I]. and so we deduce from equation (51) that the discrete spectrum defined by 

equation (68) can be approximated by 

G;‘+,(r)M,*,(4)=0 (70) 

with better and better accuracy ds N > L tends to infinity In Ref [5] we used the generalized 

spherical harmomcs method to solve equation (I) subject to appropriate boundary condltlons. and 
In the process of constructmg our solution ae were required to develop an algorithm to find all 

the zeros of det G’;1+,(6). for N odd It follows then that this same algorithm can be used to 
compute an approxlmatlon to the discrete spectrum defined here by equation (68) 
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