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Abstract--A variant of the Fu method that is based on splines is used to develop a solution 
to a class of basic problems in the theory of radiation transport that is computationally 
attractive in a parallel-processing environment. In addition to selected numerical results, some 
observations regarding the merits and the accuracy of the method are reported. 

1. I N T R O D U C T I O N  

The Fu method t'2 has enjoyed considerable success in solving radiation transport problems relevant 
to, for example, one-speed applications that require many-term phase functions 3 and multigroup 
shielding calculations in multilayered media: Polynomial basis functions were used in these 
previous versions of the Fu method, and so the required matrix elements were computed efficiently 
and accurately from various two- or three-term recursion formulas. Now to have a variant of the 
Fu method that utilizes finite-element techniques and one that also can effectively take advantage 
of the newly emerging parallel-processing machines, we develop a solution that leads to an 
algorithm where each of the required matrix elements can be evaluated accurately, efficiently and 
independently. 

We consider the case of isotropic scattering and plane geometry, and thus we seek a solution 
of the transport equation 5 

O(x,~)d~ (1) ~(x, ~) + q,(x, ~) = ~ -, 

subject to boundary conditions 

~O(L,g)=Ft(#)  for #e [0 ,1 ]  (2a) 

and 

~ b ( R , - p ) = F R ( # )  for #~[0,1]  (2b) 

where FL(#) and FR(p) are given. Here ~,(x, #) is the angular flux, x e (L, R) is the position variable 
measured in optical units,/z is the direction cosine of the propagating radiation and c e (0, 1) is 
the mean number of secondary particles per collision. 

2. S I N G U L A R  I N T E G R A L  E Q U A T I O N S  A N D  I N T E G R A L  C O N D I T I O N S  

As a review of the general aspects of the Fu method and to provide an introduction to our current 
computations, we follow Siewert 6 and use an integral transformation technique to deduce a set of 
singular integral equations and integral conditions from which we develop our Fu solution to 
Eqs. (1) and (2). We begin by changing # to - #  in Eq. (1). We then multiply the resulting equation 
by exp(-x/s) and integrate over x from a to b to find 

c ,  
s ~ B ( ~ ,  s )  - (~ - s) e x p ( - x / s ) O ( x ,  - ~ )  dx = -~ p*(s) (3) 
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where 

and 

; f p *(s) = e x p ( - x / s )  ~k(x, pp) dpp dx (4) 
- I  

B(la, s)  = ~k (a, - la )exp ( - a  /s ) - ¢/ ( b, - la )exp ( - b  /s ). (5) 

Here a, b e [L, R] and a < b. For s ¢ [ -  1, I] we divide Eq. (3) by la - s and integrate over la to find 

f_  dla A ( s ) p * ( s )  = s laB(pp, s)  - -  (6) 
t la - s  

where 

cs F I dla 
A ( s )  = 1 + 2 ~_, l~---s" (7) 

It is clear that the dispersion function A (s), as defined by Eq. (7), is analytic in the complex s plane 
cut from - 1  to 1 along the real axis. 

We find it convenient to multiply Eq. (6) by exp(a/s )  and to consider the resulting equation only 
for ~ s  > 0. Then in order to take into account the left half of the s plane, we change s to - s  in 
Eq. (6) and, for convenience, multiply the resulting equation by e x p ( - b / s ) ;  we subsequently 
consider the resulting equation only for ~ s  > 0. In this way we obtain for ~ s  > 0, the pair of 
equations 

f l dla 
A (s) I (s )  = laC(la, s) - -  (8a) 

- i  la - - s  

and 

where 

f_  dla A (s )J(s )  = laD(la, s)  - -  (8b) 
, l a - - s  

l; f I ( s )  = - exp[ -  (x - a)/s] ~k(x, la) dla dx, (9a) 
s I 

if f J(s )  - - exp[- (b  - x)/s]  0(x, la) dla dx, (9b) 
s I 

C(la, s) --- ~b(a, - l a )  - ~h(b, - l a ) e x p [ - ( b  - a)/s] (10a) 

and 

O(la, s) = ¢(b, la) - 0(a, la )exp[-  (b - a)/s]. (10b) 

We note 7 that the dispersion function A ( s )  has only two zeros ___v0 with Ivol > 1. Thus on 
evaluating Eqs. (8) at s = v0, we find 

CVo ~' dla 
2 J - i  laC(la, vo)--la - vo 

and 

= 0 ( l  l a )  

CVo f l  d~ 
2 J_,/~D(la, v0) la _ v0 = 0. (1 lb) 

We can also let s approach v ~ [0, 1) from above and below the cut and use the Plemelj formulae s 
to deduce from Eqs. (8) that 

_ # - v  
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and 

2(v) +_ in J(v) = I~D(#, v) d# 
t # - v  

where ~ denotes the principal-value integral and 

cv /1 -- v \  
= 1 

+ invD(v, v) (12b) 

(12c) 

For v • [0, 1) we may eliminate I(v) from the two versions of Eq. (12a) to obtain 

~ l  i/./C(/2, d______~_~ (13a) cv 
V,)]. (v)C (v, v) 2 J_,  v )  _ v' 

and similarly it follows from Eq. (12b) that 

c v ~ '  /aD (#, dg (13b) v2(v)D(v, ~) 2 J_, v)l~ - v" 

Equations (11) and (13) define a system of singular integral equations and integral conditions which 
relates ~,(a, g) and ~O(b, g) for/1 • [ - 1 ,  1]. 

3. THE BOUNDARY INTEGRAL EQUATIONS AND CONSTRAINTS 

Seeking first to establish the boundary results ~O(L, - # )  and qJ(R,/~) for/a • [0, 1], we let a = L 
and b = R  and use Eq. (2) to find from Eqs. (11) and (13) 

f0 c v 0  f0 d. cv°2 ' #0 (L, - #) ~ d~_ vo + 2  - exp t -  A/v°) I ~ d / ( R ' g ) - -  = + Vo (14a) 

and 

and, for v • [0, 1), 

CVo f o' d# fo~#~O _ _ = K 2 ( v o )  (14b) +CV°exp(-A/vo) (L, - # )  d# 
2 #~b (R,/a) # _ v0 2 /~ + v0 

~0 I cv_~ t d# cv -A/v)  #~k(R,/a) d/a =K,(v)  (14c) - + v2(v)~b(L,-v) -2-J0 #~O(L, - / a ) / a -v  -~-exp( / a+v  

and 

CV._~ I 
v~(v)q,(R, v) - 5 Jo l,¢(R, ~,) 

where A = R - L, 

cvo fo I dl~ K, (Vo) = y ~& (~) ~ + V~o 

cv fo~ d# d/~ + exp(-A/v)  #~k(L, - # )  = K2(v) (14d) 
# - v  ~ /~+v 

I0 ~ d# CV°exp(-A/vo) g F R ( # ) - - ,  (15a) 
2 p -- Vo 

K2(v°)= 2 J0 # F r t ( / ~ ) -  
d g c v o ,  f0t/aFL (/a)/a d~_v /a + Vo ~ exp t -  A/vo) - 0' (15b) 

and 

io [ cvS cv l dp +exp(--A/v) v2(V)FR(V)---~ o Kt(v) =-~- gFL(#) # + v #FR(#) (15c) 

io [ CVSo K2(v ) = -2cv ~ #FR(#) #dkt+ v + exp(-A/v)  v2(V)FL(V)---~ #FL(#) . (15d) 

We note that Mullikin 9 has discussed the questions of existence and uniqueness of the solution of 
a system of singular integral equations and constraints similar to Eqs. (14). 
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4. AN A P P R O X I M A T I O N  BASED ON C O L L O C A T I O N  

Equations (14) have been derived from Eqs. (1) and (2) without approximation; however, we 
want to use the Fu method to solve these equations in an approximate, but accurate, manner. We 
choose to approximate the scattered component of  the solution by a function in a finite-dimensional 
subspace, and thus we let {~b,(/~)} be a set of  N + 1 basis functions and write the desired boundary 
fluxes as 

and 

C N 
~b(L, - # )  = FR(#)exp(-A/ /~)  + -~ ~ a,~,(/~) 

~ct=0 

¢(R,  U) = F L ( p ) e x p ( - A / # )  + 2  ~ b~(~(#) 
~t=O 

for # e [0, 1]. We can substitute Eqs. 06 )  into Eqs. (14) to obtain 
N 
~ [a~B,(~) + b~cA~(~)exp(--A/~)] = 2R,(~) 

e=0 

and 
N 

[a, cA,(~)exp(-A/~)  + b,B~(~)] = 2R2(~) 
a=0 

for ~ e Vo U [0, I]. Here we have defined 

f j  d/~ A~(~) = ~,4~(U)U¥ ~ 

for ~ e v o U [0, 1], 

fo I d# B.(v0) = - c  u~b.(~) ~ _ v-----~ 

and 

fo' B,(v) = 22(v)~,(v) - c #4),(/~) - -  

for v ~ [0, 1]. We also have used 

and 

where, in general, 

and 

(16a) 

(16b) 

(17a) 

(17b) 

(18a) 

(18b) 

du (18c) 

~0 I R,(~) = [FL(u)S(A; U, ~) + FR(u)C(A; U, ¢)]~ du 

~0 I R2(~) = [F , (u )S (A ;  U. ~) + FL(u)C(A; U. ~)1~ du 

(19a) 

(19b) 

e x p ( -  a/x) - e x p ( -  a/y) 
C(a; x, y) = (20b) 

x - y  

To define our collocation scheme, we select ~#, for fl = 0, 1 . . . .  , N - 1, from the interval [0, 1] and 
take ~u = v0. We thus can solve the linear system 

N 
[a,B,(~#) + b, cA,(~#)exp(-A/~#)] = 2R, (~#) (21a) 

Gt=0 

1 - e x p ( - a / x ) e x p ( - a / y )  
S(a; x, y) = (20a) 

x + y  
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and 
N 
~. [a~cA~(~#)exp(-A/~#) + b~B~(~#)] = 2R2(~#), (21b) 

with fl = 0, 1 . . . . .  N, to find the required coefficients {a~, b~}. 
In other applications of  the Fu method, 3'4'6 it has been found useful to perform a post processing 

iteration based on Eqs. (14) as follows. We rewrite Eq. (18c) as 

B,(#) = 2¢~(p) - cB*(p) (22) 

with 

B~* ( . )  = ~¢~(~) - -  - U log C A . ) ,  (23) 
o z - - #  

and we deduce from Eqs. (17) for ~ =/~ • [0, 1] that we can write Eqs. (16) as 

C C 2 
~b(L, - ~ )  = F g ( p ) e x p ( - A / # )  + -~ R, (p) + -~ [a~B* (#) - b~A~(#)exp(-A/p)] (24a) 

~t=0 

and 

c 2 ~  
~(R, p) = FL(#)exp(--  A/#) + 2 R2(#) + ~- [b,,B* (#) - a ,A , (# )exp ( -A /# ) ]  

~t=0 
(24b) 

for/~ • [0, 1]. 

5. THE I N T E R I O R  S O L U T I O N  

Generalizing the foregoing development, we can use, for x • (L, R) and p • [0, 1], the approxi- 

mations 

C N 
~k(x, - # )  = FR(/~)exp[-- (R -- x)/~] + ~ ,~=o c,(x)ck,(l~) (25a) 

and 

t? 
~O(x, p) = FL(#)exp[- - (x  - L )/#] + ~ ~ d,(x)cb~(#) (25b) 

/ .  0t=0 

in Eqs. ( l l a )  and (13a) with a = x and b = R and in Eqs. ( l l b )  and (13b) with a = L and b = x. 
Thus upon using N + 1 collocation points ¢#, we find that 

N N 
[c,(x)B,(¢#) - d,(x)cA,(~o)] = 2R,(x, ¢#) - c e x p [ - ( R  - x)l¢#] ~ b,A,(~#) (26a1 

¢t=O ¢t=O 

and 
N N 
~_, [-c~(x)cA~(~#) + d~,(x)B,(~#)] = 2R2(x, ~#) - c e x p [ - ( x  - L)/~#] ~ a~A~(~#) (265) 

~ = 0  ¢~=0 

where 

R, (x, ~) = {FL(#)exp[-- (x -- L)/~]S(R - x; ~, ~) + FR(#)C(R - x; #, ~)}# d~ (27a) 

a n d  

~0 l R2(x, ~) = {FR(/a)exp[-- (R - x) /# lS(x  - L; I~, ~) + FL(#)C( x -- L; lt, ~)}/~ d/~. (27b) 

It is clear that the coefficient matrix in the linear system defined by Eqs. (26) does not depend on 
x, and so we can solve Eqs. (26) for various right-hand sides, namely, for different values of  x, 
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to obtain the expansion coefficients {c~(x), d~(x)}. We can again use Eq. (22) and post processing 
to obtain 

c 
0(x, - ~ )  = FR(~)exp[-- (R - x)/~] + ~ R, (x, ~) 

2 N 
+ c  S" /c :x~B * Z ~ " ~' j • (~) + {d~(xl - b~ e x p [ - ( R  - x)/#]}A~(p)) (28a) 

" r  a = O  

and 

c 
~,(x, ~) = FL(~)exp[--(x -- L )/~] + ~ R2(x, ~) 

2 N 

+ + - e x p [ - ( x  - ( 2 8 b )  
• "T  ~ = 0 

for ~ e [0, 11. 

6. N U M E R I C A L  RESULTS BASED ON LINEAR SPLINES 

We note that Gerasoulis and Srivastav j° and Jen and Srivastav, ~j for example, have used 
collocation methods with linear and cubic splines to establish a procedure for solving numerically 
a class of singular integral equations derived from elasticity theory. Now, in order to begin an 
evaluation of the merits of our FN solution developed here in terms of general basis functions, 
we consider the case of linear splines, ~2 and we report numerical results for some slab problems. 

The splines we use are specified as follows. For the knots for our splines we take (0 = 0 and (# = 1 
and leave the remaining (~, 0t = l, 2 . . . . .  N - 1, arbitrary at this point. We may therefore write 

f((l  - p)/h,,  for /J ~ [0, (,], 

t~o(p) = ( (0, otherwise, 
(29a) 

((~-(~,_~)/h~, for /~ ~[(~_,, (~], 
for /a e [(~, (~+ ~], (29b) 

~b~(") = l~,~+ ' -/~)/h~ + J' otherwise, 

for a = 1,2 . . . . .  N -  1, and 

{(1~ - (~- ~)/hN, for /.t z [(N- t, 1], (29c) 

~r¢(~) = 0, otherwise, 

with h~ = (~ - (~_ ~. 

Considering first Eqs. (18b) and (18c), we can evaluate the integrals to obtain 

B~ (Vo) = - cD~ (vo) (30a) 

and 

B~(v)=-cD~(v)+22(v)ck~(v)  for v e [0 ,1 ]  (30b) 

where, in general, 

_fo t d# D,(~) = /~b,(/~) # _ 

and, in particular, 

(31) 

(32a) 
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2 ¢ <7,  

- ( ~ + ~ ) ( ¢ -  { , ) l o g l ¢ - ¢ , 1 + (  ¢ -¢'-)1-~ '-)logic - ~,_,11, (32b) 

for ~ = 1,2 . . . . .  N -  1, and 

DN(,) = ~ + ,  -- ¢ ( '  -- ~¢- "~log ¢ - ~ N - '  (32c) 
h~ ] I ¢ - 1 1 "  

We note that some terms in Eq. (30b) must be combined before the limit v --, 1 can be observed. 
Note also that if I¢ -~,_tl/h~ or I~=+,- ~ I/h,+~ is large compared to 1, there may be loss of 
accuracy (due to the cancellation of large numbers in finite-precision arithmetic) if the functions 
D,(¢) are always evaluated by the explicit expressions given by Eqs. (32). We have avoided this 
potential loss of accuracy by making use of appropriate binomial expansions in Eqs. (32) under 
these conditions. 

Having defined D,(¢) for a = 0, 1, 2 . . . . .  N, we can obtain the other basic FN functions from 

A,(¢) = O , ( - ¢ )  (33) 

for ¢ • v0 (3 [0, 1]. Finally for/~ • [0, 1] we can write 

B* (#) = D~(~) - #~b~(# ) log (~+  ~ )  (34) 

= ~O (R,/~)/~ d# (38b) 

Q.S.R.T. 39/~-C 

where again some care must be exercised to obtain the desired result for/~--* 1. 
As an application we consider the finite-slab albedo problem. Thus we seek a solution to 

Eq. (1) subject to the boundary conditions 

~b(L,/a) = ½di (/a - ~ )  (35a) 
and 

~k(R, - # )  = 0 (35b) 

for/~ • [0, 1], where/~0 is the direction cosine of the incident radiation. 
After experimenting with various knot distributions for the purpose of computing the albedo 

and the transmission factor with linear splines, we have concluded that the accuracy depends very 
weakly on the knot distribution and that a linear distribution of knots is adequate here, and so 
we write 

~, = ~ (36) 

for ~ = 0, 1 . . . . .  N. For the collocation points we use the N midpoints of the intervals joining the 
knots 

Ca = ½(~a + ~ +~) (37a) 

for fl = 0, 1 . . . . .  N - 1 and, for the consistency condition, 

¢t¢= v0. (37b) 

Having defined the knots and the collocation scheme, we solve Eqs. (21) to obtain the expansion 
coefficients {a,, b,}. 

As a comparison of the Fu method based on linear splines with the Fu method based on Legendre 
polynomials {P,(2/~ - 1)}, we display in Table 1 the values of the albedo 

A* 2 fo I = -  ~b(L, -/~)# d/~ (38a) 
#0 

and the transmission factor 
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Table 1. Values of A* and B* for po= I and A =  I. 

Polynomials 
c N A ° B ° 

3 9.91 (-2) 4.460 (-1) 
7 9.9119 (-2) 4.46058(-1) 

0.5 15 9.91192(-2) 4.46058(-1) 
31 9.91192(-2) 4.46058(-1) 

3 2.6740 (-1) 5.916 (-1) 
7 2.67410(-1) 5.91625(-1) 

0.9 15 2.67410(-1) 5.91625(-1) 
31 2.67410(-1) 5.91625(-1) 

3 3.3293 (-1) 6.510 (-1) 
7 3.32922(-1) 6.50977(-1) 

0.99 15 3.32922(-1) 6.50978(-1) 
31 3.32922(-1) 6.50978(-1) 

Linear Splines 
A" B* 

9.90 (-2) 4.462 (-1) 
9.91 (-2) 4.461 (-1) 
9.911 (-2) 4.4607 (-1) 
9.9118 (-2) 4.4606 (-1) 

2.673 (-1) 5.917 (-1) 
2.6740 (-1) 5.917 (-1) 
2.67409(-1) 5.9163 (-1) 
2.67410(-1) 5.9163 (-1) 

3.329 (-1) 6.510 (-1) 
3.3291 (-1) 6.510 (-1) 
3.3292 (-1) 6.5098 (-1) 
3.32921(-1) 6.50978(-1) 

Cubic Splines 
A" B* 

9.90 (-2) 4.462 (-1) 
9.912 (-2) 4.4606 (-1) 
9.91191(-2) 4.46058(-1) 
9.91192(-2) 4.46058(-1) 

2.67 (-1) 5.92 (-1) 
2.6741 (-1) 5.91625(-1) 
2.67410(-1) 5.91625(-1) 
2.67410(-1) 5.91625(-1) 

3.328 (-1) 6.511 (-1) 
3.3292 (-1) 6.50979(-1) 
3.32922(-1) 6.50978(-1) 
3.32922(-1) 6.50978(-1) 

computed by both methods with three different values of  c and four values of  N for the case of  
P0 = 1 and A = 1. We believe that the results based on polynomials are, for N = 31, correct to 6 
significant figures. 

For  the sake of  completeness, we display the formulas for A * and B* from Eqs. (38) when linear 
splines are used as the basis functions in Eq. (16). Thus we have 

c N 
A *  = ~_, a=J= (39a) 

and 

where 

C N 

B* = exp(- A/p.o) +--=EPo_o b=J= 

/'Jo ~/.tq~= (/~) d/~ 

or more explicitly 
1 2 :o=~(l, 

J, = ~( t ;=+ , -  ~,_, ) (~,+ ~ + ~, + ~=_,), 

for = = 1,2 . . . . .  N -  1, and 

Ju = ~(2 + ~u- , ) (  1 -- ~u-I). 

(39b) 

(40) 

(41a) 

(41b) 

(41c) 

7. N U M E R I C A L  RESULTS BASED ON H E R M I T E  CUBIC SPLINES 

Although the computations discussed in the previous section indicate that the radiation problem 
in a slab can be solved by using linear splines with the Fu method, we also made some calculations 
with cubic splines in a search for a more efficient method. We report on our experience with 
Hermite cubic splines in this section. 

For  the Hermite cubics there are two basis functions associated with each knot, so that the value 
of  N in Eqs. (16) must be odd and > 1. Let the knots be denoted by ~= with ct = 0, 1 . . . . .  M and 
M = ( N -  1)/2. We choose ~0 = 0 and ~M = 1 and leave the rest of  the knots arbitrary for the 
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moment. To define the Hermite basis functions ~ (#) and ~ ,  (#) we make use of the representations 
given by Schultz 12 and write 

(3((1 - # ) 2 / h ~  - 2((~ - # ) 3 / h  3, for # ~ [0, (~], 

~o(#) = ~ [0, otherwise, 
(42a) 

2 2 3 3 [3(# - ( ,_ , ) /h~  - 2(# - (~_ .)/h~, for # e [(~_,, (~], 
(42b) / 

@~(#)= 2 2 3 3 for # ~ [ ( ~ , ~ + t ] ,  ~3((:+, - # ) / h . + ,  - 2((~+, - # ) / h . + , ,  
/ 

[0, otherwise, 
for a = 1,2 . . . . .  M - l ,  

f3(# - ( u _ ~ ) 2 / h ~  - 2(# - ( u _ , ) 3 1 h ~ ,  for # ~ [ ( u - , ,  1], 

~ u ( # )  = { (0, otherwise, 
(42c) 

f#( ( ,  - -  #)2/h2, for # e[O, (,], 

7/°(#) = { [0, otherwise, 
(43a) {(# _ ( , ) ( #  _ ( , _  2 2 

, ) / h , ,  for # E [(,_, ,  ~,1, (43b) 
VJ.(#) = ( # - C . ) ( C . + , - # ) 2 / h ] + , ,  for #e[C. ,C.+,] ,  

0, otherwise, 

for 0( = 1, 2 . . . . .  M - 1, and 

( # -  1 ) ~ - C u _ , ) 2 / h ~ ,  for # ~ [ C . - , ,  1], 

~ u ( # )  = 0, otherwise. 
(43c) 

Now to establish a correspondence with our general development given in Secs. 4 and 5, we let 

~b2#(#) = ~#(#) and ~b2~+ 1(#) = 7/0(#) (44a and b) 

for fl = 0, 1 . . . . .  M. Thus with the definitions 

~0 ~ d# (45a) D2#(~) = #~#(#) # ._ 

and 

~ d# (45b) D2#+~(~) = #~#(#) #~ 

for all ~ except for ~ = I in regard to D2u(~), we can again write 

B~,(Vo) = - c D , , ( V o ) ,  (46a) 

and 

for v e [0, 1] and 

B,(v) = -cD~,(v) + 22(v)~b,(v) (46b) 

I - v )  
B*(v) = D,(v) - -  v4~Av)log (47) 

A,(~) = D , ( -  ~), (48) 
for ~ ~ v0 t_l [0, 1] and make available all of  the general formalism developed in Secs. 4 and 5. To 
be specific, we substitute Eqs. (42) and Eqs. (43) into Eqs. (45) to find that 

Do(~) = Po(¢) + ~ (1 - ~ )~ (1  + ~-~)log ~ , 

,og 

(49a) 

(49b) 
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D5#(¢) = &#(~) + 

h~ 

+ ~:{(¢-~'-')'[3 h~ 

~(~'#+l--~r)213 2((~+i-~)]1og1¢-~'~+,1 
h~+, g:. 

2(¢ h-~'-').]logl, - G_,, 

2(¢ - ~'a-')l ((~+ ~- ¢)~ r3 
g J W, L 

2(~a+!--~)]}logl ~-~'~i 

and 

Ose+ ,(~) = P2a+, (~) + h~+l 

x logl ~ - (a  ,I + ~(~ - G)[  (~ - (-~-')5 h~ 
andf l=l ,2  . . . . .  M - l ,  

DsM(~)=P2M(~)-Fh~--~MM(~- 'M- ,)2[3 

and 

¢(~-~P)(~a+'-~)21ogl~-~+ I ~ (~-G) (~-G- ' )5  
' h~ 

((a + ~-  ¢)r] log l ¢ ~T, J -¢.i. 

2(dj - (M_,!]log ~J L ~--£--I 
hu 

log ~ -- 1 I &,,,+,(O=&,,,+,(~)+ (~ -  l ) ( ~ - L ~ , _ , )  5 ~ - ~ - ~ _ , ,  

where 

5~ 2 +2 
Po(~) = (I 6 (I ~l ~l ' 

+ r ,  ' 

' ' ,+' 
ecp(~)=~(hp+h~+,)-2 +h-~+, + hJ ~ ~ 

1 ~'p2i_ ^ Ca+, k 

and 

~2 1 (3~r~-' 3(~+' ) P,a+,(¢)= (h~+i-h~)+S\--~p + h--~+)-2hp-2hp+, ¢ 

c, t. h~ h . , )  tg  h--ZT+,) 
for fl = 1,2 . . . . .  M -  1, 

1 1 
PsM(~) = ~ &, + ~ (5 + - -  - - -  

and 

12 12) {5 2~3 
hM ~ ¢ + 2(2- &,) h~, h~ 

1 1(6  ) 1 ( 4 )  h~ P2M+,(¢)=- h~+~ ~--~u-9+2hu ¢ - ~  ~--~u-3 ¢2+ . 

(49c) 

(49d) 

(49e) 

(49f) 

(50a) 

(SOb) 

(50c) 

(50d) 

(50e) 

(5of) 
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We note that, as for the case of linear splines, there may be loss of accuracy (caused by the 
cancellation of large numbers in finite-precision arithmetic) if the explicit expressions Eqs. (49) and 
(50) are used to evaluate D2a (¢) or D2a + ~ (~) if I ~ - (a- i I ~ha or [ ~a + i - ~ I ~ha + l is large compared 
to 1. Under these conditions we have evaluated D2#(~) and D2a+~(~) by making appropriate 
binomial expansions in Eqs. (49). 

Proceeding with the computation of the albedo A * and transmission factor B* as given by 
Eqs. (39), we substitute Eqs. (42) and (43) into 

f0 ;0 J2a= #~o(#)d# and J2o+~= #~a (# )d#  (51a, b) 

to obtain 

and 

Jo 3 2 J, 

J 2 a = ~ ( { ~ + , - ~ _ , ) ( 3 ~ + ,  + 4 ~ + 3 ~ _ , )  

(52a, b) 

(52c) 

I J2a +, = ~ [(~ + ~ - ~)2(2~ +, + 3~) - (~ - ¢~ _, )2(3~ + 2~ _, )1, (52d) 

for / / =  1,2 . . . . .  M - l ,  

J2M = ~0 (7 + 3(M_ t)(1 - (M-,) (52e) 

and 

J2M+, = ---~(3 + 2{u_,)(1 -- ( u_ , )  2. (52f) 

Finally, to complete the specification of the FN method based on Herrnite cubic splines, we must 
define a knot and collocation-point strategy. We have implemented several different strategies and 
have found that one good choice is to distribute the knots quadratically, which is in keeping with 
the spirit of de Boor's analysis, ~3 and to use the knots and the midpoints of the subintervals as 
collocation points. Thus we take the knots as 

(53) 

for a = 0, 1 . . . . .  M, and we take the collocation points to be 

~2a=~a for 1 /= 0 ,1  . . . . .  M, (54a) 

t +~a) for 1~=1,2,  , M  (54b) ~2a-t =~(~a-t  . . .  

and, for the consistency condition, 

~ = v0. (54c) 

The results of our computations with the Hermite cubic spline formulation of the FN method 
are summarized in Tables 1 and 2. In the last two columns of Table 1 are listed the albedos and 
the transmission factors for the albedo problem of Sec. 6. We note that for each of the three 
methods summarized in Table 1 the dimension of the approximating subspace is N + 1. Further 
for the linear splines the interval [0, 1] has been partitioned into N subintervals, and for the cubic 
splines the same interval has been partitioned into M - - - ( N -  1)/2 subintervals. 

For this same albedo problem we have computed the angular distribution of the diffuse radiation 
field, i.e., 

~k,(x, #) = 6(x, #) - ½ 6(# - go)exp[-  (x - L) /#] ,  (55) 

at the boundaries, x = L and x = R, and at selected interior points in the slab. In presenting our 
results in Table 2 we take L = 0 and report, for the case #0 = 1, A = 1 and c = 0.9, the converged 
results we found for ¢ , (x ,  #) from the solution based on Hermite cubic splines. In order to obtain 
the results reported in Table 2 (and thought to be correct to within +__ 1 in the last digits given) 
we used N = 127. 
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Table 2. Values of ~#,(x, # )  fo r  go = 1, A = 1 a n d  c = 0.9. 

P z = 0 z = 0.05 z .-~ 0.1 z = 0.2 z = 0.5 z = 0.75 :r = 1 

- 1 . 0  

- 0 . 9  

- 0 . 8  

- 0 . 7  

-0 .6  

- 0 . 5  

-0 .4  

-0 .3  

- 0 . 2  

-0 .1  

0.0 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

2.10001(-1) 
2.23885(-1) 
2.39472(-1) 
2.56974(-1) 
2.76545(-1) 
2.98151(-1) 
3.21267(-1) 
3.44241(-1) 
3.63306(-1) 
3.72669(-1) 
3.59371(-1) 

2.01847(-1) 
2.15593(-1) 
2.31116(-1) 
2.48678(-1) 
2.68510(-1) 
2.90702(-1) 
3.14917(-1) 
3.39767(-1) 
3.61744(-1) 
3.75369(-1) 
3.74856(-1) 
3.74856(-1) 
1.45459(-1) 
8.17099(-2) 
5.66940(-2) 
4.33879(-2) 
3.51359(-2) 
2.95196(-2) 
2.54507(-2) 
2.23672(-2) 
1.99500(-2) 
1.80042(-2) 

1.92839(-1) 1.73234(-1) 1.08052(-1) 5.20545(-2) 
2.06342(-1) 1.86021(-1) 1.17325(-1) 5.71217(-2) 
2.21674(-1) 2.00691(-1) 1.28289(-1) 6.32737(-2) 
2.39138(-1) 2.17620(-1) 1.41428(-1) 7.08963(-2) 
2.59037(-1) 2.37232(-1) 1.57408(-1) 8.05794(-2) 
2.81572(-1) 2.59941(-1) 1.77150(-1) 9.32667(-2) 
3.06584(-1) 2.85937(-1) 2.01882(-1) 1.10552(-1) 
3.32927(-1) 3.14583(-1) 2.32986(-1) 1.35283(-1) 
3.57282(-1) 3.42984(-1) 2.70683(-1) 1.72635(-1) 
3.74075(-1) 3.64932(-1) 3.08157(-1) 2.28599(-1) 
3.79338(-1) 3.77346(-1) 3.32750(-1) 2.72344(-1) 
3.79338(-1) 3.77346(-1) 3.32750(-1) 2.72344(-1) 
2.36850(-1) 3.26737(-1) 3.47040(-1) 2.96869(-1) 
1.47169(-1) 2.38445(-1) 3.27320(-1) 3.06245(-1) 
1.05960(-1) 1.83409(-1) 2.91657(-1) 2.96255(-1) 
8.26581(-2) 1.48251(-1) 2.57648(-1) 2.77711(-1) 
6.77242(-2) 1.24185(-1) 2.28845(-1) 2.57409(-1) 
5.73489(-2) 1.06700(-1) 2.05035(-1) 2.38028(-1) 
4.97251(-2) 9.35871(-2) 1.85331(-1) 2.20417(-1) 
4.38879(-2) 8.32899(-2) 1.68882(-1) 2.04711(-1) 
3.92759(-2) 7.50244(-2) 1.55000(-1) 1.90787(-1) 
3.55402(-2) 6.82457(-2) 1.43159(-1) 1.78448(-1) 

1.86138(-1) 
2.24033(-1) 
2.48328(-1) 
2.57582(-1) 
2.55202(-1) 
2.46679(-1) 
2.35536(-1) 
2.23633(-1) 
2.11883(-1) 
2.00704(-1) 
1.90265(-1) 

We comment on several numerical considerations for this problem. We note that as c ~0, we 
havc v0~ I, so that Eqs. (17) for ~ = I and ~ = v0 become nearly linearly dependent; this clearly 
leads to ill conditioning of the linear system corresponding to Eqs. (21). In this case wc remove 

= I from the set of collocation points and in cither the first or the last interval, instead of using 
the midpoint Eq. (37a), we use two interior collocation points. Wc have observed, however, that 
if this stratcgy is used when v0 is far from I, say, v0 > 1.5, then the splinc may bc very much in 
error at the point # = I. 

It is known that ~b,(x,/~) has singularities at x = 0 for # = 0 and at x = A for # = 0. Wc note 
that Kaper and Kellogg 14 have reported an analysis o f  the asymptotic behavior of  ~ , (x , / ~ )  near 
the singularities. One advantage of  the FN method is that on the boundrics of  the slab the 
discontinuities at # = 0 in ~ , ( 0 ,  #)  and ~ , ( A ,  #)  are automatically resolved. Another advantage 
of  the method is that the [#[ log[#[  singularities of  the exit angular fluxes are resolved in the 
postprocessing. 

The most difficult values to compute accurately in Table 2 are the entries at x = 0.05 for # > 0. 
In fact, we have found that as x --)0, it is necessary to use ever increasing values of  N in order 
to maintain the same degree of  accuracy in the computation of  ~ , (x , /~ ) .  It is also difficult to 
compute accurately the interior values of  ~ , ( x ,  g)  for x near A and # < 0. We have chosen to use 
the same value of  N for all values of  x because we then need to compose and factor the matrix 
in Eqs. (26) only once. Alternatively, if one is interested in computing the diffuse radiation field 
very close to the boundaries, one might consider letting N depend on x or incorporating the 
appropriate singular functions in the spline. 

8. C O N C L U S I O N S  

We have found that both linear and Hermite cubic splines are convenient to use as basis functions 
for the F# method. Furthermore the Hermite cubic splines yield, when the approximating subspaces 
have the same dimensionality, an accuracy almost as good as that offered by the more traditional 
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Legendre polynomial  basis functions. Linear splines are considerably less effective, however,  
p robably  because the radiat ion field is quite smooth ,  while the first derivative o f  linear splines is 
d iscont inuous at each knot.  

We have found that  the accuracy of  the solution with either linear or  Hermite  cubic splines is 
influenced only weakly by the choice o f  the location o f  the knots. A bad choice o f  the collocation 
points can, however,  lead to disastrous results. 

To  commen t  on the parallel processing aspects o f  different implementat ions o f  the FN method,  
we note that  in the tradit ional  version based on Legendre polynomials  the coefficients A~(~)  and 
B~(~a) in Eqs. (26) are computed  recursively. To  compute  the matrix elements in this manner  is 
clearly a sequential opera t ion with respect to 0t. In the spline version o f  the method  each o f  these 
matrix elements may  be computed  independently,  and so a significantly greater degree o f  
parallelism can be used in the calculation. 

Finally we note that  the spline version o f  the F~¢ method  has addit ional features in that basis 
functions that  include more  o f  the basic structure o f  the solution in a limited domain  can be 
included in the approximat ing  subspace, and the distr ibution o f  knots  can be selected, perhaps 
adaptively, to improve the calculation. 

Acknowledgements--This work was supported in part by an Institutional Research and Development grant under the 
auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number 
W-7405-ENG-48. The work of two of the authors (R. C. Y. C. and G. W. H.) was also supported in part by Lawrence 
Livermore National Laboratory under contract No. W-7405-ENG-48 from the Applied Mathematical Sciences Research 
Program of the Office of Scientific Computing of the Office of Energy Research of the U.S. Department of Energy. The 
work of the other author (C. E. S.) was also supported in part by a grant from the National Science Foundation and the 
Air Force Office of Scientific Research. 

R E F E R E N C E S  

1. C. 
2. C. 
3. R. 
4. R. 
5. B. 
6. C. 
7. K. 
8. N. 
9. T. 

10. A. 

E. Siewert and P. Benoist, Nucl. Sci. Engng 69, 156 (1979). 
E. Siewert, Astrophys. Space Sci. 58, 131 (1978), 
D. M. Garcia and C. E. Siewert, Transp. Theory Statist. Phys. 14, 437 (1985). 
D. M. Garcia and C. E. Siewert, J. Comput. Phys. 50, 181 (1983). 
Davison, Neutron Transport Theory, Clarendon Press, Oxford (1957). 
E. Siewert, Z. Angew. Math. Phys. 35, 144 (1984). 
M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, MA (1967). 
I. Muskhelishvili, Singular Integral Equations, Noordhoff, The Netherlands (1953). 
W. Mullikin, Astrophys. J. 136, 627 (1962). 
Gerasoulis and R. P. Srivastav, Int. J. Engng Sci. 19, 1293 (1981). 

11. E. Jen and R. P. Srivastav, Math. Comput. 37, 417 (1981). 
12. M. H. Schultz, Spline Analysis, Prentice-Hall, Englewood Cliffs, NJ (1973). 
13. C. de Boor, in Spline Functions and Approximation Theory, A. Meir and A. Sharma eds., Birkh~user, Basel (1973). 
14. H. G. Kaper and R. B. Kellogg, SIAM J. Appl. Math. 32, 201 (1977). 


