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Abstract--Integral transformation techniques and the FN method are used to develop, for the 
case of a finite plane-parallel layer, general results for the mean intensity and the net flux 
relevant to the classic searchlight problem in radiative transfer. The special case of a normally 
incident beam is then considered, and the resulting expressions for the mean intensity and the 
net flux are reduced to one-dimensional inversion integrals that are evaluated numerically to 
yield accurate numerical results for several test cases. 

1. I N T R O D U C T I O N  

In two previous papers 1'2 concerning radiation transport  through a finite plane-parallel layer with 
nonuniform surface illumination, we used two-dimensional Fourier transformation techniques and 
the F~ method 3 to establish, for the classic searchlight problem of  Chandrasekhar,  4 some analytical 
and computat ional  results that are valid on the two boundaries of  the layer. Here we continue our 
work on the searchlight problem and develop tractable expressions that yield the mean intensity 
and the net flux at any point within the layer as well as on the two boundaries. As our previous 
analysis of  the searchlight problem was reported in detail in Refs. 1 and 2, we assume those works 
to be available and thus give here only a sketch of  the material introductory to our current 
development. 

We consider the equation of  transfer 

# I(z, p, f l )  + to. vp I(z, p, f l )  + I(z, p, f i )  = - ~  I(z, p, ~ ' )  dg~" ( 1 ) 

and the boundary conditions 

and 

/[o, v, n (~ ,  4,)1 = ~ , ~ ( p ) , ~ ( u  - ~o),~(4, - ~o) (2a) 

I[zo, p, f l ( -  Iz, c# )] = 0 (2b) 

for # e [0, 1] and q~ e [0, 2~]. We follow the notation of  Rybicki 5 and note that z ~ [0, z0] and p, 
which lies in the x - y  plane, locate in optical units the position in the homogeneous medium, and 
f l  = fl(#, q~), with/z = cos 0, is a unit vector that defines the direction of  propagation (see Fig. 1). 
In addition, to is the projection of  I I  in the x - y  plane, rio = fl(g0, ~b0) defines the direction of  the 
incident beam and m < 1 is the albedo for single scattering. 

In this work we seek the mean intensity 

J ( z , p ) = l ; f l ( z , p , n ) d n  (3a) 

and the net flux 

1 III(z, p, [1)# d[l F(z, v) = -~ 
.I J 

(3b) 

for all p and for all z • [0, z0]. 
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Fig. 1. The geometry for II, ~, p and k. 
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As shown in Ref. 1, the Fourier transform 

~e(z, It, ~ )  = I I I ( z ,  p, fl)  exp{ik.p} dp 
J d  

satisfies 

= ~e(z,/~', ~b') d~b' dit' ~ - z ~ ' ( z ' ~ ' ¢ ) + u ( i t ' ¢ ) ~ ' ( z ' i t ' ¢ )  ~ j - , j o  

and the boundary conditions 

and 
~ , ( o ,  It, ~ )  = ~ ( i t  - ~ o ) ~ ( ~  - 4,o) 

~" (Zo, - ~, ,~ ) = 0 

for It e [0,1] and ¢ ~ [0, 2n]. Here we use k = Ikl and 

u(it, (9) = 1 - ik(1 - / z 2 )  U2 cos(~b - ~,). 

We can also take Fourier transforms of  Eqs. (3) and use Eq. (4) to obtain 

J (z, p )exp{ i k .  p } dp = "~n ~ (z ) 

and 

where 

and 

ff F(z ,  p ) e x p { i k ' p }  dp 1 Y(z)  
7C 

,e (z ) = ~' (z, It, • ) d,~ d ,  
I 

r(z) = . ~ ( z , . ,  40 d4~ dit. 
-I 

(4) 

(5) 

(6a) 

(6b) 

(7) 

(8a )  

(8b) 

(9a) 

(9b) 
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It follows that once ~V(z) and Y(z) are available we can find the desired mean intensity and the 
net flux from the inversion integrals 

f f  l ~P(z)exp{- ik .p}dk (1Oa) J(z ,  p )  = 

and 

1 ~/" 1 
F(z, P) = ~ 3d ] 1 ~  Y(z)exp{- ik .p}  dk (lOb) 

o r  

and 

J(z, p, ~t) = 1-~3j ° J0 k~( z )exp{ - i kp  cos(or - @)} d@ dk ( l l a )  

F(z, p, 0e) = ~ kY(z)exp{ - i k p  cos(g -- ~b)} d~, dk. (1 lb) 

We now proceed to obtain ~(z )  and Y(z) so that we can use Eqs. (1 l) to find the mean intensity 
and the net flux. 

2. THE P S E U D O  P R O B L E M  

Rather than try to find ~P(z) and Y(z) directly from the transport problem (in transform space) 
defined by Eqs. (5) and (6), we proceed, as we did in Refs. 1 and 2, to base our analysis on the 
pseudo problem introduced by Williams. 6 For the considered searchlight problem this pseudo 
problem is defined by 

= O(z, #' )  d/~' + ½F(z) (12) #(1 + k2#2) 1/2 ~z ~(z, #) + (1 + k2#e)O(z, #)  -~ 

with 

and 

for # e [0, 1]. Here 

0 ( 0 , # )  = 0  (13a) 

¢(Zo, - -#)  = 0 (13b) 

F(z ) = exp{-z /Uo} (14) 

where Uo = #o/U(go, ¢o). 
In order to express the mean intensity and the net flux in terms of  the pseudo problem we first 

solve Eq. (5) to obtain, after we note Eqs. (6), 

and 

o; 
~(z, #, ~b) = 6(# - #o)6(¢ - ¢o) exp{ -z /Uo}  + ~ ~'(z') exp{ - ( z  - z ')/U} dz' (15a) 

w;0 
~g(z, - #, ¢ )  = ~ ~g (z') exp{ - ( z '  - z)/U} dz', (15b) 

for # e [0, 1] and ¢ ~ [0, 2n], where U = #/u(#, dp). We can now integrate Eqs. (15) over # from 
0 to 1 and over ~ from 0 to 2rr and add the two resulting equations to obtain 5'6 

W(z )=F(z )+  ~ ( z ' ) K ( I z ' - z l ) d z "  (16) 
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where 

K(~)= fo'eXp{-~/#}jo[k~ (1-#2)'/2]d~. (17) 

Note that we use Jo(x) to denote the zeroth-order Bessel function of the first kind. 7 
We now follow Rybicki 5 and integrate the identity (see Ref. 7, p. 1027, formula 29.3.92) 

; f  exp{-st}J0[rl(t 2 - 1) '/2] dt exp{- ( s  2 + q2),/2} 
= (S 2 "Jr- /,]2)1/2 ( 1 8 )  

over s from s = ~ to s = ~ to obtain (after some variable changes) 

fo' [~  ] d #  fSexp{-,(l+q2#2/,2)'/2/i.t}dl.t (19, exp{ -  ¢/lt}Jo (1 - #2),/z --g-- = (1 + q2#2/¢2),/2 # 

In a similar manner we can multiply Eq. (18) by s and integrate over s from s = ¢ to s = ~ to 
obtain 

fol (l +~)exp{-,/#}Jo[~(1- #2)'/2]dg =exp{-(,2 + rl2)l/2}. (20) 

We therefore can use Eqs. (19) and (20) to find 

fo' exp{ -~ ( I  + ~2#2/~2),/2/#} d# = exp{ - (¢2  + 02)1 /2}  _ ~ (1 + q21Z2/~2)'/2 # (21) 

or, after an integration by parts, 

fo'eXp{-,Y,/l~}Jo[~(1-g2)'/21dg=ji'exp{-¢(l+q2,2/?,2)'/2/#}d ,. (22) 

If we note Eq. (19) we can rewrite Eq. (17) as 

fS exp{ -  ~ (1 + k2#2)'/2/~} d# 
K(~) = (1 + k2#2) j/2 # (23) 

N o w  solving Eq. (12) and using Eqs. (13), we can write 

• (z, ~) = ~ (1 + k2~2) -l/2 S(z ' ) exp{-  (z - z')(1 + k~#2)'/2/#} dz'  (24a) 

and 

1 ;fo 
4~(z, - # )  = ~ (1 + k2#2) -'/2 S(z')exp{ - ( z '  - z)(1 + k2#2)'/2/~} dz'  (24b) 

for # e [0, 1]; here 

S(z) = we(z )  + F(z) (25) 

with 

I '  ¢(z, #) d#. (26) ~(z)  
j -  I 

Now since we can integrate Eqs. (24) over/~ from 0 to 1 and add the resulting equations to obtain, 
after noting Eq. (23), 

_:f;o S(z) = F(z) + S(z')K(Iz' -- z I) dz', (27) 

we conclude, after viewing Eq. (16), that as noted by Williams 6 

~ (z ) --- F(z ) + me(z). (28) 



The searchlight problem in radiative transfer 471 

We can multiply Eqs. (15) by/~, integrate over/~ from 0 to 1 and over ¢ from 0 to 2n and subtract 
the two resulting equations to obtain, after we note Eq. (9b), 

tff [ ~z° 
F(z) = ~F( z )  +-~ to ~(z ' )sgn(z  - z')L(lz" - z l) dz'  (29) 

where 

or, in view of Eq. (22), 

L(~) = fo' eXp{-P,/Ig}Jo[k~ (1-1~2)l/21dlg (30) 

fO L(~) = exp{ - ~ ( 1  + k2/~2)ln/#} d/~. (31) 

If  we let 

f, .~(z) = ~(1 + k2#2)~n~(z, ~) d~ (32) 

we can multiply Eqs. (24) by ~(1 + k292) ~n, integrate over ~ from 0 to 1 and subtract the two 
resulting equations to find 

= I f  z° 
S(z)  2J0 S(z')sgn(z - z ' )L(Iz '  - z I) dz'. (33) 

Upon comparing Eqs. (25), (28), (29) and (33), we conclude that 

l"(z) = p.oF(z) + w~(z).  (34) 

As the desired results for the mean intensity and the net flux have now been expressed in terms 
of  the pseudo problem, viz., 

1 f f f]~k'e(z)exp{-ikpcos(~-g,)}dOdk (35a) J(z, p, ~) = 

F(z, p, ~) = ~ k ~'(z)exp{ - ikp cos(~ - ~b)} d~k dk 

~e(z) = exp{-z/Uo} + m~(z) 

and 

where 

and 

(35b) 

(36a) 

(36b) F(z) = #o exp{ -z /Uo} + w~(z), 

we proceed to develop our solution to the pseudo problem. 

3. ANALYSIS  OF THE P S E U D O  P R O B L E M  

In this section we start with the pseudo problem defined by 

mfl ~P(z,g')dlz'+½F(z) #(1 + k2/g2) '/2 q)(z, #) + (1 + k2#2)tP(z, ~) = -~ t 

with 

and 

(37) 

• (z0, - /~)  -- 0 (38b) 

for/~ ~ [0, 1]. As we wish ultimately to use the F~¢ method 3 to solve this transport problem we now 
generalize the analysis reported in Refs. 1 and 8 in order to formulate here systems of  singular 

cP(0,/~) = 0 (38a) 
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integral equations and integral constraints that can be used to deduce ¢~(0, - p )  and ~(z0, #) for 
# E [0, 1] as well as ~(z, #) for all z E (0, z0) and all/~ ~ [ -  1, 1]. 

If  we change p to - p  in Eq. (37), multiply the resulting equation by exp{-z / s}  and integrate 
over z from z = a to z = b we find, after an integration by parts, 

W-~(#,s) exp{-z/s}~(z,  - # ) d z  = # ( l  + k2#:) 1/2 

x [~(b, -#)exp{ -b /s}  - ~(a, - # ) e x p { - a / s } ]  + ~ [ ~ * ( s )  + F*(s)] (39) 

where 

and 

W(#, s) = s[s(1 + k2ld 2) - -  kt(1 + k2#2)1/2] - ' ,  

~*(s) = exp{ -z / s}~(z)  dz 

(4o) 

(41) 

and 

where 

o r  I 

m s  :r dz (45) 
A(s) = 1 + --~ J_, dp(T) z ---~s 

q~(v) = (1 - k2~2) -I/2 

and 

y = (1 + k:) -~/: (47) 

Changing variables in the integral term in Eq. (43), we find the convenient form 

A (s) [m~ *(s) + F*(s)] = F*(s) + ms A(s) (48) 

where 

A(s) = ~4~3(~)(~[a, - p ( ~ ) l e x p { - a / s }  - ¢[b, -p (T) lexp{ - -b / s } )  ~---~s 

+ ~ 4 ~ 3 ( z ) ( ~ [ a , p ( ~ ) ] e x p { - a / s } -  ~[b,p(~)lexp{-b/s})-~--~s (49) 

p(z) = T(1 -- k2"r2) -I/2. (50) 

Rather than consider Eq. (48) for all s, we first multiply Eq. (48) by exp{a/s} and consider the 
resulting equation with a = z, b = z0 and ~ s  > 0. Next we multiply Eq. (48), after changing s to 
- s ,  by exp{-b/s} and consider the resulting equation with a = 0, b = z and ~ s  > 0. In this way 

(46) 

F*(s) = exp{-z / s}F(z)dz .  (42) 

In order to keep our development general we do not, at this point, specify a and b more precisely 
than a, b ~ [0, Zo] and a < b. We now multiply Eq. (39) by toW(#, s) and integrate the resulting 
equation over/~ from - 1  to 1 to obtain 

A(s)[w~*(s) + F*(s)] = r*(s) + wsf_, # [q~ (a' - # )  exp{# _-a/S}s(1 +-k2#~) '/2~(b' - #)exp{ -b/s}] d# (43) 

where 

ws ~'~ (1 + k2#2) -~/z 
A(s) = 1 + -~- ,J/- z/~ I s ( 1  + k2#~) ~/2 dlz (44) 
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we find, after we note Eqs. (38), for ~ s  > 0 

A(s)I(s) = U(s) + t~sX(s) 

and 

where 

A(s ) J ( s )  = V(s) + wsY(s )  

473 

(51a) 

(51b) 

Here 

and 

[ ° 1 2(v) + ~ rciv¢(v) J(v) -- V(v) + mv Y+(v). 

2 ( v ) = l  + 2 f ] ~ ¢ ( T ) ~  ~ v  (57) 

where the symbol S implies that the integral is to be evaluated in the Cauchy principal-value sense, 9 

X ± (v) = X(V) _+ lgiv~3(V)~[g, --p(v)] (58a) 

and 

Y± (v) = y(v) _+ 7riv¢3(v)~[z,p(v)] (58b) 

(56b) 

V(so) ÷ wso Y(so) = 0. (55b) 

We can also let s ---, v e [0, T) from above ( + )  and below ( - )  the branch cut of A(s) and use the 
Plemelj formulae 9 to deduce from Eqs. (51) that 

[2(v) _+ 2 nivdp(v)]l(v) = U(v) + wvX±(v) (56a) 

and 

o 

I(s) = [mq)(z) + F(z)]exp{ - ( z  - z)/s} dz, (52a) 

fo J(s) = [w~(T) + F(O]exp{ - ( z  - O/s} d~, (52b) 

fo U(s) = F(Oexp{ - (~  - z)/s} d~, (53a) 

V(s) = F(z )exp{ - (z - ~ )/s } d~, (53b) 
jo 

X ( s )  = T 4 : h ) $ [ z ,  - P ( O I  T - s 

and 

Y(s) = "r¢3('r)V[z,p(T)] + v¢3(z)(V[z, -p(v)]  - @[0, - p ( v ) ] e x p { - z / s } ) - ~ s .  (54b) 

As noted in Ref. 1, the dispersion function A(s) has two zeros _+So in the complex plane cut 
from - ~  to ~ along the real axis, and so we can first evaluate Eqs. (51) at s = So to obtain the two 
integral constraints 

U(so) + WSoX(So) = 0 (55a) 
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where 

x(v) = t~b3(t)O[z, - p ( t ) ]  t - v 

f0 + t4~3(t)(O[z, p(t)] - O[zo, p(t)] exp{ -(z0 - z)/v}) (59a) 

and 

~o dt  ~o' a t  y(v) = t4~3(t)°[z'P(t)] t - v + t4~3(t)(O[z, - p ( Q ]  - 0[0, - p ( t ) ]  exp{-z/v})  -t-+-vv" (59b) 

We can now eliminate I(v) between the two versions of Eq. (56a) and J(v) between the two versions 
of Eq. (56b) to find 

2v2(v )(~:(v )O[z, -p(v)]  = U (v ) + wvx(v ) (60a) 

and 

2v2 (v)g~ 2(v)O [z, p (v)] = V(v) + mvy (v) (60b) 

for all v E [0, ~]. Equations (55) and (60) define a system of integral constraints and singular integral 
equations we can solve to establish 0(0, - /~)  and O(z0,/~) for/~ e [0, 1] and O(z, +/~) for z e (0, Zo) 
and p ~ [0, 1]. 

Intending first to establish 0(0, - # )  and O(Zo, p) for # ~ [0, 1], we deduce from Eqs. (55a) and 
(60a), with z = 0, and Eqs. (55b) and (60b), with z = zo, the system of equations 

dt  
t~S o z(b 3('r)0[0,-p(t)] 

s o - -  "c 

and 

WSo tq~(t)¢[zo, p(t)l So- t 

and, for v e [0, ~,], 

+ WSo exp{ - Zo/So} 

fo ' dz = soUoS(zo; So, Uo) (61a) x t¢3(t)°[z°'P(t)] So + t 

- -  + WSo exp{ -Zo/So} 

fo ~ dt  x ~3(~)O[0' --P(Q] So -I------~ = soUoC(zo; So, Uo) (61b) 

~o ' dt  
2v2(v)dp:(v)~[O, -p(v)]  + wv z~b3(t)@[O, - p ( t ) ]  v - t 

:o' dt +wv exp{-zo/V}  t~b3(t)~[z°'P(t)] v + t 

and 

2 v 2 ( v ) ~ : ( v ) O [ z o , p ( v ) ]  + ~ v  t ~ 3 ( t ) ¢ [ z ° ' P ( t ) ]  v - t 

+wv exp{-zo/V} t4~3(t)@[0' - P ( Q ]  v +---t 

where, in general, 

S(a; x, y) -- 1 -- exp{--a/x} exp{--a/y} 
x + y  

= vUoS(zo; v, Uo) (62a) 

= vUoC(zo; v, Uo) (62b) 

(63a) 
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and 

e x p { - a / x }  - e x p { - a / y }  
C(a; x, y)  = (63b) 

x - - y  

The integral constraints and the singular integral equations given respectively by Eqs. (61) and (62) 
are to be solved to yield the boundary values C(0, - # )  and C(z0, #) for # 6 [0, 1]. 

If  we consider now that C(0, - # )  and C(z0,/~), for # ~[0, I], are known we can, for z ~ (0, z0), 
rewrite Eqs. (55) and (60) as 

;o' dr f~ dz = w,(z, So) (64a) - -  - mso r~b 3(z)C[z, p(z)] So + mSo rdp3(z)C[z, - p ( r ) ]  So - 

and 

fo ' dr 
WS° r d ? 3 ( r ) C [ z ' P ( Z ) ]  s O - -  T 

and, for v e [0, V], 

2v2(v)4~2(v)C[z, - p O ' ) ]  + wv r4,3(~)C[z,  - p ( r ) l  v - r 

fo ~ dr = W:(z, So) (64b) - -  - ~s0 r~3(r)C[z, - p ( r ) ]  So + r 

and 

f~ dr = (z,v) (65a) - - W V  r c ~ 3 ( r ) C [ z ' P ( r ) ]  v .+ "r Wi 

fo ~ dr 2v2(v)dp:(v)C[z, p(v)] + wv r~b3(r)C[z, p(z)] v - r 

f~ dr = W2(z, v) (65b) - w v  rd~3(r)C[z, - p ( r ) ]  v + r 

where 

(66a) 

and 

fo ' dz (66b) W:(z, s) = sUoC(z; s, Uo) - ms e x p { - z / s }  z~b 3(r)C[0' - P ( Q ]  s +---~" 

Of  course once C(0, - / z )  and C(z 0,/~), for # e [0, 1], are known, the right-hand sides of  Eqs. (64) 
and (65) become known. It follows that the integral constraints and the singular integral equations 
given respectively by Eqs. (64) and (65) are to be solved to yield C(z, _+g) for all z ~ (0, z0) and 

~E0, 1]. 

4. A N  FN S O L U T I O N  TO T H E  P S E U D O  P R O B L E M  

In Ref. 2 an Fu solution for the boundary values C(0, - g )  and C(zo, #), # ~ [0, 1], was reported, 
and so here we generalize that work in order to provide a tractable solution for C(z, _ g ) ,  for 
z ¢(0, z0) and # e[0, 1], as well as the boundary values. First of  all we let C0[z , -p(v) ]  and 
Co[z,p(v)], for z ~ [0, z0] and v ~ [0, ~], denote the desired solutions for the case m = 0. We find from 
Eqs. (62) and (65) that 

Co[Z, -p (v ) ]  -- ½ U0~b -2(v) exp{-z/Uo}S(zo - z; v, Uo) (67a) 

and 

C0[z,p(v)] ffi ½Uock-2(v)C(z; v, Uo) (67b) 

for z ~ [0, z0] and v ~[0, ?]. 
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Now for the general case (n7 #: 0) we use the approximations 

q~[O, -p (v ) ]  = ¢~o[0, -p (v ) ]  + -~y¢ -  (v) a,H,(v/y) 
rt=O 

and 

for v .e [0, V], and 

and 

¢~ [z 0, p (v)] = ~0 [z0, p ( v ) ]  + 

(68a) 

¢~[z, - p (v ) ]  = ¢~0[z, - p ( v ) ]  + 
N 

y¢-2(v)  Y' c,(z)H,(v/y) (69a) 
a ~ 0  

and 

IT/ N 
• [z, p(v)] = ~o[Z, p(v)] + -~ y¢ -2(v) ~ d,(z)H,(v/y), (69b) 

~t=0 

for v ~ [0, y] and z ~ (0, z0). Here the basis functions H,(p)  are to be chosen, and the constants 
a,, b,, c,(z) and d,(z) are to be found so that the approximations given by Eqs. (68) and (69) will 
satisfy Eqs. (61) and (62) and Eqs. (64) and (65) at N + 1 values of  ~ e [0, y]Uso. 

Substituting Eqs. (68) into Eqs. (61) and (62), we find, 2 after letting q = v/y and qo = so~v, 
N 

[a,B~(~) + b~ A,(~)exp{-z0/(Y¢)}] = UoR,(O, ~) (70a) 
a ~ O  

where 

In addition, 2 

for r/a [0, 1], and 

N 

[b,B,(¢) + a, A~(~)exp{ -Zo/(y~)}] = UoR2(zo, ~) (70b) 

for ¢ = r/E [0, 1] or ~ = ~/o, which we hereafter abbreviate as ~ e ~ .  We note that, in general, 

R,(z, ~) = exp{ -z /Uo} x¢(yx)[S(zo - z; "~,x, U o ) -  S(zo - z; y~, Uo)] x -  ~ + W(~) 

I ;o' dx x S ( z o - z ; y ~ ,  Uo) + x¢(yx)[C(z;yx, Uo)-exp{-(zo-z)/(y~)}C(zo;yX, U o ) ] ~ - ~  (71a) 

and 

R~(z, ~) = W(~)C(z; y~, Uo) + x¢(yx)[C(z; ~,x, U.) - C(z; y~, Uo)l x- -~  

fo I dx + x¢(yx)[exp{-z /Uo}S(zo-z;yx ,  Uo)-exp{-z/(y¢)}S(zo;yX, Uo) ]~ - -~  (71b) 

fo I fo' dx (72) W(¢) = 2 ¢(?x)  dx - x¢(?x)  x +--'-~" 

fo A.(¢) =,.y x¢(yx)H.(x)  , ~ ~ ' ,  

f0 1 dx (74a) 
B,(t/) = 22(yr/)n,(q) + wy xdp(yx)H,(x) rl _ x'  

fo ~ dx B~ Olo) = my xdp (yx)H,(x) - - .  (74b) 
~ o  - x 

(73) 

N 

y¢-2(v) ~ b,H,(v/y), (68b) 
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To complete our boundary solution, we consider Eqs. (70) at N + 1 selected values of C e ~,  say 
Ca, fl = 0, 1 . . . . .  N, and solve the linear algebraic equations 

N 

[a,B~(Ca) + b~A~(Ca)exp{-z0/(YCa)}] = UoRl (0, Ca) (75a) 
~ = 0  

and 
N 

[b, B,(Ca) + a,A,(¢a)exp{ - Zo/(YCa)}] = Uo Rz (Zo, Ca) (75b) 
a = 0  

to find the constants a, and b,, ~ = 0, 1 . . . . .  N. 
Considering now that we have solved Eqs. (75) to find the constants a, and b,, we substitute 

Eqs. (69) into Eqs. (64) and (65) to obtain 
N N 

[c , ( z )B , (C)  - d~(z)A,(C)]  = UoR,(z,  ~) - exp{-(z0 - z)/(TC)} ~ b , A , ( C )  (76a) 
a = O  a = O  

and 
N N 

[ d , ( z ) B , ( ~ )  - c , ( z ) A , ( ¢ ) ]  = UoR2(z, C) - exp{-z/(TC)} ~ a , A , ( ~ )  (76b) 
a = 0  a = 0  

for C ¢ ~.  To complete the desired solution for any z ~ (0, z0) we consider Eqs. (76) at N + l 
selected values of C e ~,  say Cp, fl = 0, 1 . . . . .  N, and solve the linear algebraic equations 

N N 

[c~(z)a , (c~)  - a , (z)A,(Cp)]  = UoR,(z,  Co) - exp{-(Zo - z)/(7¢~)} ~ b ,A , (C~)  (77a) 
a = O  ~ = 0  

and 

N N 

[a , (z )B, (C~)  - c,(z)A=(¢a)] = UoR~(z, Co) - exp{-z/(eCa)} Y~ a:A,(Ca) (77b) 
• = 0  a = 0  

to find the constants ca(z ) and d , ( z ) ,  ~ = O, 1 . . . . .  N.  It is important to note that only the 
right-hand side of the linear system given by Eqs. (77) depends on z, and so one matrix inversion 
(or LU factorization) is sufficient for any number of values of z. 

Now that all of the required constants are available we can use Eqs. (38) and the approximate 
solutions given by Eqs. (68) and (69) to obtain from Eqs. (26) and (32) 

2 fo' w ' 2 ~  0(0) = Uo ¢ ( T x ) S ( z o ;  ~,x, Uo) d x  + -~ ~ a~I~ (78a) 
ot=O 

and 

f01 t072 N ~.(0) = -- -~ Uo 7 x ¢  3(yx)S(zo; ?x, Uo) d x  - -~ ~ a , J , ,  (78b) 
~tmO 

• = 

x S ( z o - z ; ? x ,  U0)]dx + 2  72 ~ [d~,(z)+c~,(z)]I~ (79a) 
~ = 0  

and 

Z(z)  = -~ v .  ~,x¢3(~x)[C(z; ~,x, Uo) - exp{ -Z/Vo}  

x S ( z  o - z;  ~,x, Uo)l dx + 2 ?~ ~ (a , ( z )  - c , ( z ) lJ~ ,  (79b) 
~ 0  

for z ¢ (0, Zo), and 

¢~(Zo) =-~ Uo c~(Tx)C(zo;?X,  Uo)dx + 2  ?: b~I~ 
otmO 

(80a) 
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E(zo) = ; U, 
s 
o’ y~4~(yx)C(z,,; yx, U,) dx + ; y2 5 b,J, Wb) 

a-0 

where we have defined 

1, = o’ &x)X(x) dx 
s 

’ @la) 

and 

J, = 
s 

’ yx4’(yx)H,(x) dx. (81b) 
0 

It is clear that we can now use Eqs. (78)--(80) in Eqs. (36) in order to establish, by way of 
Eqs. (35), the desired solutions. 

5. THE FOURIER INVERSION 

As a first demonstration that our developed solution to the searchlight problem can be 
implemented to yield what we believe to be accurate numerical results, we focus our attention now 
on the special case of a normally incident beam. It follows, since p. = 1 for this special case, that 
U. = 1 and subsequently that G(z) and E(z) are real valued and independent of the angle rc/. Since 
a(z) and E(z) are, for the case h = 1, independent of $ we use Eqs. (36) and carry out the 
integration over Ic/ in Eqs. (11) to find 

and 

4nJ(z, p) = & 
s 

m k[exp{ -z} + w@(z; k)]J,(kp) dk (82a) 
0 

nF(z,p)=& 
f 

OD k[exp( -z} + w8(z; k)]J,(kp) dk Wb) 
0 

where we have written (lz(z; k) and Z(z; k), rather than simply Q(z) and E(z), in order to note 
explicitly the dependence on the transform variable k. 

We note now that the integral terms in Eqs. (78), (79) and (80) correspond to the once-collided 
components (see Refs. 1, 2 and 10) of the required solutions. We find subsequently that these 
components can be inverted analytically so that we can simplify Eqs. (82) and express our results 
as 

4~Jk P) 
S(P) 

=2npexpi_l)+~J,(z,p)exp{-z}+~J,(r,p) 

and 

RfxZ, P ) = 
d(P) 
~exp{-z}+~~,(z.P)exp{-z}+~~*(z,P). 

(834 

W-9 

Here 

and 
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where 

and 

~(z, p)  = z ( p  2 + z2) -'/~ (85a) 

/~(z, p )  = (z0 - z ) [ p  2 + (Zo - zY]  -'/2. (85b) 

To complete the solutions given by Eqs. (83) we require the FN components which we elect to write 
a s  

x 
J2(z, O) = x2 + O~ [La(z; x /p )  - O(o  - O ,).~(z; oo)]Jo(X) dx 

+ O (p  - p , ) f f ( z ;  oo)Ko(p) (86a) 

and 

f f  x 
F2(z, p) = x2 + p2 [~(z;  x /o )  - 6)(0 - p,)o~'(z; oo)]J0(x) dx 

+ 6)(p - p , ) ~ ( z ;  oo)Ko(p) (86b) 

where Ko(x) denotes the modified Bessel function 7 and 
N 

.~(0; k ) =  ~ a~I~ (87a) 

and 
N 

.g#(0; k ) = -  ~ a~J~, (87b) 
or=0 

and 

for z e (0, Zo), and 

and 

N 

La(z; k) = ~ [d~(z) + c~,(z)]I, (88a) 
a = 0  

N 

3f:(z; k) = ~ [d~(z) - c~(z)]J~, (88b) 
: l - -0  

N 

A"(z0; k)ffi ~ b~I~ (89a) 
~ t l 0  

N 

3r:(Zo; k ) =  ~ b~J~. (89b) 
¢t~0 

As we intend to make use of some asymptotic analysis for small P, we have introduced 

1, for 0 < p ~ < p , ,  (90) 
O ( p - p , ) =  O, for p > p , ,  

where p ,  is to be selected after some numerical experimentation. For basis functions Ha(x) that 
have a nonzero limit as k ~ ~ we can investigate Eqs. (70) and (76) in the limit k ~ oo to find 

7~ 2 1 I "1 dx 
~ ( 0 ;  ~ )  = - ~ -  + ~ | In(1 + x)  - -  (91a) 

jo  X 

and 

7t 2 

.~(z; oo) = ~- exp{-z}  

(91b) 

(92a) 
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and 

for z e (0, z0), and 

a n d  

~ ( z ;  ~ )  = 0, (92b) 

-~(Zo; oo) = ,£0(0; oo) exp{ -Zo} 

• ~(Zo; oo) = -,g,Q(O; oo) exp{ -Zo}. 

(93a) 

(93b) 

To evaluate the integrals in Eqs. (86) we follow Longman ~ and use the zeros of  Jo(x)  as break 
points to subdivide the integration interval [0, c~); subsequently an Euler transformation ~2 is used 
to sum the resulting slowly converging series in a more rapidly convergent manner. 

6. C O M P U T A T I O N A L  ASPECTS OF T H E  FN S O L U T I O N :  
N U M E R I C A L  R E S U L T S  

After having tried various different sets of  basic functions, and considering the ease with which 
the FN solution could be evaluated for these basis functions and the accuracy obtained with the 
different basis functions, we elect here to use two different schemes. 

First of  all we take p ,  = 0.1, and for all p ~< p ,  we follow Ref. 2 and choose to use the basis 
functions H ~ ( x )  = x ~. Having made this choice of  basis functions, we refer to Ref. 2 for a complete 
description of  our way of  evaluating the functions A~(~) and B~(~) for ¢ e ~ .  We also reported 
in Ref. 2 convenient ways to compute 

f0' M~ = x ~+ 1~(Tx) dx (94) 

for ~ = 0, 1, 2 . . . . .  Thus since, for H ~ ( x ) =  x ~, 

we require only 

L = M~_, (95) 

s i n - ]  r 
I0 = , (96)  

r 

where r = yk, to have available the/~,  for ~ = 0, 1, 2 , . . . ,  required in Eqs. (87a), (88a) and (89a). 
Also, we can, for the case H ~ ( x ) =  x ~, evaluate the integral in Eq. (81b) to find 

J~ = 1 - (~ + 1)(1 - r2)~/2M~ (97) 

for ~ = 0 ,  1,2 . . . . .  

Table I. The computed value of 4nJ(z, p) for 14 = 1, t~ = 0.8 and Zo = 1. 

p ::/:tO = 0 ,/zo = 0.08 "/'o = 0.1 "/'o = 0.2 z/zo = 0.5 Z/Zo = 0.78 Z/Zo = 1 

0.001 9.9687(1) 
0.01 9.7637 
0.1 8.4077{-1) 
0.2 3.6477(-1) 
0.4 1.39911-I I 
0.6 7.2196{-2) 
0.3 4.2094{-2) 
1.0 2.62691:-21 
12 1.71301:-21 
1.4 1.1825l-2 ) 
1.6 7.9341(-8 
1.8 8.86271-3 
2.0 5.98731-3 
2.2 2.84901-~ 
2.4 2.07181-.~ 
2.6 1.51941-3 
2.8 1.12281--~ 
3.0 8.3450(-4 
4.0 2.0375(-4 
8.0 8.4060(-~ 

1.8940(2) 1.8083(2) 
1.7924(1) 1.7703{11 
1.1361 1.3086 
4.4621(-1) 8.0743{-f 
1.61231-I I 1.7788(-1' 
8.14281:-2) 8.84711-2' 
4.6948(-21 5.0867{-21 
2.9097(-21 3.1187{-2 
1.8887(-21 2.0184(-2 
1.2663l-2 ) 1.3476(-2 
8.6977(-3) 9.2373(-3 
6.0867(-3) 6.45431-3 
4.3237(-3) 4.8792(-3 
3.10921:-31 3.28961:-8 
2.28871:-3) 2.3879(-3 
1.68821:-31 1.74861:-8 
1.2219(-31 1.2902(--s 
9.0791(~l 9.8818(-4 
2.2122(-4) 2.3307(-4 
8.8629(-81 6.1708(-8 

1.6396(2) 1.216412 ) 9.4723(1) 3.7008(1) 
1.6356(1) 1.2291li } 9.5620 3.8185 
1.4089 1.1991 9.2630(-I) 4.2588(-1) 
5.7604(-1) 5.4481(-1) 4.2286(-1) 2.1656(-I) 
2.0195{-I l 2.1090~-I) 1.7022(-I l 1.0015(-I) 
9.9111(-2) 1.0661~-i~ 8.9826(-2) 5.7469(-2) 
5.eoss(-2) 6.0809~-2) s.2919~-2) 3.5779(-2) 
3.4295(-2! 3.7280(-2) 3.3174(-2! 2.3298(-2) 
2.2058~-2! 2.398q-2) 2.1669~-2~ 1.5634(-2) 
1.4692(-2) 1.5964l-2 ) 1.4581(-2) 1.0729(-2) 
1.0041(-2) 1.0902(-2) 1.0036(-2) 7.4936(-3) 
7.00011:-3 ! 7.5946(-31 7.0314(-31 5.3094(-3) 
4.9578((-3) 5.3745l-3 ) 4.99781:-31 3.8072(-3) 
3.8862{-31 3.8827I-3 ) 3.89491:-31 2.7577(-3) 
2.57821:-33 2.79151:-31 2.6117(-3) 2.0149(-3) 
1.88611:-33 2.04091:-31 1.91371:-33 1.4833(-3 ) 
1.39041:-33 1.5037(-31 1.4128l-3 ) 1.0991(-3) 
1,08181:-8) 1.1184(-3} 1,0493(-3) 8.1920(-4) 
2.8038(--4) 2.7012(,-4) 2.8832(-4) 2.0183(-4) 
6.6182(-8) 7.1317(-5) 6.7879(-5) 8.3665(-5) 
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Table 2. The computed value of nF(z, p) for P0 = I, tu = 0.8 and z 0 = I. 

481 

p Z/zo -- 0 z/Zo = 0.08 x/z0 = 0.1 z/Zo = 0.2 z / ~  = 0,5 zlzo = 0.75 zlZo = 1 

0.001 -6.3217(I) -5.5478(-1) 8.8956(-2} 3.7952(-1) 4.4787(-1) 4.2432(-1) 
0.01 --6.0631 -8.0834(-1) -1.7278(-11 1.4020(-1) 2.6978(-i) 2.8594(-11 
0.1 --4.70741-11 -3.7797(-11 -2.4177(-1) -'6.1321{-21 9.5914(-2) 1.4392(-11 
0.2 -1.90331-1 ) -1.6963(-1) -1.3636(-1) -6.4882(-2) 4.9976(-2) 9.4158(-2) 
0.4 --6.5932(-2) -6.0425(-2} -5.3087(-2) -3.4794(-2) 1.6980(-2) 4.4123(-2 l 
0,6 -3.1437(-21 -2.8851l-2 ) -2.5732(-2) -1.8235(-2) 6.6958(-3) 2.2312(-2) 
0.8 -1.7167(-2) -1.5717(-21 -1.4061(-2) -1.0224(-2) 2.9517(-3) 1.2089(-2 
1.0 -I.0138~-2) -9.2563(-31 -8.2814(-3) -6.0868(-3) 1.4202(-3) 6.0498(-3 
1.2 -6.8099~-8) -5.7477(-8) -5.1392(-31 -3.7982(-3) 7.3166(---41 4.1954(-3 
1.4 --4.0799(-3) -3.7097(-3) -3.3148(-3] -2.4583(-31 3.9791(-4) 2.6353~-3 
1.6 -2.7187(-3) -2.4659(-3) -2.2023(-31 -1.6371(-3) 2.2604(.-4) 1.7094(-3 
1.8 -1.8494(-3} -1.6775(-3) -1.4976(-3) -1.1153(-31 1,3307(--4) 1.1382(-3 
2.0 -1.2829(-3) -1.1627(-3) -1.0376(-8) -7.7387(-4) 8.0708(-5) 7.7433(-4 
2.2 -9.0339(--4) -8.1822('--4) -7.3004(--4) -5.4510(-4) 5,0192(-5) 5.3620(-4 
2.4 -6.4424(--41 -5.8319(-'4) -5.2024(-4) -3.8882(-4) 3,1891(-5) 3.7686(-4 
2.6 -4.64351-4 ~ -4.2017(-4) -3.7475(-41 -2.8030(-4) 2.0641(-5) 2.6822(-4 
2.8 -3.3776(-4) -3,0551(--4) -2.7245(-41 -2.0392(--A) 1,3576(-5) 1.9296(-4 
3.0 -2.4762(---4) -2.2391(-4] -1.9966(-41 -1.4952{-4 ) 9.6570{-6) 1.4010{-4) 
4.0 -5.7322(-51 -8.1778(-5) -4.6150(-51 -3.4621(-8} 1,4082(-6) 3.1842(-5} 
5.0 -1.4673(-6} -1.3246{-5} -1.1803(-5} -8.8619(.-6) 2.6435(-7) 7.8622(-6) 

2.3563{1) 
2.4292 
2.6473(-1) 
1.3034(-1) 
8.6066(-2) 
2.9823(-2) 
1.7259(-2) 
1.0510(-2) 
6.6433(-3) 
4.3262(-3) 
2.8865(-3) 
1.9652(-3) 
1.3609(-3) 
9.5601(-4) 
6.7990(-4) 
4.8867(--4) 
S.5446(-4) 
2.5917(--4) 
5.9338(-5) 
1.5076(-5) 

For all p > p ,  we use the basis functions H ~ ( x )  = cb - ~ ( y x ) P ~ ( 2 x  - 1). Here P ~ ( x )  is used to 
denote the Legendre polynomials, 7 and so with this choice of  basis functions we can express the 
required A~(~) and B~(~) for ~ e ~ as well as the integrals I~ and J~ in terms of  Legendre functions 
of  the second kind 7 which can be evaluated without significant loss of  accuracy in a re.cursive 
manner. ~3 

To complete our FN solution of  the pseudo problem we must simply specify a collocation 
strategy. We again follow Ref. 2 and use G0 = r/0 and the zeros of  the Chebyshev polynomial of  
the first kind T N ( 2 X  -- 1), i.e., 

1 1 [-(2# - 1)x-] 
# = 2 + 2 c ° s /  2-N / '  /~= 1,2 . . . . .  N. (98) 

We list in Tables 1 and 2 our numerical results deduced from the formalism herein discussed. 
To establish our belief that the reported results are correct to within _+ 1 in the last digits given, 
we have used several orders of the FN approximation and several variants (defined by the specific 
zero of Jo(x) where we first employ the method and the total number of  terms used) of Longrnan's 
method to evaluate the integrals in Eqs. (86). Finally we have gained additional confidence by 
finding agreement (to, say, two significant figures) with two independent Monte Carlo calcu- 
lationsJ 4,15 
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