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Abstract--The discrete spectrum for each component problem in a Fourier decomposition of 
the equation of transfer is analyzed for the case of an Lth-order scattering law. The problem 
of determining the number of zeros of the dispersion function for each Fourier-component 
problem and the problem of computing all of these zeros are formulated and resolved in terms 
of Sturm sequences. Computational aspects of the numerical methods are discussed, and the 
developed algorithms are implemented to yield especially accurate numerical results for two 
test problems. 

1. I N T R O D U C T I O N  

Ambarzumian,~ who used a method based on invariance principles, and Chandrasekhar,  2 who used 
a discrete ordinates method, have developed and reported, in two early works in the field of  
radiative transfer, formal solutions to the equation of transfer for the case of  an Lth-order  
scattering law. Since the appearance of these two works, numerous methods for solving the 
equation of  transfer have been developed and reported in the literature (see, for example, the survey 
edited by Lenoble3). We let I(z,/~, ~o) denote the intensity and consider the equation of transfer 4 
written as 

off; = p(cos O)I(r, p ' ,  cp') dq~' d p '  (1) ~ / ( T , ~ , ~ 0 ) + / ( r , ~ , q , )  ~ , 

where ~ is the optical variable, # is the direction cosine measured from the positive • axis, ~o is the 
azimuthal angle and w is the albedo for single scattering. In addition, we assume that the scattering 
law (phase function) can be represented by a finite Legendre expansion in terms of the cosine of  
the scattering angle O, i.e. 

L 

p(cos O) = Z/71Pt(cos O) (2) 
/=0  

where fl0 = 1 and Iflll < 21 + 1 for l >1 1. 
Equation (1) can be decomposed 2'5 into a set of  azimuthally independent equations which can 

be written for m = 0, 1 . . . . .  L as 

# 1re(z, ~) + I"(z, #) = t ~  fltP'P(P) , PT'(#')I"(z, p ' )  dp '  (3) 

where we use the normalized associated Legendre functions 

pT,(.) = [~ - m)!T/2(1- /,/2)m/2 dm 
+ m) ! J  d/x---- ~ Pt(lt). (4) 

Among the methods reported in the literature for solving Eq. (3), the method of elementary 
solutions 6'7 and the Fu method 5' s-t0 have one point in common: both require the determination of  
the discrete eigenvalues, i.e., the zeros of  the dispersion function ~t 

A " ( z ) = l - - z f "  dd"(IX)d# (5) 
,J- z - - ~  
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in the complex plane cut from - 1  to 1 along the real axis. In Eq. (5) the characteristic function 
~Om(p) is defined by 

L 

@re(z) = ~ (1 - z2) "/2 f l t g ' r ( z ) P ' r ( z )  (6) 
I = m  

where the normalized Chandrasekhar polynomials g?(z ) ,  l >>. m,  obey the three-term recursion 
relation 

(l s - m2)'/2g']'_, (z )  -- htzgT'(z) + [(1 + 1) ~ - m2]'/2grfl+ 1 ( z )  = 0 (7) 

with 

h /=  21 + 1 - to/% 

and the starting conditions g ° ( z ) =  1 and 

g~( z )  = (2m - 1)!![(2m)!] -'/2, 

The dispersion function can also be written as t* 

where 

(8) 

L 

Am(z )  = 1 - toz ~ fl,g'~(z)Q']'(z) (10) 
l = m  

l f l  ( l_p2)m/2pT,( /~)dp 
Q']'(z) = ~ 1 z - p" (11) 

In addition, we can follow a procedure reported in Ref. 11 to show that the dispersion function 
can be written, for any N/> L, as 

A m ( z )  = [(N + 1) 2 -mZ]'/2[Q'~(z)g~+ I ( z )  - Q'~+ t ( z )g~(z )]  (12) 

and 

(1 - z2)" /ZPr~(z )a" (z )  = (1 - zZ)"g '~(z)  - 2z~km(z)Q~(z) .  (13) 

Several properties of the dispersion function are useful for determining the discrete spectrum. 
In summary, the following results have been demonstrated for Lth-order scattering laws and 
sometimes, as in the work of Case, ~ also for infinite-order expansions of the scattering law: 

(i) Since A m ( z ) =  A m ( - z )  the discrete eigenvalues appear in + pairs; s,*3 
(ii) Since A " ( z )  = Am(~) the discrete eigenvalues appear in complex conjugate pairs; s 

(iii) For  m ~< 1 the zeros of Am(z)  are real and simple lz'~3 except for the case to = 1 and m = 0 
for which Am(z)  has a double zero at infinity; 14 

(iv) For  m = 0, there are no zeros of A"(z) embedded in the continuum [ -  1, 1] (Refs. 12, 15-17); 
the same is true for m/> 1 if the endpoints +_ 1 are excluded; H 

(v) The number of  discrete eigenvalue pairs is finite, j~ and for Lth-order scattering laws the 
number of pairs is ~< L + 1 - m (Refs. 7 and 13). 

The purpose of  this paper is to show that the problem of  determining the discrete eigenvalues 
for to ~< 1 can be formulated in a convenient way in terms of  Sturm sequences. In See. 2 a 
straightforward application of  the Sturm-sequence property is used to determine the number of  
discrete eigenvalue pairs N". In See. 3 Sturm sequences are used to construct effective algorithms 
for computing and refining discrete eigenvalue estimates, and especially accurate results for two 
test problems are presented in Sec. 4. 

2. THE N U M B E R  OF D I S C R E T E  E I G E N V A L U E  PAIRS 

A few papers s'l°'W8 have dealt with methods for computing the discrete eigenvalues for 
many-term (L >> 2) scattering laws. In all of  these references the argument principle ~9 has been 
employed to compute the number of discrete eigenvalue pairs N"L 

During an implementation of the argument principle to compute N" for all the Fourier 
components of a highly anisotropic (L = 299) problem for which m = 0 results are available, 1° we 

m t> 1. (9) 



Discrete spectrum calculations in RT 387 

found that argument-principle calculations are subject to numerical limitations when applied to 
problems with highly anisotropic scattering laws• First, there is a tendency for N'~ to be large for 
such problems (e.g., N ° = 24 for the L = 299 problem of  Ref. 10 with w = 0.9) which requires the 
use of  very fine grids to follow the change of  argument accurately. In addition to being 
computationally time-consuming, calculations based on the argument principle give results which 
can be termed ambiguous since there is no way to assure a pr ior i  that the selected grid is fine enough 
to avoid the loss of an eigenvalue pair during the calculation• Second, we have found that for 
relatively high Fourier components (m > 20) the computation of  some functions involved in the 
argument-principle calculation is subject to severe loss of  accuracy. To make available an 
alternative to the argument-principle method, we show that Sturm sequences can provide a simple 
and reliable way to compute the number of discrete eigenvalue pairs Nm. 

We consider here that m ~< 1 and note from results (i), (iii) and (iv) of  Sec. 1 that the discrete 
eigenvalues for m ~< 1 are real numbers with magnitudes >/1 and appear in + pairs. Thus if we 
let + vT, ~ = 1, 2 . . . . .  N m, denote the discrete eigenvalues, we can conclude from Eq. (12) that the 
condition A m ( + _ v T ) =  0 implies that 

a~+ , (~ )  
g ~ + , ( ~ ) =  Q~(~-----~ g~,(~), ~ { + v ~ }  and N > ~ L .  (14) 

Now if we use Eq. (7) for 1 = m, m + 1 . . . . .  L and Eq. (14) for N = L, we find that the problem 
of  determining the discrete eigenvalues for m ~< 1 can be restated as the problem of  determining 
those values of  ~ e ~ with magnitudes /> 1 that satisfy the system 

C"(~)gm(~) = 0 (15) 

or, alternatively, det cm(~)=0 .  In Eq. (15), Cm(~) is a tridiagonal matrix of  order L + l - m  
given by 

c " ( O  = 

v/~-m + 1 -¢  
h,. 

v/Y +l -¢  
hm+ I 

+ 4 

hm+ 2 

hm+ I 

_ ~  x / ~ + 9  

hrn + 2 

x / ( L  -- 1)2 _ m 2 

hL- i 

.° 

-¢  

V / - ~ _ m  2 

h t  

hL-  I 

T ' ( ~ )  --  

(16) 

where 

+ ,,7, 
hL L J 

and g"(~) is a vector of  L + 1 - m components given by 

/ \ 

= (18) 

\ g~'i~) / 
If we assume, for the moment, that m ~= l when m = 0, it is clear from Eq. (8) that ht > 0, 1 i> 0. 

Consequently, the off-diagonal products of  cm(~ ), i.e. C,  ~,, + l(~)C,"+ L = (~), are > 0 for ~t = 1, 2 . . . . .  
and thus the problem formulated by Eq. (15) can be symmetrized by means of  a similarity 
transformation with a diagonal matrix. ~° Following Wilkinson, 2° we let $7'(~) denote the leading 
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principal minor of order l - m of cm(~), define 

S~(¢) = 1, (19a) 

note that the first-order minor is 

sm+,(~) = --~ (19b) 

and conclude that the higher-order principal minors satisfy the recursion relation 

f l - m \ f l  +m\ m S'r+l(~)=[T'(¢)fi,.L-¢]S'p(¢)-k h--~_l )k-~-t )S,_,(~) (19c) 

for 1 = m + 1, m + 2 . . . . .  L. It follows that the zeros of S~"+ j (~) are strictly separated by the zeros 
of ST(~), and thus the sequence S~(r/), $7+ ~(q) . . . . .  $7+ ~(r/) obtained for any particular value 
of  q >t 1 is a Sturm sequence, z~ By the Sturm sequence property, :°':~ the number of  sign agreements 
between consecutive elements of this sequence gives the number of zeros of $7+ ~(¢) which are 
greater than r/. 

Our method for computing the number of discrete eigenvalue pairs N" is very simple: we set v/= 1 
and, using the fact that 

lim QT+,(~) = ~ / Z + I - r n  (20) 
~-' aT(~)  + 1 +  m 

and thus Tin(l) = (L + 1 - m)/hL, we compute the number of sign agreements between consecutive 
elements of the sequence S,~(1), S~+ t(1) . . . . .  87+ j(1), i.e. the number of zeros of $7+ ~(~) which 
are > 1. Since these zeros are also the positive solutions (with magnitudes > 1) to Eq. (15), their 
number gives the number of discrete eigenvalue pairs N m, except when S~+ ~(1) = 0 [referring to 
result (iv) of Sec. 1, we note that this can happen only for m t> 1]. In this case, + 1 are also 
eigenvalues and the number of  discrete eigenvalue pairs N m equals the number of zeros of  ST+ ~(~) 
which are > 1 plus one. 

When m = 1, h0 = 0 and the matrix C"(~) becomes unbounded for m = 0. Hence, the case m = 1 
and m = 0 requires special treatment. It can be shown that as z---,~ the dispersion function 
behaves, for m = 0, asZ: 

i~ i (  hi ) a 2  a4 (21) A°(z) = ~ + z S + ~  + ' ' ' '  
1=0 

where a2, a 4 . . . .  are constants. It is clear from Eq. (21) that A°(z) has a double zero at infinity 
for w = 1. A simple modification of the above analysis makes it possible to find the number of 
pairs of bounded zeros of  A°(~) for w = 1. Noting that g°(l)  = 0 [see Eq. (7) for / = m = 0], we 
can consider Eq. (7) for l = 2, 3 , . . . ,  L and Eq. (14) for N = L to obtain the modified system for 
m = l  and m = 0 :  

~0({ )~0(¢) = 0 (22) 

where the tridiagonal ~0({) matrix of  order L - 1 can be obtained by neglecting the first two rows 
and columns of Cm({) for m = 0 and the vector ~0({) by neglecting the first two components of 
gin({) for m = 0. Following the procedure developed with the restriction that t~ # 1 when m = 0, 
we arrive at similar conclusions for w = 1 and m = 0, in regard to the relationship between the 
number of pairs of  bounded discrete eigenvalues and the number of  bounded zeros of S°+1({) 
which are > 1. 

It is interesting to note that if we arbitrarily set T~(¢) = 0 in the last diagonal element of  the 
matrix C"({) defined by Eq. (16), we reduce the problem formulated by Eq. (15) to an algebraic 
eigenvalue problem which has the zeros of  gT+~(¢) as eigenvalues. Since the Sturm sequence 
associated with this algebraic eigenvalue problem differs from the Sturm sequence defined by 
Eqs. (19) only in the last element, the number of discrete eigenvalue pairs N" can be easily related 
to 2m, the number of zeros of gT+~({) which are >1.  In fact, it can be shown that for 
IST+,(I)I >I Tm(I)IST(1)I we must have N" = ~", while for ISg+~(1)[ < Tm(1)IS7(1)I we can have 
~"  = 7" if S~'(1)$7+,(1) < 0  and Nm=7"+ 1 if ST(I)ST+,(1) >~ 0. 
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Finally, we point out that, as was done in Ref. 10 for the Chandrasekhar polynomials [see 
Eq. (45) of Ref. 10], we could restate our problem in terms of the squares of the eigenvalues; 
however, we believe there is no advantage in adopting such a procedure here. 

3. COMPUTATION OF THE DISCRETE EIGENVALUES 

Turning now to the problem of computing the discrete eigenvalues given the number of pairs 
Rm, we first note that a method 5'22 based on a Wiener-Hopf factorization of the dispersion function 
Am(z) has provided explicit results for the discrete eigenvalues when ~m< 3. In addition, this 
explicit method has, for the general case, reduced the task of finding the discrete eigenvalues to 
one of solving a polynomial equation of order Rm for the squares of the eigenvalues. Since the 
explicit results for ~m ~< 3 and the polynomial equations are given in terms of integrals that need 
to be evaluated numerically, the method has been used mainly for obtaining initial estimates of 
the discrete eigenvalues that can be refined subsequently by iterative techniques such as Newton's 
method. However, as discussed in Ref. 10, computational difficulties that arise from ill-conditioning 
of the polynomial equations have been observed in this method when Rm is large, and so the method 
has not been used for problems with highly anisotropic scattering laws. 

A simple and effective method to compute initial estimates for the discrete eigenvalues has been 
proposed to overcome these difficulties) ° The method is based on the fact that the spherical 
harmonics (PN) eigenvalues outside [ - 1 ,  1] approach the "exact" discrete eigenvalues outside 
[ - 1 ,  1] as N-~oo. Indeed, by letting N- ,oo  in Eq. (13) and considering that 23 

lim Q'~(Z)-o, z ¢ [ - l ,  l], (23) 
u~o~ P~(z) 

we conclude from Eq. (13) that 

Am(z) = lim (1 - z2) "/z gTc(z) z ¢ [ -  1, 1], (24) 
m ' 

N ' ~  PN(Z) 

and thus the zeros ofg~(z) outside [ -  1, 1] approach the zeros of Am(z) outside [ -  1, 1] as N - , ~ .  
It has been found that the larger the magnitude of a discrete eigenvalue, the faster the convergence 
of the corresponding PN eigenvalue as N increases; however, when any of the discrete eigenvalues 
happens to be only slightly greater than 1 in magnitude very large values of N may be required 
to find a good estimate of such an eigenvalue. Alternatively, for tv ~< 1, a bisection calculation based 
on Am(~) has been used ~° to find initial estimates and to refine those zeros of Am(l) that are very 
close to _+ 1. 

Once initial estimates of all the discrete eigenvalues are computed, they can be refined, if 
necessary, by iterative techniques; some works have reported experiences with Newton's, 5'22 secant ~4 
and regulafalsi 25 methods. All of these methods plus the above mentioned bisection technique rely 
on accurate calculations of the dispersion function (and its derivative, if Newton's method is 
applied). Consequently, efficient and accurate methods for computing the dispersion function have 
been sought. Evaluation of Am(z) by numerical integration of Eq. (5) has been used sometimes, 5'ts'25 
but there are some disadvantages in this procedure: first, as the integrand of Eq. (5) can vary 
rapidly, especially near the endpoints _+ 1, it is necessary to use a large number of quadrature points 
for integration, which sacrifices computational efficiency (computer time); second, even when 
sufficient care is taken to define the integration rule, the maximum degree of precision normally 
available in a computer (16 decimal digits for double precision in short-word computers) may not 
be sufficient to evaluate the right-hand side of Eq. (5) accurately, as the dispersion function can 
be very small in magnitude (for example, 10 -50 ) even relatively far from zeros, especially for large 
m. This second point is also a limiting factor for the expression given by Eq. (10) and some closely 
related expressions in which the function Q'f(z) has been split into two terms? "~° 

It could be thought that Eq. (12) is a better expression from which to compute Am(z), since it 
is not subject to the accuracy limitations inherent in Eqs. (5) and (10). Unfortunately, there is one 
additional problem that affects Eq. (12) as well as Eq. (10): the lack of a method to compute g'~(z), 
l >i m, accurately for all z. As can be seen from Eq. (13), g'~(z) is proportional to Q~(z) for N i> L 
when z is a discrete eigenvalue and approaches a constant times P'~(z) as N--*ov when z is 
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sufficiently far away from all discrete eigenvalues. Thus, following Gautschi, 26 we could use forward 
recursion of  Eq. (7) to compute g~(z) ,  N >1 L, when z is not near an eigenvalue and backward 
recursion when z is an eigenvalue. However, if we are planning to use Eq. (12) to refine estimates 
of  the discrete eigenvalues, z in general will be very close to (although not exactly) an eigenvalue 
so that it is not clear in which direction the recursion relation given by Eq. (7) should be used to 
compute g~v(z), N >I L, accurately. 

We now proceed to show, by making use of  the basic property of  Sturm sequences, that a 
bisection procedure used to find estimates for eigenvalues with magnitudes just greater than 1 and 
an iterative refinement of  all eigenvalue estimates can be implemented without the need to compute 
A'(~) .  Since, as discussed in Sec. 2, the discrete eigenvalues appear in + pairs and are real for 
tv ~< 1, we limit our discussion here to the computation of  positive discrete eigenvalues. 

We assume that initial estimates for the positive zeros of  A"(~) that are sufficiently far from 1 
have been found, as in Ref. 10, by computing PN eigenvalues with two different values of  N, say 
N~ and N2, and accepting as valid estimates those eigenvalues that do not differ by more than a 
specified amount  when N is changed from N~ to N2. The remaining estimates can be conveniently 
computed from a bisection procedure applied to the Sturm sequence defined by Eqs. (19), hereafter 
denoted as the S"  sequence. In other words, suppose that the PN method has provided p"  
eigenvalue estimates and let v ~,i, denote the smallest of  these estimates. Then, the remaining N" - p " 
estimates are to be computed by bisection in the reduced interval [1, v,~m). The manner by which 
bisection is applied to the S"  sequence is entirely analogous to the bisection procedure used to find 
the eigenvalues of symmetric tridiagonal matrices and discussed in detail by Wilkinson? ° Suppose, 
for example, that we wish to compute an estimate of  v~, p "  < ct ~ N", and we have found two 
points a~ and bg' in the interval [l, vmi,) such that bg' > a~, s(a'~) ~ ot and s(b~) < ~, where s(q) 
denotes the number of sign agreements between consecutive elements of  the S"  sequence evaluated 
at q. Then, a~" < v7 < b~' and we can locate v~ in the interval (aT, b~) of  size (b~ - a'~)/2" in n 
bisection steps. 

Having found the remaining N ' ~ -  p~ estimates by bisection, we now discuss our method of  
refining all the discrete eigenvalue estimates. Instead of looking at the condition A m(vm) = 0 to refine 
the estimate of  vT, we prefer to use the condition that the last element of  the S m sequence evaluated 
at v~" should be zero, i.e. S'~+l(vT) = 0. To avoid computing derivatives of  ST+I(~), we have used 
the regula falsi  method 27 (and also the bisection method) to refine the eigenvalue estimates. 

In order to develop the required S m sequence, it is clear that we first must be able to evaluate 
the function T~(~) defined by Eq. (17). We write 

T"(~)  = (L + 1 - rn)R'(~)/hL (25) 

and seek computational methods to evaluate 

R ' (~ )  =--k /Z+ 1 + m  QT+,(~) ~ e ( l ,  ~ ) .  (26) 
+ l - m  QT(¢) ' 

Considering first of all m = 0, we have two ways of computing R°(~). For ~ e(1, 1 +  E), where 
E = 10 -~, we set z = 1 in the summation formula (No. 8.9.2 of  Ref. 28) 

(~ z) ~ (21 + l )P°(z)Q°(~)  l (a + l ) [P°+, ( z )a° (~)  . . . .  P,(z)Q,+,° 0 (~)] (27) 
t=0 

and use, for ~t = 0, 1 . . . . .  L, 

oo+ (')[ '  1 , ( ¢ )  = Q 0 ( ~ )  _ ~ - (¢ - l )  (21 + 1 ) Q ° ( ~ )  (28)  
I = 0  

along with 

~ Iogf¢ - 1"~ Q0°(~) = - -  \ ~ - ~ j  (29) 

to find QO+ ~(¢) and QO(¢) and subsequently R°(~). We note that since ¢ can be very close to unity, 
which can lead to a loss of accuracy in the computation of  the factor ¢ - 1 required in Eqs. (28) 
and (29), we find it convenient, when ¢ is close to unity, to work with the variable v = ~ - 1 or to 
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introduce the change of  variable 29 

= (1 - e x p { - u } )  -l. (30) 

For  ~ ~[1 + E, ~ )  we use backward recursion to compute R°(~). Thus for some M > L we take 

RM(~) = ~ -- (~2 _ 1)1/2 (31) 

and use 

R~_I (~) = / [ (2!  + 1)~ - (l + 1)Rt(~)] -I (32) 

for l = M, M - 1 . . . . .  L + 1 to find RL(~). We then continue to increase M and repeat this 
calculation until a "converged" value R*(~) is obtained. The desired R°(~) is then identified by 

R°(~) -- R*(~). (33) 

could obtain accurate results for R°(~), for ~e(1 ,  oo) and for Having found that we 
0 ~< L ~< 1000, we now use 

L + ct - (L + 2 - ~t)¢R "-  '(¢) R ' ( ~ )  = 
(L + ~)~ - (L + 2 - ~ ) R ' - ' ( ~ )  

for 0c = 1, 2 . . . . .  m to obtain accurate results for the desired 
1 ~<m ~<L ~< 1000. 

With the established numerical scheme we are able to use Eq. (25) to compute accurately the 
function T"(~), and so we use forward recursion, as described by Eqs. (19), to compute the required 
S"  sequence. It  is worthwhile to mention that rescaling of  the Sin-sequence calculation is usually 
required in order to avoid computer  overflows and/or underflows during the refinement procedure. 

(34) 

R"(~) for ~ e ( l ,  oo) and 

4. N U M E R I C A L  R E S U L T S  

For our first numerical example, we use the scattering law introduced by Kaper,  Shultis, and 
Veninga, 25 i.e. 

L + I  
p(cos O)  = ~ (1 + cos O)  L. (35) 

T a b l e  1. T h e  d iscre te  e igenva lues  for  the  K S V s c a t t e r i n g  law wi th  L = 59. 

c v =  0.8783585 ~ =  0.8115228 ~ v =  0.5678 

m =  0 

1.091745459480726 1.058547311326692 1.000000000001147 
1.463295282686077 1.340299700326329 1.091606657626732 
2.460935156938731 2.050242473971546 1.367969626434857 
5.351091071788712 3.783165533641392 1.912001500826044 

r a =  I 

1.013490847758943 1.002003471942856 1.019807696402705 
1.219686545145295 1.153855444893048 1.196648388280417 
1.808093790081362 1.597621560783307 1.584496726525516 
3.406447023693270 2.667560240371443 

r n =  2 

1.063991418783902 1.034163066112437 1.070993547938969 
1.392493860675903 1.289122731342325 1.330387524558258 
2.254575164875290 1.924450984271905 

r n =  3 

1.140132499173532 1.092195319895360 1.143346356987104 
1.604513871227998 1.456176437134108 

r n =  4 

1.000000026175034 1.168724042905966 1.015898762707950 
1.235765701352745 

m =  5 

1.027401938072136 1.000000005561480 no eigenvalues 



392 R . D . M .  GARCIA a n d  C. E. SIEWERT 

Tab le  2. The  d iscre te  e igenva lues  for  the  c l o u d  p r o b l e m  wi th  tu = 0.9 a n d  m = 0 - 7 .  

r n = 0  r n = l  m = 2  r n = 3  

1.000389979100289 
1.002932994823867 
1.007484963089087 
1.013870322803893 
1.022052177311825 
1.031988750345564 
1.043709272679720 
1.057261138191170 
1.072717289782405 
1.090178937015782 
1.109775208608891 
1.131670715243141 
1.156074203314183 
1.183252816544619 
1.213551335402783 
1.247430064829681 
1.285516474694714 
1.328721070560407 
1.378439970833423 
1.437038878132861 
1.509302317538750 
1.610657591350528 
1.928954632196827 
4.282156025437291 

1.001153598613536 
1.004548762454778 
1.000865191302828 
1.016987048883787 
1.025874128647133 
1.036525274139559 
1.048971958733608 
1.063271075343840 
1.079503001150033 
1.097780112342290 
1.118242151269704 
1.141068171766016 
1.166481794346436 
1.194773475636012 
1.226317705822771 
1.261624532898644 
1.301302202246315 
1.346646675776329 
1.399007123290389 
1.461337568135190 
1.540086796804300 
1.667874854173314 
2.322719076780276 

1.000111776800829 
1.002216338699663 
1.006396066982577 
1.012436444006581 
1.020254938712759 
1.029820348735291 
1.041161172098668 
1.054298263973289 
1.069301606090231 
1.086259626931758 
1.105288824858564 
1.126536145353176 
1.150188383140280 
1.176479806702399 
1.205711096159665 
1.238272832948744 
1.274691173942301 
1.315699457326307 
1.362368011279040 
1.416385802062042 
1,480761361607739 
1.562729929706522 
1.738846142025943 

1.000476262313813 
1.003295330516227 
1.008098291491907 
1.014721894445308 
1.023103645265188 
1.033227041363257 
1.045109719296726 
1.058794335814883 
1.074346472153689 
1.091859250559478 
1.111448795665868 
1.133262344084053 
1.157482707254803 
1.184341215157574 
1.214127701485377 
1.247218584555475 
1.284099624271780 
1.325433468857192 
1.372140566731004 
1.425539866248608 
1.487547015267586 
1.560727536639987 

r n = 4  m = 5  r n = 6  r n = 7  

1.001120002487698 
1.004667252515722 
1.010126365584779 
1.017372522812000 
1.026359499964445 
1.037080308169892 
1.049559005859420 
1.003843473937723 
1.080002048419502 
1.098130574417887 
1.118347372150153 
1.140802174225208 
1.165676047330458 
1.193201421605236 
1.223659217042547 
1.257418610747223 
1.204945011395361 
1.336849151477048 
1.383942530602099 
1.437289924147840 
1.498201754606247 

1.002072376601313 
1.006363314799746 
1.012510052987392 
1.020419612500233 
1.030059080701874 
1.041432316668291 
1.054569853913821 
1.069525399130740 
1.086375964303158 
1.105220825911842 
1.126184748131046 
1.149423385628787 
1.175129102452172 
1.203540600582527 
1.234957362846441 
1.269758753746089 
1.308441730023118 
1.351663401172887 
1.400315189262372 
1.455613852935010 

1.000300407429440 
1.003355148922561 
1.008403038238131 
1.015263141243658 
1.023868287196465 
1.034198451851715 
1.046267889033079 
1.060115204782976 
1.075799343344211 
1.093406215207598 
1.113042051020104 
1.134841751575205 
1.158060023981941 
1.185630223256390 
1.215078313668894 
1.247641493638252 
1.283732422720304 
1.323895971876093 
1.368868633174685 
1.419665396704684 

1.001056218094408 
1.004947685306367 
1.010749773559181 
1.018332733507215 
1.027648101955439 
1.038689077456266 
1.051478256361556 
1.066062198095320 
1.082509599110173 
1.100911861259278 
1.121383796069256 
1.144069519024719 
1.169146488813592 
1.106835410331759 
1.227412363212990 
1.261225538999248 
1.298729538670090 
1.340527410001363 
1.387445025002331 

This scattering law, to which we hereafter refer as the KSV scattering law, has the advantage that 
it can be represented exactly with L + l terms in Eq. (2). A particularly concise way of generating 
the coefficients of Eq. (2) in the present case is to use fl0 = 1 and the recursion relation 

(2l + 1~ l-l_l)flt_ ' (36) 
+l~ 

/ 

for l = 1, 2 , . . . ,  L. We note that the recursion relation expressed by Eq. (36) can be easily derived 

from a result given in Ref. 30 (see formula 7.127). 
Having used the methods of Secs. 2 and 3 for the KSV scattering law with L = 59, we list in 

Table 1 the discrete eigenvalues, which we believe to be correct to within _+! in the last figure 

shown, for three selected values of to. 
As a second application, we consider the challenging cloud problem solved, for the case m = 0, 

in Ref. 10. The scattering law for this cloud problem is defined with L = 299, and we note that 
the coefficients fit, l = 0, 1 . . . . .  L, have been tabulated in Ref. 10. We have again used the methods 
of Sees. 2 and 3 to enumerate and to compute the discrete eigenvalues for all Fourier components, 
m = 0, 1, 2 . . . . .  L, for the considered cloud problem with to = 0.9 and to = 1. The methods proved 
to be very stable from a computational point-of-view, and so we report in Tables 2-4  our results, 
thought to be correct to within + 1 in the last figure shown, for the case to = 0.9. 



Discre te  s p e c t r u m  ca l cu l a t i ons  in R T  

T a b l e  3. T h e  d iscre te  e igenva lues  fo r  the  c l o u d  p r o b l e m  wi th  m = 0.9 a n d  m = 8 -15 .  

393 

m = 8  m = 9  m = l O  m =  11 

1.002132339938634 
1.006827468095151 
1.013374555759685 
1.021680019126139 
1.031710589137234 
1.043471538560993 
1.056994101877314 
1.072330348885676 
1.089558857271397 
1.108777774656722 
1.130112492270336 
1.153715156260448 
1.179777190959969 
1.208531271816884 
1.240278124846740 
1.275395233415470 
1.314377548778322 
1.357893362524082 

1.000027437419281 
1.003498628696048 
1.008969987530013 
1.016251691377068 
1.025274985023264 
1.036021157966385 
1.048504518930511 
1.062764509772019 
1.078862557853792 
1.096882795156472 
1.116931172420344 
1.139140890730823 
1.163675725704861 
1.190738412454895 
1.220583546220196 
1.253527447558321 
1.289979731733468 
1.330481527518500 

1.000821130664178 
1.005130436297479 
1.011354377580926 
1.019358753922739 
1.029093157255540 
1.040552180860370 
1.053758990625113 
1.068758301705021 
1.085620969786781 
1.104436724126241 
1.125321234400075 
1.148414789289055 
1.173894027262453 
1.201971783068786 
1.232919459682506 
1.267077052447685 
1.304885209189289 

1.001904468706302 
1.007005699783873 
1.013963471619675 
1.022679004654549 
1.033118349080497 
1.045285838805675 
1.059212750695516 
1.074952838405016 
1,092582491112014 
1.112198805921483 
1.133923926373632 
1.157908206952960 
1.184334968752226 
1.213436311180691 
1.245496283338074 
1.280877505592311 

m = 1 2  m = 1 3  m = 1 4  m = 1 5  

1.003247165741183 
1.009107295607765 
1.016782659295061 
1.026198778862466 
1.037336742986784 
1.050210357206299 
1.064856238489530 
1.081337123539542 
1.099733934382855 
1.120152199502264 
1.142719666306533 
1.167597276056413 
1.194979651557818 
1.225108803168451 
1.258286110896357 

1.000163170981848 
1.004826826449371 
1.011421794203924 
1.019800881098146 
1.029909735494897 
1.041740420877021 
1.055314732765262 
1.070678040633498 
1.087898261297708 
1.107063400730110 
1.128284295433462 
1.151699009012264 
1.177472380798614 
1.205812961618084 
1.236973492405995 

1.001185938607807 
1.006626201396009 
1.013936688843537 
1.023006887581295 
1.033800209739118 
1.046319232696027 
1.060591493041455 
1.076671240496160 
1.094630543035628 
1.114565054464650 
1.136590729548459 
1.160851518207487 
1.187525095473716 
1.216826508397167 

1.002447008154250 
1.008631308649636 
1.016641222946213 
1.026393736416021 
1.037865567856717 
1.051067591047232 
1.066036250670179 
1.082830539228964 
1.101529442361119 
1.122231947192457 
1.145063698848036 
1.170174543999502 
1.197750340350737 

T a b l e  4. The  d iscre te  e igenva lues  for  the c loud  p r o b l e m  with  w =  0.9 a n d  m = 16-299 .  

m = 1 6  m = 1 7  r n = 1 8  m = I 9  

1.003927202502307 
1.010832054388393 
1.019527658054946 
1.029953577267715 
1.042098674092698 
1.055980180497388 
1.071643269814672 
1.089150893823824 
1.108588529303737 
1.130062421538230 
1.153700775265870 
1.179664571585585 

1.005611079058116 
1.013217080777625 
1.022588089444052 
1.033680905467539 
1.046493470733173 
1.061052580926555 
1.077407845572837 
1.095629899584672 
1.115807208981510 
1.138051478696484 
1.162500434297218 

1.001035866989380 
1.007487588530618 
1.015778984648288 
1.025815804840559 
1.037569741382572 
1.051046351456067 
1.066281266397076 
1.083328776407054 
1.102263296065786 
1.123131039097136 
1.146198772981937 

1.002382232900363 
1.009545762576835 
1.018510462685335 
1.029206236974888 
1.041615421526792 
1.055754289982214 
1.071662261468931 
1.089400674738072 
1.109049765584623 
1.130708481274928 

m =  20  m =  21 m =  22 m =  23 

1.003922137544877 
1.011778047031088 
1.021405367357474 
1.032753367949149 
1.045813907514059 
1.060611717856731 
1.077193031597558 
1.095622829448330 
1.115985258356963 

1.005643398874659 
1.014176314628730 
1.024458181553947 
1.036451751987533 
1.050161613106285 
1.065617502431105 
1.082870374720546 
1 .101990608801886  

1.000152392824666 
1.007537180433021 
1.016734558774208 
1.027663266316458 
1.040299319293542 
1.054655036972556 
1.070766802715633 
1.088691067289518 

1.001521655119800 
1.009595459245190 
1.019447868801839 
1.031016261411271 
1.044290560048354 
1.059290353515943 
1.076057633575474 

m =  24 m =  25 m =  26 m =  27 

1.003065048470729 1.004772526145614 1.006638008871783 1.008653517212453 
1.011811849884141 1.014179654455716 1.016693447280858 1.019348581409128 
1.022308972983460 1.025314574293119 1.028460439804122 1.031742738139702 
1.034512822677810 1.038149769840295 1.041923565675444 
1.048422856274098 1.052693177218516 
1.064065378214677 

r n =  28 m =  29  r n =  30 r n =  31 - 299 

1.001208097161088 1.002860337739749 1.004656331018524 no elgenvalues 
1.010813196303162 1.013112023912043 
1.022140751212102 
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