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Abstract—The polynomials g7'(¢) introduced by Chandrasekhar in regard to a discrete-
ordinates solution of the radiative transfer equation are discussed, and methods for evaluating

these nolvnomials accuratelv in hich order and hich degree on the real line are reported
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1. INTRODUCTION

In his classic work on a radiative transfer, Chandrasekhar! introduced a new class of nnlvnnmlnlc
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in regard to his discrete-ordinates solution of the equation of transfer. These polynomlals, to
which we refer as the Chandrasekhar polynomials or the g polynomials, have also been found
to play a fundamental role in other analytical and computational methods in radiative transfer.
In particular some versions of the spherical harmonics method,>* the method of elementary
solutions,** and the F, method®’ ail require the g polynomiais in one way or another. Analytical
properties of the Chandrasekhar polynomials have been discussed in detail by Inénii® for the

azimuthally cummetric cace {m = 0) In addition there hac haen come Amnncmnng 11 in recard to the
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difficulty in computing these polynomials accurately for the general case (m = 0).
We define the normalized Chandrasekhar polynomials g'(£) with the starting value

gm(&) =(Cm — DN[@m)!1]~1" (1)

and the three-term recursion relation

(2= m)'gp (8) — heg() + U + 17 — m1gr, () =0 @
for = m. Here
h=2+1-wp, 1=01,...,L, (3a)
and
h=2+1, [I>L, (3b)

where @ € (0, 1] is the albedo for single scattering and the f§,, for /=0,1,2,...,L, are the
coefficients in an Lth-order Legendre expansion of the scattering law.3

In this work, we discuss methods for computing accurately the Chandrasekhar polynomials
gre ) foré ez . Clearly, g ( é) = (— 1)’ 4 (6), and so we restrict our attention to £ > 0. We
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2. COMPUTATIONAL METHODS

We consider initially that w # 1 when m = 0; the modifications required to handle the special
case w = 1 and m = 0 wiil be reported at the end of this section. For & € [0, 1] we follow Gautschi'Z
and use Eq. (2) in the forward direction to generate the required g7 (¢) without significant loss of

accuracy ( (excent near a zero of one of the r\nlvnnmmlc\ We note that for F_sl the o nnlvnnm1a|c
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approach very large values in high order and high degree, and so we have used two arrays in
computer calculations to store the required gJ'(¢)—one for the mantissa and another for the
exponent—in order to avoid computer overflows.
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In a previous paper,” we used Sturm sequences to compute the discrete spectrum basic to
several analytical and computational methods in radiative transfer. This spectrum which is

R, P T

LOHIpObCU of the bU'Ldllcu ulerClC ClgCIlleUCb, lb defined on the half pldIlC X z > 0 as the zeros

(>1,and vz 1, form>1,a=1,2,...,N™ of the dispersion function
! d
m U
A(Z)=1—2j Y (u 4)
- z—u
where the characteristic function is
w L
V() =5 (E—p" 3 Bigl (W)PT (k) (5)
I=m
and we use
12 m
PR = [( ;,} (1 -y b ) ©
#m
o denote the normalized associated Legendre functions.

Consndermg now that we w1sh to compute the Chandrasekhar polynomials g7*(¢) for £ =v7,
a=1,2,...,8" we note that in the past we have used’ backward recurrence for this case since
the g7 (v7?) approach zero as /- oo. Defining the ratios

we nave, in t
GT (&) = (P —m) P& — [(1 + 1 —m™'?GT (&)} )
foril=M,M —1,...,m+ 1, to compute the desired ratios for the case £ =v7, a =1,2,...,N"
We then used increasing values of M until the computed values of the ratios G/'(£) for
I=mym+1,...,L —1 ceased to change. Of course once the ratios are known, we can find th
g polynomials, for the case & =v7, a =1,2,...,N" from the starting value given by Eq. (1) and
g 1(€) =GT(S)gr () 9

foril=mm+1,...,L —1.
Although we have used this scheme of backward recursion to obtain accurate results for the
g polynomials for numerous applications, we have recently found problems for which this
approach can fail to yield the desired results accurately. In particular, while trying to solve the
cloud problem of Ref. 7 for the case of a non-normally incident beam, which requires that all
(m=0,1,...,L =299) Fourier component problems be solved, we found that the ratios G}'(¢)
could become > 1 in absolute value as / »m and subsequently that round-off errors could start to
accumulate until all significant figures were lost.
Having found that there are cases where the foregoing scheme of backward recursxon n fail,
smmizy gt nwiza i dsmmmnn~vad aloganithen fae namasmnting tha Chandeacal-t
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discrete spectrum. First of all we compute the starting ratio

Groy) =8 0s) (10)
gL(Va)

from the equivalent expression

m
T oTen) )
A ihad Daf 17 I tha N 3 13
as described in Refl 13, Here the Q functions are defined” by
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Next we use Eq. (8) in the backward direction only as long as the |G7'(v7")| < 1. To be specific,
suppose thisis true for/ =L —1,L —2,..., L*, but false for L* — 1. Then we stop the backward
recursion and switch to forward recursion. We use Eq. (2) for I=m,m +1,...,as long as
|G;"(v;”)| = 1. Suppose we can use Eq. (2) for /=m,m +1,...,!* — 1, so that we have computed
gnevm), gn (v, ...,gr(v"), and then we find |G (v7)| < 1. In this case we stop the forward
recursion and, if /* < L* — 1, we compute the polynomials g%, (vZ), gr .. (vD), ..., gh(vy) by
first solving a linear system obtained from Eq. (2) for /=/*+1,/*+2,..., L* and expressed as

AT(vOIm(vy) =b7(v7), (13)
where A™(vl') is a symmetric tridiagonal matrix, or order (L* — /¥*), that has the elements
R VI =R VT =R VT, — By [(L* + 1) — m) PG (vE)

on the diagonal and the elements

[(7*+ 2 —m?) 2 [(1* + 32 — m?)'2, . .. [(L*)P? —m?)'2
on the sub- and super-diagonals, the vector f”(v7) has components

gr i (v)ErR(VY), 8R 2 (V)BE(VD), .-, 8L (vD)/ER (VY)
and b"(v}) has components

—[(*+ 1)’ —=m¥'?,0,...,0,

and then multiplying the resulting f"(v7') by g (v7). Finally we can readily use the ratios computed
by backward recursion of Eq. (8) and g7.(v¥) in Eq. (9) with / =L* L*+1,...,L —1 in order
to compute the remaining g7, , (v7), g7 .o (V7), ..., g7 (V7).

We note that in the event the Chandrasekhar polynomials are required for ¢ > 1, & #v7,
a=12,...,K" as, for example, when solving multigroup radiation transport problems,'!
we use the starting value given by Eq. (1) and the Darboux formula

6 -n d m m

[(l+ l)z_mz]l/zg;n(n)kgmhkgk (")gk(é) (14)
fori=m,m+1,...,L —1 to generate the required g7 (£), /=m,m + 1, ..., L. Here we choose
1 to be the discrete eigenvalue closest to & (we take # = 1 if there are no discrete eigenvalues) and
we use, as we did when computing the g polynomials for & €0, 1], two arrays in computer
calculations to store the required g7*(¢), in order to avoid underflows and overflows. In contrast
to schemes based on forward recursion of Eq. (2), our present method based on Eq. (14) is
particularly effective when £ is close to a discrete eigenvalue.

To conclude this section, we report here some modifications required in order to compute the
g polynomials for the special case @ = 1 and m = 0. We note that in this case we have gJ(£) =1,
gY(¢) =0 and g3(¢) = —1/2, and so when computing the g polynomials for the bounded discrete
eigenvalues we should use backward recursion of Eq. (8) only for /=L, L —1,...,3 (and, of
course, only as long as the ratio IG;" (v;”)| < 1). In case we need to switch to forward recursion, and,
if necessary, to solve a linear system analogous to Eq. (13), to complete the calculation, we note
that Eq. (2) should be used only for /> 2. In addition, we note that when computing the g
polynomials form =1,m=0and ¢ > 1, ¢ #v?, a =1,2,...,N™ we should use Eq. (14) only for
1=273...,L—1.

g (&)=Grmer &)+

3. NUMERICAL IMPLEMENTATION AND DISCUSSION

We have programmed and implemented our methods for computing the Chandrasekhar
polynomials on a CDC CYBER 170/750 computer and on an IBM-PC. We used two scattering
laws in order to test the developed methods: the L = 299 cloud phase function for which Legendre
coefficients are tabulated in Refs. 3 and 7 and the binomial scattering law'¢

L+1
p(cos @)=—7-t—(1 + cos @)~ (15)
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This scattering law can be represented exactly with (L + 1) Legendre coefficients that can be

computed with f,=1 and
20+ 1\/L+1-1
ﬁ’_<21—1)<L+1+1)ﬂ"‘ (16)

for/=1,2,...,L. We note that we should have pointed out in Ref. 13 that the useful recursion
formula given in Eq. (16) was previously reported by McCormick and Sanchez.'” In our tests with
this scattering law we also used L = 299.

We computed the Chandrasekhar polynomials g7'(¢), m =0,1,...,Land l=m,m+1,...,L,
for both scattering laws and single scattering albedos that varied from 0.1 to 1.0 in steps of 0.1
on a grid defined by £ =0.0(0.1)1.0, ¢ =v(1 £ 107, a=1,2,...,8X"and s =5, 10, 15 and o,

_ \ _ . L
and £ =14+2Y10, ¢+ =0,1,..., 8. By comparing the results of our tests done in single and double

precision on the CYBER machine, we concluded that the procedure described in Sec. 2 is capable
of providing the Chandrasekhar polynomials with good accuracy (loss of < 4 significant figures
except very close to the zeros of the polynomials) for a class of scattering laws characterized by
strong anisotropy.

A few comments on specific points of our procedure to compute the g polynomials for
the discrete spectrum are in order. We have used the LINPACK' subroutines SGBCO and

SGRSL (and their double nrecision versions) to solve the linear svstem defined l-\\y Ea. (1) Rv
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monitoring the condition estimates returned by SGBCO, we found that the lmear systems
appeared to be always relatively well conditioned, so that we found solutions that had, in most
cases, only 2 or 3 fewer significant figures of accuracy than the matrix elements. In the event we
do not wish to monitor the condition number of our linear system, one of the LINPACK
subroutines SGTSL (singie precision) or DGTSL (double precision) can be used to solve the linear
system more quickly.

In addition, for each m component for which discrete eig

that the size of the linear system varied monotonically from 0 (for the largest discrete eigenvalue)
to a maximum value (for the smallest discrete eigenvalue) that depended on how close to 1 the
smallest discrete eigenvalue was—there were cases where we had to solve linear system of size
near 200.

We also compared the resuits of our method for computing the g polynomials for the discrete

spectrum with results from the inverse iteration procedure of Wilkinson,'® as implemented in the
FTQDAFY hnhbnnpzo {cunhrantine TINVITY Dacnite the fact that the inverce itaration nrocedure
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cannot yield accurately eigenvector components that have the ratio of their magnitudes to the
magnitude of the largest component smaller than the machine precision, the inverse iteration results
looked very good when we used any of the usual vector norms? to measure their deviations from
the results of our method. However, when we tried to use the inverse iteration results in Eq. (14)
to generate the polynomials gi*(£) off the discrete spectrum, we observed disastrous resuits as / > L
and so we concluded that inverse iteration cannot be used when one is interested in computing the

. P - i n S )
g polynomials for & > 1, £ #v7, a=1,2,...,¥" Even if this calculation is not required, our

procedure has the advantages of not being iterative and of involving the solution of a linear system
of reduced size when compared with the inverse iteration procedure.

Finally, we should like to point out that our work was developed having in mind the
Chandrasekhar polynomials as required by methods that make use of the “exact” discrete
spectrum, i.e., the zeros of Eq. (4), for solving the radiative transfer equation. Clearly, our work

can be easily adapted to generate the Chandrasekhar polynomials for spherical harmonics
methods®?® of order N — 1 and discrete ordinates methods!?? of order N that use the zeros of ¢ (&)
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with magnitudes > 1 to approximate the “exact” discrete spectrum. To this end, all that we need
to do is to work with the “approximate” discrete spectrum instead of the “‘exact” discrete spectrum
and to take zero as the starting ratio for backward recursion of Eq. (8).
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