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Abstract--The PN method, also called the spherical harmonics method, is used along with 
Hermite cubic splines to define an iterative technique for solving a class of nonlinear problems 
in radiative transfer. Anisotropic scattering and specularly and diffusely reflecting boundaries 
are allowed for the steady-state, combined-mode, conductive-radiative, heat transfer problem 
considered. Computational aspects of the technique are discussed, and the method is used to 
establish the reported numerical results. 

1. I N T R O D U C T I O N  

In a paper published in 1983, Benassi et al I used a computationally stable version of the Ps  method 2 
to compute the partial heat fluxes for a class of classical radiative transfer problems. In a more 
recent work Siewert and Thomas 3 reported a concise result for the particular solution required for 
the PN method when the equation of  transfer contains an inhomogeneous source term. Here we 
use these two previous works 1'3 and Hermite cubic splines to solve the steady-state problem in 
combined-mode (conduction and radiation) heat transfer that has been formulated by Ozi~ik. 4 As 
Ozi~ik 4 has reviewed carefully the numerous works that have contributed to this field of study, we 
do not repeat a review here. 

We consider the equation of transfer written 4 as 

# -~z I(T, # )  + I (z ,  # )  = -~ fltPt(bt) P t ( ld ) I ( z ,  #') dp.' + (1 - to) trn-~2 r'*(z), (1) 
I = 0  1 

for T ~ (0, %) and # • [ - 1, 1], and the boundary conditions 

¢7n2 I 1 
I(0,  # )  = ~t T 4 + p]I(O, - # )  + 2p~ 1(0, - ~ ' ) # '  d#'  (2a) 

x j0 

and 

an 2 i01 I(r0, -- # )  = e2 - -  T~ + p~I(zo,  /~) + 2p2 d I(T0, # ' )# '  d~t' (2b) 
7t 

for # • [0, 1]. Here z • [0, To] is the optical variable,/~ is the direction cosine measured from the 
positive ~ axis and m is the albedo for single scattering. In addition, we have assumed that the 
scattering law p (19) can be represented by a finite Legendre expansion in terms of  the cosine of 
the scattering angle 19, i.e. 

L 

p(19) = ~ fl, Pt(cos 19) (3) 
/ = 0  

where/~0 = 1 and [fl~[ < 21 + l for l >i 1. In regard to the boundary conditions, we note that pS and 
p~, for ~ = 1 and 2, are coefficients for specular and diffuse reflection and that ~= = 1 - p ~ -  p~, 
~t = 1 and 2, are the emissivities for the two surfaces. In addition n is the index of refraction and 
(r is the Stefan-Boltzmann constant. 
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The nonlinear aspect of this problem comes from the fact that the temperature distribution T(z) 
appearing in Eq. (1) must satisfy the heat conduction equation 4 

d 2 
kfl ~ T(z ) = d qr (Z ) (4) 

subject to the boundary conditions T(0) = T~ and T(zo) = T2, where T~ and/ '2 are the temperatures 
that also appear in Eqs. (2). In addition, k is the thermal conductivity of  the medium, fl is the 
extinction coefficient and qr(z) is the radiative heat flux, i.e. 

qr(r) = 2re I(r , /~ ')# '  dp' .  (5) 
1 

Our general approach to the solution of the given problem is the same as that of Lii and ()zi~ik 5 
and that of Thomas, 6 viz. we assume an initial temperature distribution T(r) ,  solve the radiation 
problem to get the radiative heat flux qr(z) and use that result in the conduction equation 
which we subsequently solve to get a new temperature distribution. We then repeat this pro- 
cedure and consider that we have the solution if there appears to be convergence for the desired 
quantities. 

Having stated the general approach to be used here, we note that there are two major issues that 
should be addressed. First of  all, for this problem there are, to the best of  our knowledge, no 
existence or uniqueness theorems that state the conditions for which there is a solution and, if the 
solution exists, when it is unique. In addition and specific to our method of solution, we do not 
have proof  that the method converges to the desired results. Anticipating that these two matters 
will be addressed in later works, we proceed to develop our solution and to report some numerical 
results. 

2. BASIC D E V E L O P M E N T  

To follow a tradition in the heat transfer literature, 4 we normalize the problem by introducing 
a convenient reference temperature Tr and by using 

I ( z , P ) = ( ~ -  T4r)I*(r,~), (6) 

qr(r) = (a-~ T4)q'(z)  (7) 

and 

to rewrite our problem as 

3 
p ~ I*(r, p ) + I*(z, l~ ) 

for z ~(0, r0) and p e [ -  1, 1], 

and 

T(r)  = T~O(r) (8) 

fl , = 5  fl/P,(It) P,(P')I*(r,  k~ dp '  + (1 - w)O4(r), 
/=0 l 

SO 1 I*(O,p)=e, O4+p~I*(O, - - , u )+2p~  I*(0, - k t ' ) p ' d p '  

(9) 

I*(r0, - p) = e2 0 4 + P~I*(r0, ,u) + 2p~ I*(r0,/~')p' dp '  

for p ~ [0, 1]. In addition 

d 2 1 d 
dr 2 0 ( r )  = 4~ZNc d--z q*(z ), 

( 10a) 

(lOb) 

(11) 
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with 

and 

Here 

O (0) = O, = _T~ (12a) 
T~' 

O (,co) = O2 = T: (12b) 
rr 

q* ( z )=  2re f l  t I*(z, #')~t' d#'. (13) 

and 

with 

h ~ = 2 1 + l - t @ t ,  l = 0 , 1  . . . . .  L, (19a) 

where 

h t = 2 l + l ,  l > L .  (19b) 

Following Lii and Ozi~ik, 5 we consider for the moment that q* (,c) is known and we express the 
solution to Eq. (11), subject to the boundary conditions given by Eqs. (12), as 

l ( ;  ° :0 
O(,c) = ~9, + z-- (~92 - O,) + q * ( x ) d x  z__ ~ (20) "co ~ - q* (x ) dx  . 

'co do / 

In addition, we can integrate Eqs. (15) and (17) to find 
J 

q * ( z )  = 2re(1 - m) ~ (~j{Ajexp( - ,c/~j) - Bj e x p [ -  ('c o - ,c)/~j]} + Cj[Uj(,C) - Vj(,c)]) (21) 
j = t  

Uj(z) = S(x)exp[ - (z - x)/~j] dx  
JO 

(22a) 

k/3 
Nc = 4an2T~ (14) 

is called the conduction-to-radiation parameter. 4 
Having formulated the problem in a convenient way, we follow Refs. 1 and 2 and express our 

PN approximation to I*(r,/~), for N odd, in the form 

I*('c, # )  = - - - ~  P,(#) ~ {Aj exp( - 'c/~j) + ( - 1)tBj e x p [ -  (% - z)/~j]}gt(~j) + I*(z ,  #)  (15) 
2l + 1 

/=0 j = l  

where/* (z, #) denotes a particular solution of Eq. (9) corresponding to the inhomogeneous source 
t e r m  

S ( z )  = (1 - W ) O 4 ( ' C ) ,  (16) 

Here the Chandrasekhar polynominals 7 are denoted by gt(¢) and the coefficients Aj and Bj are 
constants that are to be fixed by the boundary conditions. The Pu eigenvalues are 
~j,j  = 1, 2 . . . . .  J = (N  + 1)/2. In addition, we follow Ref. 3 and express the particular solution as 

~ 2 1 + 1  ~- Cj {f~ S(x)exp[_(~_x)/~jldx /* = ,z0-- r -  P'(") 

;° } + ( - 1) t S ( x ) e x p [  - (x  - ~)/~jl dx g,(~j) (17) 

where the constants Cj, j  = 1, 2 . . . . .  J, are given by 

Cj= g~k-2(¢j)hzk-2 , j = l , 2 , . . . , J ,  (18) 
k = l  
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and 

Vj(r) = S(x)exp[ - (x - r)/~j] dx (22b) 

with S(r)  as defined by Eq. (16). We can now substitute Eq. (21) into Eq. (20) to find 

(1  - w )  
O(z)=H'TLH2zo 2N- c j~_l ({2{Ajexp(-z /~J)  

+ Bjexp[ - (% - z)/~j]} + Ci~j[Uj(z) + ~(z)])  (23) 

where 

and 

(1 -- m) ~ { ¢~ [Aj + Bj exp( - ro/¢j)] + C ~i ~ (0)} HI = OI "{- 2 ~ s =  I (24) 

(1  - t o )  ~, 
g 2 = O 2 -- O, ~'Vc j--~'l {¢2(A'-  Bj)[1 - exp( - z0/~j)] + C,~/[~(0) - Uj(%)]}. (25) 

It is clear that we can, at least in principle, now proceed in the following iterative manner. We 
start with an initial normalized temperature distribution obtained, for example, by ignoring the 
integral term in Eq. (20); next we use the initial normalized temperature distribution to define, by 
way of Eq. (16), the source term S(z)  and subsequently the functions Uj(z) and ~(z).  Since the 
particular solution, as given by Eq. (17), has at this point become known, we can substitute Eq. (15) 
into the boundary conditions given by Eqs. (10) and use a projection technique L2 to define a set 
of linear algebraic equations that can be solved to yield the required constants Aj and 
Bj, j  = 1, 2 . . . . .  J. These constants and the previously defined Uj(z) and ~(z)  can now be used in 
Eq. (23) to give the next normalized temperature iterate. 

Before turning to the numerical methods that we use to implement the iterative technique, we 
define some additional physical quantities we wish to compute. Noting the definitions 4 of the 
conductive, radiative and total heat fluxes, viz. 

d 
q~ (r) = - kfl ~ T(z ), (26a) 

j" 
qr(r) = 2~ I(z, p)/J d# (26b) 

I 

and 

q(z) = qc(Z) + q~(r), 

we can use Eqs. (21) and (23) to write 

qc(r) H2 1 
- q * ( ' r ) ,  

kilT r r o 4nN~ 

qr(z) 1 
- q * ( z )  

k~T~ 4nN~ 

and 

q(z) H 2 
kflTr ro 

where H2 is given by Eq. (25) and q*(z) is given by Eq. (21). 

(26c) 

(27a) 

(27b) 

(27c) 

3. N U M E R I C A L  METHODS 

We first note that the PN eigenvalues {~j} can be computed accurately and efficiently as described 
in Refs. 1 and 2. In addition Garcia and Siewerff have recently reported very precise methods for 
computing the Chandrasekhar polynominals {gt(~fl} for both the PN method and the FN method? 
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In order to find the constants {Ai} and {Bj} required in Eq. (15) to define the solution I*(z, #) 
at each step in the iteration procedure, we substitute Eq. (15), with I* (z, #) given by Eq. (17), into 
Eqs. (10) and use the Marshak projection scheme I to obtain, for ~t = 0, 1 . . . . .  (N - 1)/2, the system 
of  linear algebraic equations 

~ 21+1  {[1 t ,  t_0--- f -  - ( -  1 )p~]S= , t -2 ( -  1)tp~So.tS,,,o}[A.j+( - 1)tBjexp(-zo/C.i)]gt(Cj)=Rl,~, (28a) 
j ~ l  -- 

and 

~ ~ 2 l + 1  t s 
j=l t=o - - - ~  {[1 -- ( - 1)p2]S, . t -  2( - 1)tp~So.tS,.o}tBj + ( - 1)tAj exp( - Zo/~j)]gt(~i) = R2.,. (28b) 

Here 

s ~ 2 l +  1 {2pdlSotS, o + [ p ] _ ( _  1)t]S,,t}~Vj(O)gt(~j ) (29a) RL~, = e.t 04S,,,o + . ~  t = o - - ~  ' ' 

and 

J u 2 l + 1 -  do o Cj 
R2, =e2O4S~,o+j~=l ~=o--~{Ep2,.~o,,,a~,o+LoS2-(-1)t]S~,t}-~jUj(zo)gt(~j) (29b) 

where as discussed in Ref. 1 

;o' S,.t = P2, +1 (/~)Pt(#) d#. (30) 

To start our iterative solution we use the initial normalized temperature distribution 

T 
Oo(Z) = O, + (02 - Oi) -- (31) 

T0 

and Eqs. (16) and (22) to define the initial values of the functions Uj(z) and Vj(z). We next solve 
Eqs. (28) to find the first estimates of the constants {Aj} and {Bj}, and these results are then used 
in Eq. (23) to define the new normalized temperature distribution. Although we can use Eq. (23) 
as it is written, we prefer, in order to save some computation time, to use Hermite cubic splines 
to interpolate Eq. (23). 

To define our Hermite cubic splines, we first of all take the M + 1 knots to be 

(, = ( 3 2 )  

for at = 0, l . . . . .  M. Since for the Hermite cubic splines there are two basis functions associated 
with each knot we write 

O(z)  = ~, a~dp~(Z/Zo) (33) 
¢t=0 

where X = 2M + 1 and 

t~2a(/~) = ~a(#) and ~2~+J(#) = ~ ( # ) ,  (34a and b) 

for fl = 0, 1 . . . . .  M. To define the Hermite basis functions ~ ( # )  and ~ ( # )  we let d~ = ~ - ~_  1, 
follow the notation of a previous paper, 1° make use of the representations given by Schultz u and 

write 

5 3 ( ( 1 - # ) : / d ~ - 2 ( ( I - l t ) 3 / d ~ ,  for/z e[0, (,], (35a) 
• 0(#) = [0, otherwise, 

2 2 3 3 (3(# - ~ -1  )/d~ - 2(/~ - ~_ t  )/d~, for # ~ [~_ t ,  ~] ,  
= l~l( ,+ , - IJ) /d,+ , - 2(~,+ l - #) /d,+ ', ~,(/~) 2 2 3 3 f o r / ~ [ ~ , , [ , + l ] ,  (35b) 

otherwise, 
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for e =  1,2 . . . .  M - l ,  

4%( /2 )=~  3(/2-~u ')2/d~-2(/2-(u-t)3/d 3, for/2e[~M 1,1], 

to, otherwise, 

~ ° ( / 2 ) = { ~  ( ' - /2)2 /d~ '  otherwise,f°r /2 ~ [0, (1], 

{ ( / 2 -  (~) ( /2-  (~ ,)2/d2~, for/2 e [(~ 1, ~], 
t / . t( /2)= (/2 ~a)(~a+l-/2)2/d2a+l, f o r / 2 e [ { , , ~ = + , ] ,  

O, otherwise, 

(35c) 

(36a) 

(36b) 

for c ~ = i , 2  . . . . .  M - I ,  and 

{(/2 -- 1)(/2 -- ~a4-~,)2/d~4, for # e [~M t, 1], 
7~M(P) = O, otherwise. (36c) 

It follows from the definitions of the Hermite cubic splines that the coefficients in Eq. (33) are given 
by 

a2~ = 19(z)]r =~r0 (37a) 

and 

c t  
a2~+ i = r0 ~rr O(r)]~=c'~° (37b) 

for c~ = 0, 1 . . . . .  M. Since we have Eq. (23) that defines the normalized temperature and 

d H, 1 
- dr 19(r) = 4 ~  q*(z), (38) 

where q*(z)  and H2 are given by Eqs. (21) and (25), we can use Eqs. (37) to compute the constants 
{a,} required in our spline representation of the normalized temperature distribution. 

We note that we are now left only with the task of evaluating the functions Uj(r) and Vj(r) 
defined by Eqs. (22). Since we are using a spline representation of  the temperature distribution we 
could, in fact, evaluate the integrals in Eqs. (22) analytically; however, for the current version of 
our algorithm we use a standard Gauss quadrature scheme and evaluate the integrals by numerical 
integration. 

Before turning to the next section in which we report some numerical results, we record a few 
remarks. First of  all, as an alternative to using the Hermite splines to represent the temperature 
distribution, we have also carried out some calculations where we represented the inhomogeneous 
source term, as given by Eq. (16), by the Hermite splines. Of course, if we intend to evaluate the 
integrals in Eqs. (22) analytically, then using splines for S(r)  rather than O(r) would make that 
task easier. For the few problems we considered, we did not see any real difference, from a 
numerical point-of-view, between these two usages of the splines. 

In regard to the (outer) iterations between the equation of transfer and the heat conduction 
equation, we note that we have added an inner iteration step to improve the convergence of the 
method. Thus at each step in the outer iteration process we solve Eq. (23) iteratively, since the 
functions Uj(z) and Vj(r) depend on O(r) ,  to find a new temperature O(z). 

For  some difficult problems we have also tried to use, as have Jia and Yener]  2 relaxation 
techniques 13 to keep the calculation from diverging. 

4. N U M E R I C A L  RESULTS 

To have a specific scattering law for testing our solution technique, and to avoid having to 
provide a table of the scattering law coefficients {fit}, we use here the binomial scattering law .4 

L + I  
p(cos lg)  = }Z (1 +cos19)L (39) 
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Table 1. Physical data for different problems. 

Problem q ~2 Pl pl p~ pff Ox 02 t= to No L 

1 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.9 1.0 0.05 0 
2 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.5 0.9 1.0 0.05 0 
3 0.7 0.6 0.1 0.3 0.2 0.1 1.0 0.5 0.9 3.0 0.05 0 
4 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.5 0.95 1.0 0.05 299 
5 0.6 0.4 0.1 0.2 0.3 0.4 1.0 0.5 0.95 1.0 0.05 299 
6 0.8 0.8 0.1 0.1 0.1 0.1 1.0 0.5 0.99 3.0 0.05 299 

which can be represented exactly with L + 1 Legendre coefficients that can be computed with 80 = 1 
and 15 

= ( 2 / +  I'~(L__ + 1 - ~ )  
8it \ 2 1 -  1 , ] \ L  + 1 ~ 8l--1" (40) 

As  we wish to m a k e  ava i l ab le  some  n u m e r i c a l  resul ts  tha t  have  been  o b t a i n e d  wi th  the  m e t h o d s  
d iscussed here,  we cons ide r  the six test p r o b l e m s  def ined  in  T a b l e  1. P r o b l e m  1 was  o r ig ina l ly  
def ined  a n d  solved by  Lii a n d  Ozi~ik, 5 a n d  the  n o r m a l i z e d  t e m p e r a t u r e  d i s t r i b u t i o n  for  p r o b l e m  
2 is g iven  in  g raph ica l  f o rm in  Ref.  4. P r o b l e m  3 is a ve r s ion  o f  p r o b l e m  2 tha t  a l lows for  ref lect ing 

b o u n d a r i e s .  As  p r o b l e m s  1, 2 a n d  3 are for  a n  i so t ropic  sca t te r ing  mode l ,  we have  elected to use 

the b i n o m i a l  sca t te r ing  law wi th  L = 299 for p r o b l e m s  4, 5 a n d  6. 
O u r  conve rged  resul ts  for the n o r m a l i z e d  t e m p e r a t u r e  d i s t r i b u t i o n  a n d  the n o r m a l i z e d  hea t  

fluxes, defined from Eqs. (27) as 

q¢(z) _ //2 1 
Qc(z) = kSTr % 4nN  q*(T), (41a) 

qr(Z) 1 
Q~(z) = k f l ~  - 4 ~  q* (3) (41b) 

and 
q(z) /'/2 

. . . . .  , (41c) 
0 ( 0  kSTr 30 

Table 2. Normalized temperature distribution and heat fluxes for 
problem 1. 

• /,o e(,) Qo(,) Q,{,) Q(,) 
0.00 1.0 8.37894(-I) 2.96126 3.79915 
0 . 1 0  9.18027{-1} 8.08916(-1) 2.99024 3.79915 
0 . 2 0  8 .36956(-11 8.17843(-1) 2.98131 3.79915 
0 . 3 0  7 .53557( -1 )  8.53900(-1) 2.94525 3.79915 
0 . 4 0  6 .65558( -1 )  9.08530(-1) 2.89062 3.79915 
0 . 5 0  5 .71475( -1)  9.74454(-1) 2.82470 3.79915 
0 . 6 0  4.70505(-1) 1.04528 2.75387 3.79915 
0 . 7 0  3.62437(-1) 1.11560 2.68356 3.79915 
0 . 8 0  2.47544(-1) 1.18120 2.61795 3.79915 
0 . 9 0  1.26449(-1) 1.23928 2.55987 3.79915 
1.00 0.0 1.28795 2.51121 3.79915 

Table 3. Normalized temperature distribution and heat fluxes for 
problem 2. 

• I,o o(,) Q,(,) Q,(,) Q(,) 

0.00 1.0 
0.10 9,84270 
0.20 9.11008 
0.30 8.68433 
0,40 8.25127 
0.50 7.79940 
0.60 7.3193e 
0.70 6.80375 
0.80 6,2470g 
0.90 5.6461C 
1.00 5.0(-1) 

4.76841(-I ) 2.65452 3.13116 
'-11 4.41642(-11 2.68952 3.13116 
'-lil 4.26559(-1) 2.70460 3.13116 

i 
- 4.27234{-I) 2.70383 3.13116 

4.40737(-1) 2.69042 3.13116 
4.64560(-11 2.66660 3.13116 

-: 4.96753{yl) 2.63441 3.13116 

5.78464(-1 / 2,55270 3.13116 
6.23663(-1) 2,50750 3.13116 
6.68074(-1) 2.46309 3.13116 



280 C . E .  SIEWERT and J. R. THOMAS, JR. 

Table 4. Normalized temperature distribution and heat fluxes for problem 3. 

,'/,'o e(,-) Q.ff) Q,(,) Q(,) 

0.00 1.0 2.00827(-I) 1.09931 1.30014 
0.10 9.52498(-I I 1.26820(-I) 1.17332 1.30014 
0.20 9.19507(-I) 9.79176(-2) 1.20222 1.30014 
0.30 8.91715(-I I 8.97982(-2) 1.21034 1.30014 
0.40 8.644621-11 9.35590(-2) 1.20658 1.30014 
0.50 8.346121-11 1.071161-1 ~ 1.19302 1.30014 
0.60 7.99059(-I I 1.32088(-i I 1.16805 1.30014 
0.70 7.538161-11 1.725321-1 ~ 1.12761 1.30014 
0.80 6.934701-11 2.33627(-1) 1.06651 1.30014 
0.90 6.11200(-i) 3.18904(-I) 9.81236(-1) 1.30014 
1.00 5.0[-1) 4.24849(-1) 8.75291(-1) 1.30014 

are given in Tables 

Table 5. Normalized temperature distribution and heat fluxes for 
problem 4. 

,/~o e[~) Qo(~) 

0.00 1.0 5.06896(-1) 
0.10 9.51076(-1) 4.74292(-1) 
0.20 9.04648(-1) 4.56516(-i) 
0.30 8.59367(-1) 4.50940(-1) 
0.40 8.14121(-I) 4.55549(-1) 
0.50 7.67971(-1) 4.68769(-1) 
0.60 7.20124(-1) 4.89290(-1) 
0.70 6.69908(-1) 5.15953(-1) 
0.80 6.16765(-i) 5.47669(-1) 
0.90 5.60242(-i) 5.83354(-1) 
1.00 5.0(-I) 6,21826(-1) 

2-7. Having varied the order of  

Q,(*) Qff) 

4.46433 4.97123 
4.49694 4.97123 
4.51471 4.97123 
4.52029 4.97123 
4.51568 4.97123 
4.50246 4.97123 
4.48194 4.97123 
4.45528 4.97123 
4.42356 4.97123 
4.38788 4.97123 
4.34940 4.97123 

the PN approximation, the number of  Hermite 
splines used and the number of  Gauss points used to evaluate the Uj(T) and Vj(z) functions, we 
have some confidence that the results given in Tables 2-7 are correct to within one unit in the last 
digit given. In comparing our results for problem 1 with those of Lii and 0zilik, 5 we found general 
agreement to within one digit in the fifth significant figure; however, we did find one result where 
we differed by three digits in the fourth significant figure. 

To conclude this work we would like to record a few remarks concerning matters that are still 
unresolved. First of all as mentioned in Sec. 1, there are, to our knowledge, no existence and/or 

Table 6. Normalized temperature distribution and heat fluxes for 
problem 5. 

~/,o o(,) Q¢(,) Q,(,) Q(,) 

0.00 1.0 4.73502(-1) 1.57059 2.04409 
0.10 9.54143(-1) 4.46344(-1) 1.59774 2.04409 
0.20 9.10237(-1) 4.34047(-1) 1.61004 2.04409 
0.30 8.66919(-1) 4.34219(-1) 1.60987 2.04409 
0.40 8.23037(-1) 4.45092(-1) 1.59900 2.04409 
0,50 7.77590(-1) 4.65293(-1) 1.57880 2.04409 
0.60 7.29706(-1) 4.93675(-1) 1.55041 2.04409 
0.70 6.78617(-1) 5.29200(-1) 1.51489 2.04409 
0.80 6.23661(-1) 5.70858(-1) 1.47323 2.04409 
0.90 5.64275(-1) 6.17628(-1) 1.42646 2.04409 
1.00 5.0(-1) 6.68457(-1) 1.37563 2.04409 

Table 7. Normalized temperature distribution and heat fluxes for 
problem 6. 

,I,o o(,) Qc(,) Qr(,) Q(~) 
0.00 1.0 1.74205(-1) 3.01765 3.19186 
0.I0 9.50989(-1) 1.54176(-1) 3.03768 3.19186 
0.20 9.06614(-1) 1.42965(-1) 3.04889 3.19186 
0.30 8.64504(-1) 1.38831(-1) 3.05303 3.19186 
0.40 8.22726(-1) 1.40597(-1) 3.05126 3.19186 
0.50 7.79637(-1) 1.47456(-1) 3.04440 3.19186 
0.60 7.33803(-1) 1.58809(-1) 3.03305 3.19186 
0.70 6.83954(-1) 1.74142(-1) 3.01772 3.19186 
0.80 6.28972(-1) 1.92936(-1) 2.99892 3.19186 
0.90 5.67905(-1) 2.14600(-1) 2.97726 3.19186 
1.00 5.0(-1) 2.38360(-1) 2.95350 3.19186 
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uniqueness theorems that apply directly to this problem, and of course it would be useful to know 
if this class of  problems has been well formulated mathematically. Also as we have no p roof  that 
the straightforward iteration scheme we use actually converges, we can only conjecture that the 
results given in Tables 2-7 are actually correct. Finally we note that for the six problems considered 
here, we observed what appeared to be convergence toward the established temperature distri- 
bution; however we did encounter problems where the method failed to converge. In fact, for a 
fixed value of the coupling coefficient, say Nc = 0.05, we found, for example, that increasing the 
thickness z0 of  the medium could cause a previously converging computat ion to diverge. 

While it is clear that the numerical methods used in this work can be used to solve a broad class 
of  combined-mode, radiation-conduction, heat transfer problems, we note that there are, in this 
class of  problems, cases that we have not been able to solve. It  is anticipated that more sophisticated 
iteration techniques will be investigated in future work. 
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