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Abstract--A sphere-to-plane transformation technique and the spherical harmonics method 
are used, along with Hermite cubic splines, to define an iterative technique for solving a class 
of nonlinear radiative transfer problems in a sphere. Computational aspects of the technique 
are discussed, and the method is used to establish numerical results for several test problems. 

1. I N T R O D U C T I O N  

In a paper published in 1975, Wu and Siewert t generalized a transformation technique reported 
by Mitsis 2 in order to reduce a class of  radiation transport problems formulated in spherical 
geometry to more easily solved "pseudo" problems that have plane symmetry. Although the paper 
by Wu and Siewert t has been essentially overlooked by researchers in the radiative heat-transfer 
field, the transformation technique was used by Siewert and Grandjean 3 in 1979 to solve two 
problems, formulated in terms of  neutron transport theory, that are of  interest in the field of  
radiative transfer? 

It is clear that the technique of  transforming from spherical problems to plane problems, as 
discussed by Wu and Siewert, 1 is not sufficiently general to solve all problems with spherical 
symmetry; however, problems in a solid sphere, with a diffusely reflecting surface, that are based 
on isotropic scattering can be solved in this manner for an arbitrary inhomogeneous source term 
and for an arbitrary distribution of  radiation incident on the boundary. 

In order to demonstrate the merits of  the sphere-to-plane transformation technique, 1 we use the 
technique along with the spherical harmonics method s-v and Hermite cubic splines to solve a 
spherical version of  the steady-state problem in combined-mode (conduction and radiation) heat 
transfer that has been formulated by OZl~lk. 4 As (~Zl§lk 4 has reviewed carefully the numerous works 
that have contributed to this field of  study, we do not repeat a review here; however, we do note 
that the present work draws heavily from our recent solution s for the plane geometry case. Also, 
we note that Thynell and OZl~lk, 9 Tsai and (~Zl~lk, 10 Jia et al tl and Thynel112 have reported 
numerical results for coupled problems with spherical symmetry. The work of  Jia et al" addresses 
simultaneous radiation and conduction between concentric spheres, and so the problems considered 
in the work are clearly outside the class of  problems solved in Ref. 1. The paper ~2 by Thynell 
includes an effect of  anisotropic scattering in the equation of  transfer, and so the heat transfer 
problems in a solid sphere that were solved in the work are also outside the class of  problems solved 
in Ref. 1. 

We consider the equation of  transfer written as 

~ I(r,#)q 1-1~2 f-# w f '  w)~rn2 # ~r -r I(r, #) + I(r, #) = -~ -, I(r, #') dlt" + (1 - _---~-- T4(r), (1) 

for r E (0, R) and /z  e [ -  1, 1]. We seek a solution to Eq. (1) subject to the boundary condition 

;o 1 I(R,--#) =E an2 T4 + 2 0 I(R, # ' )# '  dkt' (2) 
7~ 
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for/a E [0, 1]. Here r ~ [0, R] is the optical variable, # is the direction cosine measured from the 
r axis and t~ is the albedo for single scattering. In regard to the boundary condition, we note that 
p is the coefficient for diffuse reflection and that E is the emissivity of the surface. In addition n 
is the index of refraction and ~ is the Stefan-Boltzmann constant. 

The nonlinear aspect of this problem comes from the fact that the temperature distribution T(r) 
that appears in Eq. (1) must satisfy the heat-conduction equation 4 

fl-~r r2 kfl T(r) -- qr(r) + r2h = 0 (3) 

subject to the boundary conditions T(R) = T, where T is the temperature that also appears in 
Eq. (2), and T'(r) = O, for r = 0. In addition, k is the thermal conductivity of the medium, fl is the 
extinction coefficient, the constant h is used to denote prescribed heat generation in the medium 
and qr(r) is the radiative heat flux, i.e. 

f_ qr(r) = 2n I(r, kt)# d#. (4) 
1 

Our general approach to the solution of the given problem is the same as that of Lii and (}Zl~lk ~3 
and that of our previous paper, s viz. we assume an initial temperature distribution T(r), solve the 
radiation problem to get the radiative heat flux qr(r) and use that result in the conduction equation 
which subsequently we solve to get a new temperature distribution. We then repeat this procedure 
and consider that we have the solution if there appears to be convergence for the desired quantities. 

Having stated the general approach to be used here, we note that, as was also mentioned in Ref. 8 
for the plane ease, there are two major issues that should be addressed. First of all, for this problem 
there are, to the best of our knowledge, no existence or uniqueness theorems that state the 
conditions for which there is a solution and, if the solution exists, when it is unique. In addition 
and specific to our method of solution, we do not have proof that the method converges to the 
desired results. Anticipating that these two matters will be addressed in later works, we proceed 
to develop our solution and to report some numerical results. 

2. BASIC FORMULATION 

To follow a tradition in the heat transfer literature, 4 we normalize the problem by introducing 
a convenient reference temperature Tr and by using 

I(r,#)=(a-~n-----~2T4)I*(r,l~), (5' 

qr(r,=(~-~-T~)q,(r) (6) 

and 

r ( r ) =  TrO(r) (7) 

to rewrite our radiation problem as 

/~ I*(r, l~)-~ 1 -  /~2 I*(r, /~) + I*(r, l~)= -~ , r I*(r,/~') d/~' + (1 - w)O'(r) '  (8) 

for rE(O,R)and # ~ [ - 1 ,  1], and 

I*(R,--,)--- EO 4 + 2p I*(R,#')#' d/~' (9) 

for # e [0, 1]. In addition 

r2 d ~ d 1 d 
~ r  2 0  (r) + 2r drr O (r) = 4nN¢ drr [r 2q, (r)] - r 2H (10) 
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with 

and 

Here 

T d O(r)r=0 O(R) = O =-~,  -~r r = 0  (lla, b) 

f q* (r) = 2re I*(r, . ) .  d..  
I 

(12) 

2 = (1 - pA *)-'lEO 4 + 2p~O, (R)] (21) 

where the albedo 3 is 

f' A * = 2 4~(R, #)# d. ,  (22) 
0 

and where, in general, 

qJ.(r) = #'~(r, #) d# (23a) 
1 

and 

4~.(r) = .t~, #'4~(r' #) d. .  (23b) 

Once the two sub-problems are solved and the constant 2 has been computed, then the radiative 
heat flux is given by 

q*(r) = 2n [~O,(r)+ 2~, (r)]. (24) 

if the constant 2 is defined by 

kfl (13) 
Nc = 4an 2T~ 

is called the conduction-to-radiation parameter. 4 In addition 

H = [kfl2Tr]-lh (14) 

is the normalized, and presumed given, constant that represents heat generation in the medium that 
is independent of the radiation intensity. 

In order to make direct use of the sphere-to-plane transformation discussed in Ref. 1, we find 
it convenient to subdivide our given problem into two related problems. The first of the 
sub-problems is the so-called albedo problem; we seek gb(r, #) such that 

1 - #  2 a mr_ "Or ~b(r' ") + - - r  d .  ~b(r, . ) +  tk(r, #) = ~ , qb(r, . ' )  d . ' ,  (15) 

for r ~(0, R) a n d .  e [ - 1 ,  1], and 
4~(R,-#) = 1 (16) 

f o r .  e [0, 1]. In addition we seek ~(r, . )  such that 

. 0~  ~b(r, . )  4 1 - . 2 0  mr_  r 0-# ~O (r' ") + ~O(r' ") = 2 l O(r '" ' )dg'+F(r) '  (17) 

for r~(O.R)and , e [ - 1 . 1 ] ,  and 
~b(R, - #) = 0 (18) 

for # e [0 ,  1]. Here F(r)is the inhomogeneous source term, i.e. 

F(r) = (1 -m)O4(r). 09) 

We thus find that the desired solution for the radiation intensity can be expressed as 

I*(r, . )  = J/(r, . )  + 2q~(r, . )  (20) 
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If we consider for the moment  that the radiative heat flux is known, then we can solve Eq. (10) 
to find 

1 2 1 ;r"qr,(x) dx (25) O(r) = 0 + -~(R - r2)H - 4reNt 

or, after we use Eq. (24), 

I (R2_r2)H - 1 f f  O(r)=O +-~ ~ [~k,(x) + 2~b,(x)] dx. (26) 

It is clear that the albedo problem (the 4~ problem) is independent of the temperature distribution 
O(r) and thus needs to be solved only once. On the other hand, there is coupling betweeen ~O(r, #) 
and the temperature distribution O(r) that is evident from Eqs. (17), (19) and (26). 

We focus our attention now on the albedo problem and note from Refs. 1 and 3 that the moments  
~b0(r ) and ~b~(r)can be expressed as 

~bo(r) = 1 ~o(r ) (27a) 

and 

where, in general, 

cP'(r) = l  ~'(r) +-~ (27b) 

I 
I 

q~,(r) = ~(r, #)#" d#. (28) 
-1  

Here ~(r, t~) is a solution of a pseudo problem, i.e., ~(r, #) must satisfy 

o f _  *(r,  #') d# ' ,  (29) 

for r e ( - R , R ) a n d  # e l - l ,  1]. In addition we require that ~ ( r , # ) = - ~ ( - r , - # )  and that 

• (R, - # ) =  R + # (30) 

for # ~ [0, 1]. We note from Ref. 3 that the albedo A * can be expressed in terms of ~l(r) and O2(r), 
viz. 

2 [R~I(R) + ~2(R)]. (31) A * =  1 +~-  i 

In the following section of this paper we develop our spherical harmonics solution for q~(r,/~), 
and so now we consider the ~O problem. Again we follow Refs. 1 and 3 to deduce that the moments  
~k0(r) and e t ( r ) c a n  be expressed as 

1 7to(r) (32a)  0(r) = 

and 
1 

where, in general, 

~,(r)  = 7t(r, #)/~" d#. 
1 

Here ~e(r, ~) is a solution of a second pseudo problem, viz. ~'(r, #) must satisfy 

w f '  V(r , /~ ' )d# '  + S(r), 

for r ~ ( -  R, R) and # e [ -  1, 1]. Here the source term is 

(32b) 

(33) 

(34) 

S(r )  = (1 -  )rO'(I r I)  (35) 
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In addition we require that it(r,/~) = -  i t ( - r , - # )  and that 

it(R, - /~)  = 0 (36) 

for/~ e [0, 1]. 
Clearly once we have solved the albedo problem to find A * and ~bl(r), we can iterate between 

Eqs. (21), (26), (32b)and (34)to find the temperature distribution O(r)and the conductive, radiative 
and total heat fluxes, viz, 

d T(r), qc(r) = -kt  

and 

qr(r) = 21t f~ll(r,~.L)/.L dl~ 

q(r) = q~(r) + qr(r). 

Using Eq. (26), we write Eqs. (37) as 

and 

(37a) 

(37b) 

(37c) 

qc(r) r 
= 3 H -- q: (r), (38a) 

qr(r) 1 . (38b) 
kflTr = 4~Nc qr (r) 

q(r) r 
k rr = ' q  (38c) 

At this point we are ready to develop our spherical harmonics solution to the two pseudo problems. 

3. A S P H E R I C A L  H A R M O N I C S  SOLUTION OF THE A L B E D O  P R O B L E M  

Since the Pt¢ eigenvalues {~s} can be computed accurately and efficiently as described in Refs. 5 
and 14, and since a recent paper by Garcia and Siewert ~5 has reported very precise methods for 
computing the Chandrasekhar polynomials {gl(~:)} for both the PN method and the FN method, ~6 
it is only a minor exercise to solve the pseudo problem that defines ~(r, #). We consider N to be 
odd, let J = (N + 1)/2 and write 

ff)(r,g) = ~ ~fl-Pt(!a) ~ Dj{exp[-(R +r)/~j]-(--1)texp[-(R--r)/~j]}gt(~j). (39) 
I=0 j = l  

In order to find the constants {Dj} required in Eq. (39), we substitute Eq. (39)into Eq. (30) and 
use the Marshak projection scheme 6 to obtain, for 0t = 0, 1 , . . . ,  J - l ,  the system of linear 
algebraic equations 

~. u 2 1 + l  
~ S,.,gt(¢j)[- 1 + ( -  1)texp(-2R/¢i)]Dj = RS,.o + S,.,, (40) 

j = l l = O  

where as discussed in Ref. 6 

S~,! ~ P2e +1 (~.l)el(/.~) d/.2° (41) 

Once we have solved the linear system given by Eq. (40), we can use Eqs. (27b), (31) and (39) 
to find the required results for the albedo problem, viz. 

and 
A* = 1 + 2Or(R). (43) 
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4. AN ITERATIVE SOLUTION OF THE SECOND PSEUDO PROBLEM 

Considering now that A * and ~81 (r) are available, we develop, in essentially the same way as we 
did in Ref. 8, an iterative solution of the second pseudo problem. We express our Pu approximation 
to it(r, kt), for N odd and J = (N + 1)/2, in the form 

~ 2 l + 1  s it(r, #) = t_o---~---Pt(#) ~, Aj{exp[- (R + r ) / ~ j ] - ( - l ) t e x p [ - ( R  - r)/¢j]}gt(¢j) + itp(r, #) (44) 
-- j = l  

where itp(r,/~) denotes a particular solution of Eq. (34) corresponding to the inhomogeneous source 
term given by Eq. (35). Following Refs. 7 and 8, we express the particular solution as 

itp(r,/~) = t=0 ~ ~f"~Pt(#)j~l'= ~[Uj(r)+(-1)lVj(r)]gt(~y) (45) 

where 

and 

I 
r 

S(x)exp[-(r - x)/¢d dx U/(r) = -R (46a) 

Here 

where 

where 

R, = - ~ t-0 ~ 21 2 + 1 ( _  1)tS,.t~ Uj(R)gt(~j). (49) 
j = ]  - 

Once we have solved Eq. (48)to find the constants A t we can use Eq. (44)in Eq. (328) to find 

d/'(r)=(1--m) ~ ( ( l + ~ )  /=, 

+(1-~){A/~jexp[-(R--r)/~j]--CjVj(r)}). (50) 

At this point we can substitute Eqs. (42) and (50) into Eq. (26) to obtain our Spherical harmonics 
approximation to the normalized temperature distribution. We thus find, after we use Eqs. (46), 

O ( r ) =  ~9 + ~ ( R  2 --r2)H 1 -____m A(r) (51) 
2No 

J 

A(r) = ~ {(2Dj + Aj)¢~ [Xj ( r ) -  Xj(R)] + cj~jE Yj(r ) - ~(R)]} .  
j = l  

(52) 

Xj(r) = 1 { e x p [ - ( R  + r ) / ¢ j ]  - e x p [ - ( R  - r)/¢j]} 
r 

(53a) 

~r R Vj(r) = S(x)exp[-(x - r)/¢j] dx (46b) 

and where the constants Cj, j = 1, 2 . . . . .  J, are given by 

2 h , • (47) Cj= g2k- 2(¢j) 2k-2 j = l , 2  . . . .  J, 
k = l  

with h0 = 1 - tu and h I = 21 "~- 1, l > 0. We note from Eq.  (35) that S(-x) = -S(x) and so it follows 
from Eqs. (46)that U / ( - r ) =  -V/(r) ,  

In order to find the constants {Aj} required in Eq. (44), we substitute Eq. (44)into Eq. (36) and 
use the Marshak projection scheme 6 to obtain, for ~ = 0, 1 . . . . .  J -  1, the system of linear 
algebraic equations 

~ 21 + 1S,,g,(~y)[_ 1 +(-1)'exp(-2R/~j)]Aj= R, (48) 
j = l l = O  T ' 
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and 

Yj(r) = ~ [Uj(r) + Vy(r)]. (53b) 

It is clear that we can, at least in principle, now proceed in the following iterative manner. We 
start with an initial normalized temperature distribution obtained, for example, by ignoring the 
integral term in Eq. (25); next we use the initial normalized temperature distribution to define, by 
way of  Eq. (35), the source term S(r) and subsequently the functions Uj(r) and Vj(r). Following 
the defining of Uj(r) and Vj(r), we can use Eq. (46a)in Eq. (49) and solve the linear algebraic 
equations given by Eq. (48) to obtain the required constants Aj, j = 1, 2 , . . . ,  J. These constants 
and the previously defined Uj(r) and Vj(r) can now be used in Eq. (50)to give ~b~(R) and thus, after 
we use Eq. (21), 2. At this point Eq. (51) can be evaluated to give the next normalized temperature 
iterate. 

5. N U M E R I C A L  METHODS AND RESULTS 

Before reporting some numerical results for several test problems, we make note of some 
additional matters regarding the numerical solution of the second pseudo problem. First of all, 
although we can use Eq. (51) as it is written, we prefer, in order to save some computation 
time, to follow our work in Ref. 8 and to use Hermite cubic splines to interpolate that equation. 
It follows that since we are using a spline representation of the temperature distribution we could, 
in fact, evaluate the integrals in Eqs. (46) analytically; however, for the current version of our 
algorithm we use a standard Gauss quadrature scheme and evaluate the integrals by numerical 
integration. 

We note that, as in Ref. 8, we have, as an alternative to using the Hermite splines to represent 
the temperature distribution, also carried out some calculations in which we represented the 
inhomogeneous source term, as given by Eq. (35), by the Hermite splines. Of course, if we intend 
to evaluate the integrals in Eqs. (46) analytically, then using splines for Sir ) rather than O (r)would 
make that task easier. For the few problems we considered, we did not see any real difference, from 
a numerical point-of-view, between these two usages of the splines. 

In regard to the (outer) iterations between the pseudo problem and the heat conduction equation, 
we note that we have added an inner iteration step to improve the convergence of the method. Thus 
at each step in the outer iteration process we solve Eq. (51) iteratively, since the functions Uj(r) 
and Vj(r) depend on O(r), to find a new temperature O(r). 

Having encountered considerable difficulty in obtaining a converging computation for cases 
where the effects of radiation are very strong, we have used, for the first few iterations, a relaxation 
technique ~7 to keep the computation from exploding. However, after completing a certain number 
of iterations with relaxation in place, we removed the relaxation procedure and completed the 
calculation to obtain our final results. For these cases we also found it helpful to start our 
computation with the initial temperature distribution O ( r ) =  O rather than the radiation-free 
result. 

As we wish to make available some numerical results that have been obtained with the methods 
discussed here, we consider the six test problems defined in Table 1. Our converged results for the 
normalized temperature distribution and the normalized heat fluxes, defined from Eqs. (38) as 

qc(r) r 1 
Qc(r) = kflTr = 3 H -- ~ qr*(r), (54a) 

q~(r) 1 
Qr(r ) = kfl Tr - 4rtN c q* (r ) (54b) 

and 
r 

Ofr] = q(r) = 3 H, (54c) 
~" " kflTr 

are given in Tables 2-7. Having varied the order of the PN approximation, the number of Hermite 
splines used and the number of Gauss points used to evaluate the Uj(r) and Vj(r) functions, we 
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have some confidence that the results given in Tables 2-7 are correct to within one unit in the last 
digit given. 

To conclude this work we would like to record a few remarks concerning matters that are still 
unresolved. First of  all as mentioned in Sec. 1, there are, to our knowledge, no existence and/or 
uniqueness theorems that apply directly to this problem, and of  course it would be useful to know 
if this class of  problems has been well formulated mathematically. Also as we have no proof that 
the straightforward iteration scheme we use actually converges, we can only conjecture that the 
results given in Tables 2-7 are actually correct. Finally we note that for the six problems considered 
here, we observed what appeared to be convergence toward the established temperature distri- 
bution; however, we did encounter problems for which the method failed to converge. 

While it is clear that the numerical methods used is this work can be used to solve some combined 
mode, radiation-conduction, heat-transfer problems in a sphere, we note that there are, in this class 
of  problems, cases that we have not been able to solve. It is anticipated that more sophisticated 
iteration techniques will be investigated in future work. 

Table 1. Physical data for different problems. 

Problem e p O w R Nc H 

I 0.8 0.2 1.0 0.9 1.0 0.05 1.5 

2 0.9 0.i 1.0 0.9 0.5 0.05 I00 

3 0.9 0.1 1.0 0.9 0.05 0.0005 4000 

4 0.9 0.I 1.0 0.9 0.5 0.005 40 

5 0.9 0.1 1.0 0.9 5.0 0.5 0.4 

6 1.0 0.0 1.0 0.9 5.0 0.1 1.0 

Table 2. Normalized temperature distribution and heat fluxes for Problem 1. 

~/R e(,.) Qo(,.) Qr(,') Q(,') 
0.00 1.12138 0.0 0.0 0.0 
0.10 1.12062 1.52369(-2) 3.47631(-2) 5.0(-2) 
0.20 1.11830 3.13948(-2) 6.86052(-2) 1.0(-1) 
0.30 1 .11428 4.94546(-2) 1.00545(-1) 1.5(-1) 
0.40 1.10831 7.05177(-2) 1.29482(-1) 2.0(-1) 
0.60 1.10003 9.58660(-2) 1.54134(-1) 2.5(-1) 
0.60 1.08894 1 .27020( -1 )  1.72980(-1) 3.0(-1) 
0.70 1 .07438 1.65783(-1) 1.84217(-1) 3.5(-1) 
0.80 1 .05546 2.14270(-1) 1.85730(-1) 4.0(-1) 
0.90 1.03112 2.74873(-1) 1.75127(-1) 4.5(-1) 
1.00 1.0 3.50169(-1) 1.49831(-1) 5.0(-1) 

Table 3. Normalized temperature distribution and heat fluxes for Problem 2. 

r/R o(,)  Qc(,) Q.(,') Q(,') 
0.00 2.52513 0.0 0.0 0.0 
0.10 2.62062 1.83096(-1) 1.48357 1.66667 
0.20 2.60618 4.04520(-1) 2.92881 3.33333 
0.30 2.57877 7.10759(-1) 4.28924 5.00000 
0.40 2.53265 1.16486 5.50181 6.65667 
0.50 2.45839 1.85355 5.47968 8.33333 
0.60 2.34153 2.88826 7.11174 1.00000(+1) 
0.70 2.18183 4.38524 7.28143 1.16667(+1) 
0.80 1.89410 6.41222 6.92111 1.33333(+1) 
0.90 1.51276 8.90332 6.09668 1.50000(+1) 
1.00 1.0 1.16178(+1) 5.04885 1.66667(+1) 
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Table 4. Normalized temperature distribution and heat fluxes for Problem 3. 

71 

~/R o(~) Oo(,.) Q,(,.) Off) 
0.00 1.95215 0.0 0.0 0.0 
0.i0 1.94668 2.20633 4.46034 6.66667 
0.20 1.92976 4.60828 8.72506 1.33333(+1) 
0.30 1.89993 7.40913 1.25909(+1) 2.00000(+1) 
0.40 1.85465 1.08231(+1) 1.58436(+1) 2.66667(+1) 
0.50 1.79031 1.50690(+1) 1.82644(+1) 3.33333(+1) 
0.60 1.70224 2.03477(+1) 1.96523(+1) 4.00000(+1) 
0.70 1.58487 2.67992(+1) 1.98674(+1) 4.66667(+1) 
0.80 1.43225 3.44416(+1) 1.88917(+1) 5.33333(+1) 
0.90 1.23873 4.31123(+1) 1.68877(+1) 6.00000(+1) 
1.00 1.0 5.24539(+1) 1.42127(+1) 6.66667(+1) 

Table 5. Normalized temperature distribution and heat fluxes for Problem 4. 

~/R o(~) Q°(r) 0,('9 O(,') 
0.00 1.32004 0.0 0.0 0.0 
0.10 1.31953 2.10701(-2) 6.46597(-1) 6.66667(-1) 
0.20 1.31785 4.73914(-2) 1.28594 1.33333 
0.30 1.31459 8.59090(-2) 1.91409 2.00000 
0.40 1.30888 1.47485(-1) 2.51918 2.66667 
0.50 1.29916 2.50259(-1) 3.08307 3.33333 
0.60 1.28267 4.24775(-1) 3.57523 4.00000 
0.70 1.25467 7.21014(-1) 3.94565 4.66667 
0.80 1.20728 1.21515 4.11818 5.33333 
0.90 1.12819 2.00727 3.99273 6.00000 
1.00 1.0 3.19008 3.47659 6.66667 

Table 6. Normalized temperature distribution and heat fluxes for Problem 5. 

r/R O(r) Qc(r) Qr(r) Q(r) 

0.00 1.49251 0.0 0.0 0.0 
0.10 1.49049 8.14823(-3) 5.85184(-2) 6.66667(-2) 
0.20 1.48427 1.68525(-2) 1.16481(-1) 1.33333(-1) 
0.30 1.47342 2.68523(-2) 1.73148(-1) 2.00000(-1) 
0.40 1.45701 3.93193(-2) 2 .27347(- i )  2.66667(-1) 
0.50 1.43336 5.62435(-2) 2.77090(-1) 3.33333(-1) 
0.60 1.39947 8.10213(-2) 3.18979(-1) 4.00000(-1) 
0.70 1.35012 1.19207(-1) 3.47460(-1) 4.66667(-1) 
0.80 1.27667 1.79019(-1) 3.54314(-1) 5.33333(-1) 
0.90 1.16585 2.70291(-1) 3.29709(-1) 6.00000(-1) 
1.00 1.0 3.99335(-I) 2 .67331(-I )  6.66667(-1) 

Table 7. Normalized temperature distribution and heat fluxes for Problem 6. 

r/R o(r) Qo(~) Qr(~) Q(r) 
0.00 1.35750 0.0 0.0 0.0 
0.10 1.35626 4.95826(-3) 1.61708(-1) 1.66667(-1) 
0.20 1.35253 1.00184(-2) 3.23315(-1) 3.33333(-1) 
0.30 1.34621 1.53099(-2) 4.84690(-1) 5.00000(-1) 
0.40 1.33714 2.10549(-2) 6.45612(-1) 6.66667(-1) 
0.50 1.32499 2.77786(-2) 8.05555(-1) 8.33333(-1) 
0.60 1.30896 3.70412(-2) 9.62959(-1) 1.00000 
0.70 1.28673 5.40039(-2) 1.11266 1.16667 
0.80 1.25097 9.59937(-2) 1.23734 1.33333 
0.90 1.17804 2.16897(-1) 1.28310 1.50000 
1.00 1.0 5.43128(-1) 1.12354 1.66667 
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