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Abstract--A particular solution that can be used with the PN method for the solution of 
radiative heat-transfer problems with spherical symmetry is reported. 

INTRODUCTION 

In a recently published paper) we reported a particular solution basic to the PN method in 
plane geometry. Here we establish an analogous particular solution that is relevant to radiative 
heat-transfer problems that have spherical symmetry. 

We consider radiative heat-transfer problems defined by the equation of transfer 2'3 

~r ~ L f't it I(r, #)  -t 1 - #2 a l(r, it) + I(r, it) = -- ~, fltPt(it) | P~(it')I(r, it') dit" + S(r),  (I) 
r dit 2 ~=o j - i  

for r e (R~, R2) and it e ( -  1, 1), and the boundary conditions 

and 

o'n 2 ~0 I 
I(R~, it) = E t T~ + p ~ I(R~, - it) + 2p ~ I (R , ,  - it ')it '  dit ' (2a) 

7~ 

o" n 2 4 In I [(R2, --It)  = e2 ~ T2 + pS2 [(R2,  it) + 2p~ I(R2, it')#" dit" 

for it e [0, 1]. Here 

S(r) = (1 - ~ )  on: T~(r ) 

(2b) 

(3) 

is the inhomogeneous source term, r e [R~, R2] is the optical variable, it is the direction cosine 
measured from the r axis, the coefficients fl~ define the scattering law and o3 is the albedo for single 
scattering. In regard to the boundary conditions, we note that T~ and T2 refer to the two boundary 
temperatures, p~ and pd, ~ = 1 and 2, are the coefficients for specular and diffuse reflection and 
el and c2 are the emissivities. In addition n is the index of refraction and ~r is the Stefan-Boltzmann 
constant. We consider here that the temperature distribution T(r) is specified and that T(RI)  = TI 
and T ( R 2 ) =  T2. 

Following Davison 4 and Aronson:  '6 we express our spherical harmonics or PN solution, for N 
odd, as 

J 
21 + I Pt(it) ~ [Ajk,(r/¢/) + (- l)'Bji,(r/~j)]gt(~j) + lp(r, It) (4) 

l ( r ' P ) = t ~ o " - ~  jr1 

where Ip(r, #)  denotes a particular solution of Eq. (1) corresponding to the inhomogeneous source 
term S(r).  Here, as discussed in Refs. 7, 8 and 9, the Chandrasekhar polynomials are denoted by 
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gz(¢j) and the PN eigenvalues are given by ~j, j = 1, 2 . . . . .  J = (N + 1)/2. The modified spherical 
Bessel functions of  the first and third kind m are denoted by 

and 

// ,/~ \1/2 
) (5a) 

(TC ~1/2 
k;(z) = \ 2 z ]  K'+'/2(z)" (5b) 

The arbitrary constants {Aj} and {Bj} appearing in Eq. (4) are to be determined so that the 
boundary conditions given as Eqs. (2) can be satisfied in some approximate manner. 

We consider it important to restate here an observation made by Aronson s'6 in regard to 
using the solution given in Eq. (4), without the particular solution, to solve a homogeneous version 
of  Eq. (1): the use of  the Mark or Marshak boundary conditions leads to a system of linear 
algebraic equations that becomes more and more poorly conditioned as the order of the 
approximation is increased. We have confirmed Aronson's observation, and we have not succeeded 
in finding a stable way of computing the required constants {At} and {Bj} for all orders of the 
approximation. It is for this reason that, to date, we have had no confidence in using the PN method 
to try to obtain benchmark quality results for general radiative transfer problems with spherical 
symmetry. 

Despite the mentioned difficulty with the Pu method for problems with spherical symmetry, we 
proceed to develop a particular solution that is appropriate for a general source term S(r). This 
particular solution can, of course, be used with the Pu method for sufficiently low orders of  the 
approximation to solve some practical problems in radiative transfer. Our particular solution will 
also be available in the event we eventually find a numerically stable way to find the constants {A;} 
and {Bt} for all orders of the approximation. 

A P A R T I C U L A R  S O L U T I O N  

As in Ref. 1, we use the method of variation of  parameters to find the particular solution we 
require. We thus propose 

~ 2 l + 1  
Ip(r, It) = ,~'~fo - - ~  P;(It) L [Uj(r)k;(r/~j) + ( -  1)'Vi(r)i,(r/¢/)]g;(~t) (6) 

1=1 

where ~ ( r )  and Vj(r),j = 1, 2 . . . . .  J, are to be found. If we substitute Eq. (6) into Eq. (1), multiply 
the resulting equation by PB(It), for fl = 0, 1 , . . . ,  N, use the three-term recursion relation for the 
Legendre polynomials, 

( 2 / +  1)Ite;(It) = (l + 1)P,+, (it) + IP;_ ,(It), (7) 

and integrate over/~ from - 1 to l, we find 

J 
[[3Fjm , (r )+( f l  + 1)Ftm+,(r)]= 23a,oS(r), fl =0 ,  1 . . . . .  N, (8) 

where 

Fjm(r ) = [U~ (r )ka(r / ~) + (-- l )PV~ (r )i¢(r / ~j)]ga( ~j). 

Here we use the superscript prime to denote differentiation with respect to r .  

Inspired by the easily obtained result for the case N = 1, we now propose 

4r 2 
U; (r ) = -~j Cjio(r /¢j)S(r ) 

and 

4r  2 
v; (r) = - z - ~  Cjko(r /~;)s(O 

7,,j 

(9) 

(lOa) 

(10b) 
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where we seek to find constants {Cj} so that Eqs. (10) will satisfy Eq. (8). If  we substitute Eqs. (10) 
into Eq. (9) and impose, in general, the conditions 

J 
(1 --o5) Z g2k-2(~j)Cj=t~k:, k = 1,2 . . . . .  J, (11) 

j - I  

then we readily conclude that Eq. (8) is satisfied for, say, fl = 0, 1 and 2. Our task thus is to show 
that Eqs. (10) provide a solution to Eq. (8) for all appropriate ft. 

We now let 

W#(z ) = 2z___] [io(z )k#(z ) _ ( -  1)#ko(z)i#(z )] (12) 
7~ 

so that we can, after using Eqs. (10), rewrite Eq. (8) as 

¢~, ~[flWl~-,(r/~j)g#_l(~j) + (fl + l)W#+l(r/¢j)g#+1(~:)]= ~,,o (13) 
j'=l 

for fl = 0, I .... , N. Using the recursion formulas for the spherical Bessel functions, ~° we can 
deduce that 

2k+ I 
Wk+l(z) = Wk(z)+ Wk_,(z) (14) 

Z 

which we can use with the starting values 

Wo(z) = 0  and W~(z)= 1 (15a and b) 

to deduce that the functions Wk(z) are polynomials in 1/z of degree k - 1 and that they are 
alternately even and odd functions. We now consider, for k >i 1, the left-hand side of Eq. (13) 
written as 

Tk(r) = ~ C:[kWk_,(r/~y)gk_,(~:)+ (k + 1)Wk+l(r/~j)gk+,(~:)]. (16) 
j f f i l ~ j  

We can now use Eq. (14) and the recursion relation for the Chandrasekhar polynomials, i.e., 

hk~gk(~) = (k + 1)gk+,(~) + kgk_t(~), (17) 

where 

to rewrite Eq. (16) as 

where 

hk = 2k + 1 - :hflk, (18) 

(k + 1)(2k + 1) 
Tk(r) = h, Ak_ ~(r) -4 Ak(r) (19) 

r 

J 
Ak(r) = ~ Cj Wk(r/(~)gk+l(~j). (20) 

j = l  

We can use the facts that Wk(r/~j) and gk(~j) a r e  each alternately even or odd polynomials in ej, 
along with Eq. (17) and the condition that g,+ t(¢j) = 0, f o r j  = 1, 2 . . . . .  J, to conclude, after we 
make use of Eq. (11), that 

Ak(r)=0,  for k = 0 , 1  . . . .  ,N. (21) 

It thus follows that Tk(r) = 0, for k = I, 2 . . . .  , N, and so the justification of Eqs. (I0) is complete. 
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We can, o f  course, integrate Eqs. (10) to obta in  

4Cj i" 
Uj(r ) = ~ 2,[, x2i°(x /¢j)S(x ) dx 

and 

that  are required in Eq. (6). 

(22a) 

4Cj f R~ Vj(r) = -~j x2ko(x/~j)S(x) dx (22b) 

To  conclude this work  we note that  the system of  linear algebraic equat ions  given by Eq. (11) 
is exactly the same one that  was encountered in Ref. 1 where the par t icular  solution for  the case 
of  plane geomet ry  was reported.  As the linear system given by Eqs. (I 1) was solved analytically 
in Ref. 1, we can write the last ingredient o f  our  par t icular  solution as 

C/= g~k 2(¢j)h2k-2 , j = 1,2 . . . . .  J, (23) 
1 
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