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Abstract--Particular solutions for both the (formally exact) method of elementary solutions 
and the Pu method are derived for the case of monochromatic radiative transfer in a 
homogeneous plane-parallel medium which contains a source that varies with position and 
direction. 

I N T R O D U C T I O N  

To analyze the radiation intensity and the partial heat fluxes in a homogeneous plane- 
parallel medium for the case when there is a source of  radiation, we consider the equation of  
transfer ~,z 

Z"l=O 1 
(i) 

for • e (0, %) and kt ~ [ -  1, 1]. Here, w is the albedo for single scattering (w < 1), the elements 
fit are the coefficients in a Legendre expansion of  the scattering law, and z0 is the optical thick- 
ness of  the layer. In order to include cases for which the uncollided intensity is separated out from 
the total intensity, as Chandrasekhar ~ did, we allow the source term S(z,/~) in Eq. (1) to be a 
function of  #. For  the case of classical heat transfer in an emitting medium, 2,3 the source term is 
simply 

S(z, #) = (I - w) nZa T4(Q, (2) 
7~ 

where n is the index of  refraction, a is the Stefan-Boltzmann constant, and T(T) is the local 
temperature in the medium. 

We consider the source term S(z, p) given, and so we write the solution to Eq. (1) as 

I(z, #) = I¢(z, #) + Ip(z, #), (3) 

where the complementary part I¢(z, p) satisfies the homogeneous version of  Eq. (1) and lp(~,/~) 
is a particular solution that corresponds to the inhomogeneous source term S(T, ~). In this work 
we derive a particular solution for both the method of  elementary solutions ~ and the PN method.7-9 
Since we seek only particular solutions, we need not specify any boundary conditions that constrain 
the solution given by Eq. (3). 

We consider first the method of  elementary solutions, for which we express the complementary 
part of  the complete solution as 

I¢ (T, #) = f~ {A (¢)4) (~,/~)exp( - T/~) + B (~)4) ( -- ~,/~)exp[-- (To -- ~)/~ ]} d~, (4) 

where the symbol a implies that we must integrate over the continuum, ~ = v e (0, 1), and sum over 
the discrete spectrum that lies in the right half-plane, ~ = v~, • = 1, 2 . . . . .  N. The A(~) and B(~) 
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are expansion coefficients to be determined from the boundary conditions and the ¢(_+ ~,/~) are 
the so-called singular eigenfunctions. ~6 These singular eigenfunctions satisfy the equation 

where 

W L 

( ~ -- # )dp(~, ~ ) = -~ ,~=o fltPt(l'Qgt(~)' (5) 

f 
l 

gt(¢) = Pt(/z)q~ (¢, #) d/~. (6) 
- 1  

The Chandrasekhar polynomials 1 gt(¢) can be defined, in general, by the three-term recursion 
formula 

hfg,(~) = (1 + 1)gt+, (¢) + lgt_, (¢), l = 1, 2 . . . . .  (7) 

with go (¢) = 1 a n d  gl (~ )  = ~h0, Here hi = 2l + 1 -- tuflt, 0 ~< l ~< L,  and ht = 21 + 1 for l > L.  
For the PN method, we consider N to be odd and write the complementary part of the 

solution as 

u 2 l + 1  J 
I~(z,/~) = Z ~ P , ( / ~ )  ~ {Ajexp(--z/~J)+(--1)~Bjexp[--(Zo--Z)/~J]}gt(~J ), (8) 

l = 0  ~ j = l  

where Aj and Bj are to be fixed by the boundary conditions and where the spectrum is given by 
= ~j, j = 1, 2 . . . . .  J = (N + 1)/2. Here, the ~j denote the J zeros of g~+ 1(~) that lie in the right 

half-plane. 
Now that the complementary parts of the complete solution for the method of elementary 

solutions and for the Pu method are defined, we proceed to develop the desired particular solutions 
using the technique of variation of parameters. 9 

P A R T I C U L A R  SOLUTIONS 

For the method of elementary solutions, we propose 

f~ {U(z, ~)~b(~, # )exp( -  r/~) + V(v, ~)4~(-~,/~)exp[-(~0 - r)/~]} de, (9) /~(z, P) 

where U(z, ~) and V(z, ~) are to be found. We can substitute Eq. (9) into Eq. (1) to find 

~ exp(-~/~)~-~ U(r, ~)¢(~,~)  + e x p [ - ( z 0 -  ~ ) / ~ l ~  V(~, ~ ) ¢ ( - ~ , # )  d~ = S(r ,g) .  (10) 

After using the full-range orthogonality relations for the singular eigenfunctions, .4 we obtain 

 vt )lfo  U ( z , ¢ ) e x p ( - z / ¢ ) = ~  S , ( x ,~ ) e x p[ - ( z  - x ) / ~ ] d x  ( l la )  

and 

f~o S . (x ,  - ~)exp[-(x  -- T)/¢] dx, (1 lb) V(z, ~)exp[-(z0 - ~)/¢] = N(~) J~ 

where N(~) is the full-range normalization factor 4-6 and 

f, s .  (~. ~) = s(~. ~)¢ (~. , )  d,.  (12) 
- 1  

We note that if the source S(~, #) can be expressed as a finite sum of Legendre polynomials, i.e. 

M 

S(z ,#)  = ~ S~(T)P~(#), (13) 
~ = 0  
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then Eqs. (11) can be written as 

and 

U(z, ~)exp( -  T/~) = N(~) ,~0 g '(~)  S.(x)exp[-(z - x)/~] dx 

V('r, ~)exp[- (% - ~1/~1 = N--~ (-- l)"g,(~) S,(xlexp[-(x  - z)/~] dx. 
a = 0  

For the PN method, we examine Ref. 9 and Eqs. (14) and propose the form 

(14a) 

(14b) 

ip(.r,/.() = ~ 21 + 1 s x C j  ¢' {fo: 
, = 0 - - - ~ P , ( # ) j = ~  ~ja~=og,( ,) S~(x)exp[-(z - x)/¢j]dx 

+(-l>,+, (l,> 

where K = min{M, N} and where the constants {Cj} are to be found. If  we substitute Eq. (15) into 
Eq. (I), multiply the resulting equation by Pp(#), for fl = 0, I . . . . .  N, and integrate over # from 

- I to 1 we find that Eq. (15) will provide the desired particular solution if the constants {Cj} satisfy 

J 

h, ~.. Cj[l + ( -  1)'+a]ga(~j)ga(~j ) = 26a.~ (16) 
g e l  

for fl = 0, 1 . . . . .  N and ct = 0, 1 . . . . .  K. Considering ~ to be even or odd, we rewrite the last 
equation as 

J 

h, ~ Cjg,(~j)g2k-2(~j)= 62k-2,,, Ot even, (17a) 
j = l  

and 
J 

ha ~', Cjg~(~j)g2k-~(~j)=6z~_L~, ¢t odd, (17b) 
j = l  

for k = l, 2 . . . . .  J a n d  ~ = 0, 1, 2 . . . . .  K. We note that the set of  equations given by Eq. (17a) with 
= 0 is the one solved by Siewert and Thomas 9 who found 

(k~_~ 1 h2k-2g (~j))- '  Cj = 2_2 , j = l, 2 . . . . .  J. (18) 

To demonstrate that the particular solution given by Eq. (15) is correct we must now show that 
the {Cj} given by Eq. (18) provide a solution to Eqs. (17) for all appropriate ~ and k. To develop 
the required proof  we start with an orthogonality relation for the Chandrasekhar polynomials that 
was derived by In6nii, j° viz. 

f~ [1 + (-1)'+tq.ga(~)g~(~) N--~) d ~ = 26,,~ (19) ha 

for ~, fl = 0, 1, 2 . . . . .  We choose to rewrite the last equation as 

h~ g.(~)g2k-2(~)N---~d~ = 62,_2,~, ~t even, (20a) 

and 

haf  g~(~)g2,_,(~)N--~d~=62k_.,,, c t o d d ,  (20b) 



522 N.J. McCORMICK and C. E. SIEWERT 

for ~, k = 0, 1, 2 . . . . .  We combine Eqs. (17) and (20) to obtain 

g~(~)g~_2(~) N----~d~ = ~ Cjg~(4j)gzk-~(~j), 
j = l  

and 

even, (21a) 

~a J 
¢ d~ = ~ Qg,(4j)g2k-,(~j), a odd. (21b) 

g~ (4)g2k - ,  (4) ~ J =, 

Another result proved by In6nfi ~° is that an arbitrary polynomial R~(~) of degree l ~< 2N + 1 can 
be integrated exactly in the following sense: 

f~ ~ d J [Rt(~) + R t ( - ~ ) ]  N--- ~ 4 = ~ F][Rt(~j) + Rt(-~j)] ,  (22) 
j = l  

where 

Fj = 2 hig~(~i) , j = 1, 2 . . . . .  J. (23) 
i 

Since, in Eq. (22), we can use for [Rt(~)+ R t ( - ¢ ) ]  either the g, (¢)gzk- t (¢)  or the g,(¢)g2k 2(~) 
of  Eqs. (21) it remains to relate the constants {Cj} to the constants {Fj}. We first rewrite Eq. (23) as 

Fj = 2 [h2k-zg~k 2(~j) + h2k-~g~k-, (~j)] (24) 
I 

and observe that Cj = Fj provided we can prove the (apparently new) identity 

J J 
~_, hzk-2g22k 2(~J) = E hzk-,g~k-,(~j)" (25) 

k = l  k = t  

This identity can be shown to be true by using Eq. (7) for l = 2k - 2 and l = 2k - 1 to obtain 

1 s 
~, [hzk 2g~ 2(~j)--h2k ,g~k ,(~j)] = - - ~ k ~  [2kg2k(~j)gZk-,(~j) 

k = l  

- ( 2 k  - 2)gzk-2(~)gZk-3(¢j)]" (26) 

Since the right-hand side of Eq. (26) vanishes when we use the fact that gN+l(~j) = 0 ,  the identity 
given by Eq. (25) is established, and so we conclude that the particular solution given by Eq. (15) 
is correct. 
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