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A~tract--Methods for computing a class of integrals basic to the F~ method in radiative 
transfer are discussed. New recursion relations are derived and used to develop an improved 
computational scheme for calculating these integrals accurately in high degree. 

1. I N T R O D U C T I O N  

Computat ionally speaking, we note that radiative transfer through a thick cloud is one of the more 
difficult problems in the field of  particle transport theory. Among the methods that have been 
applied to solve this problem, I the FN method 2~ has been perhaps the most successful, as 
demonstrated by the quality of  the results 4 generated with the method for some model problems 
posed by the International Association of Meteorology and Atmospheric Physics. 

Although effective for the problems solved in Ref. 4, we have found that the FN method still 
requires improvement in a few numerical aspects before it can be applied to more challenging 
problems (i.e., problems with even larger degrees of  anisotropy). Recently, we have reported new 
effective methods for computing the discrete spectrum associated with the equation of  transfer 5 and 
for computing the Chandrasekhar  polynomials. 6 In this paper, we report some recent developments 
in our continuing work on computational methods that we hope will end up in extending the range 
of applicability of  the FN method to more demanding calculations. 

The FN method for solving radiative transfer problems without azimuthal symmetry has been 
discussed in detail in previous works. 2-4 One of the basic requirements of  the method is that the 
integrals 

T"  - f0 I a.t -- p(1 -- lt2)m/2e:~(2lt --  I)PT'(/~) d# (1) 

be computed for m = 0, 1 . . . . .  L and l = m , m  + 1 . . . . .  L, where L is the order of  the phase 
function, and :¢ = 0, 1 . . . . .  N, where N is the order of  the FN approximation. Here, as in Refs. 2-4, 
we define the associated Legendre functions as 

PT'(kt) = (1 - -  ],12)m/2 d-~m PI(#). (2) 

Computat ional  methods for evaluating the required T~mt integrals have been proposed in Refs. 3 
and 4. In Ref. 3, a recursive scheme based on a five-term recursion relation was proposed. Later, 4 
the scheme of Ref. 3 was found to be unstable as m --* oo so that, as a result of  the propagation 
of  roundoff  errors, the computed values of  the T~mt integrals were not sufficiently accurate for m 
bigger than about  70. A recursive scheme based on the use of  the five-term recursion relation of  
Ref. 3 for m = 0 and a three-term recursion relation relating T~"I~ -~ to T"~.~_~ and T~mt+l was then 
proposed to overcome this problem. 4 Unfortunately, we have found that, although slightly superior 
to the scheme of  Ref. 3, the method of Ref. 4 is also unstable as m ~ ~ .  

Here we develop a new method for evaluating the T ,~  integrals that does not suffer from the 
limitations of  the previous schemes 3"4 for problems that involve large values of  m. Thus, our new 
scheme can be employed with confidence when solving problems with highly anisotropic scattering 
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and azimuthal dependence. We note, for example, that the Cloud C, problem of Ref. 1 would 
involve such large values of  m if we were to consider a non-normally incident beam of radiation. 

The outline of this paper is as follows. In Sec. 2, we report some newly developed recursion 
relations for the T,~j integrals. In Sec. 3, we show how these recursion relations can be combined 
to obtain an especially accurate computational scheme for calculating the T ~ integrals and, finally, 
in Sec. 4 we discuss aspects of the numerical implementation of our computational scheme and 
present our concluding remarks. 

2. R E C U R S I O N  R E L A T I O N S  

To start this section, we point out that the task of computing the required T,m,t integrals can be 
greatly reduced if we observe that, since/*(1 - #2)m.,2p~(#) is a polynomial of degree (l + m + 1), 
it is clear from the definition of T~mz and the orthogonality property of the Legendre polynomials 
that T~m~=0 f o r c t > l + m + l .  

In addition, a series representation for T~mt can be easily found if we substitute 

P = ( 2 / * - l ) =  ~ ( - 1 )  ~*k ( ~ + k ) !  / (3) 
k=o (o: --  k )!(k !) 2 

into Eq. (1). The resulting integrals 2 are tabulated (see formula 7.132.5 of Gradshteyn and Ryzhik 7) 
and so we find 

T = ~ , = 2 - " - ' [  ( l + m ) ! ]  L ( - 1 )  ~+k (ct + k ) ,  F + ) F ~ + ~ )  . (4) 

Although the series expressed by Eq. (4) could be used, in principle, to compute the T~t integrals, 
this idea should be discarded when one considers both the number of operations required and the 
problem of  summing up accurately long alternating series composed of nearly cancelling terms. 
Nevertheless, Eq. (4) can be used to show that the T~'t integrals, for ~/> 1, satisfy the four-term 
recursion relation 

( 2 + o ~ + l + m ) T ~ . l = ( 2 - c t + l + m ) T  m 1.1+ - -  
• m - ! ) ( l  

x [ ( 3 + ~  l + r n ) T T ' ~  2 ( 3 - ~ - l +  m~Tm - - , = 1 + - 2 ]  ( 5 )  

which is certainly more convenient than Eq. (4) from a computational point-of-view. Clearly, the 
first two columns (1 = m and l = m + 1) and the first row (~ = 0) of the T" matrix are needed to 
start using Eq. (5). We can find a general recursion formula relating any column of  the T m matrix 
to a corresponding column of the T " -  ~ matrix if w e  u s e  4 

= D T  m - ( l - m ) ( l - m + l ) T ~ m l + t  (6) D "r '+ l  ( l + m ) ( l + m +  j ~,l-~ (2•+ J-~.l 

twice to eliminate T~'~ and Tm,-Lt from Eq. (5)• After a rearrangement of indices, we find 

(2 + ct + l + m ) T T t  = (2 - ~t + l + m ) T  m Lt + (1 + m - 1)(l + rn)[T~,~'~ - T ' , -  - -~ - I t - t ]  (7) 

which, for ~ /> 1, can be used for all l >/m when m >/1, but only for l = 0 and 1 when m = 0. 
Another useful recursion relation for the T,mt integrals can be obtained if we subtract Eq. (1) 

with l . ¢ = l - 1  from Eq. (1) with l,*=l + 1 and use the recursion relations 

p r + , ( / * ) -  e ~ = _ +_,(/*) (2•+ 1)(1 /*2),/2py-,(/*) (8a) 

and 
(c¢ + I)P:+,(2/* - 1) + ~e:_~(2/* - 1) = (2~ + 1)(2/* - 1)P=(2/* - 1) (8b) 

along with 
1 - / . 2  = ¼[3  - 2 ( 2 / ,  - 1 )  - ( 2 / *  - 1)21 ( 9 )  
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and Eqs. (5), (6) and (7). We find, after carrying out rather extensive algebraic manipulations, that 
we can, for m I> 0, 1 >/m, and a >1 1, write 

m m m __  - e { , l T o t - 1 , l ' 3 L z . t - o t .  lat o r - 2 , 1  - -ot ,  I o r - 3 . 1  F~,.tT,+2.t_ A,.IT~+L 1 y.~,.tTmt+ y.,,, ,,, Am "1"" F" T m 

= 4 ( 1 -  6, , , , ) (1-  6, m+,) [  ~1 + m - - 1 ) ( l + m ) ]  , . ~ - - ~  [T~,_2-  T~_,d_2], (10) 

where 

+ +2)_ l 
F'~'z = (2"a~ + l)(2ct + 3)J (4 + ct + Z + m), 

(,+,)[( ), ] A,m,= ~ ~ ( - e + l + m ) - 2 ( 4 + a + l + m )  

and 

1 [  (2a -1) (2c t+31) l  ( 2 - ~ - 1 )  Y~'~.t = z 3 ( 4 + a  + / + m ) +  ( 4 -  

( l la)  

( l ib)  

l + m  I 
a + l  + m ) - 2 ( 2 m  - 1) \ 2 1 -  1}" 

(1 lc) 

3. COMPUTATIONAL SCHEME 

In the previous section, we have presented some new recursion formulas developed for the T~.j 
integrals. The next task we undertook in our work was to verify whether or not any of the newly 
developed recursion formulas, i.e. Eqs. (5), (7) and (10), could be the basis of a stable scheme for 
computing the required T ~ .  After extensive testing of all these formulas, we concluded that none 
is stable as m ~ ~ .  

In our search of a stable scheme for computing the required T~ ,  we then followed the approach 
of looking for ways of reducing the dimensionality of the calculation. We note that the problem 
of computing the T~ ~, t integrals is originally defined in a tridimensional space (a-l-m) and that the 
recursive schemes of Refs. 3 and 4 work in bidimensional spaces (a-l and l-m respectively); however 
neither of these schemes is stable, as discussed in the Introduction. Here, two of the new formulas 
[Eqs. (5) and (10)] also work in the a-l space while the other [Eq. (7)] works in the full ot-l-m space. 
However, by combining Eqs. (5) and (10), we were able to deduce a seven-term recursion relation 
for T~t that works in the a space, thereby allowing the entire calculation to be reduced to several 
one-dimensional calculations. To give an idea of the procedure we used to obtain the one- 
dimensional recursion formula just mentioned, we first rewrite Eq. (10) as 

F(I + m 2l--- 1)(11 + m)]  T" Y~m,=4(l --~;.m)(l --6,.,,+,) L ~ [ T ~ , - 2 -  ,- , . ,-2],  (12) 

where Y~.t denotes the left-hand side of Eq. (10). Using Eqs. (5) and (12) as they are and also with 
~ a + 1, we do obtain, after some algebraic manipulations, the desired result, i.e. 

a(4 + ct - l + m)ym+ ' . ' _  (a + 1)(3 -- Ot -- 1 + m)YT,  = 4F !l -- m s  1)_(1 -- m ) l  
L 21 -- 1 ] 

x [ ~ ( 3 + ~ + l + m ) T T + t . t - ( 2 0 t + l ) ( / + m + 2 ) T ~ t + ( ~ + l ) ( 2 - ~ + l + m ) T ~ '  L~ ]. (13) 

We now describe our scheme for computing the T~.t integrals. First we note that, since the 
right-hand side of Eq. (10) vanishes for l = m and I = m + 1, Eq. (10) constitutes a one-dimensional 
formula which is more convenient than Eq. (13) for computing the first two columns of the T ~ 
matrix. Indeed, given the initial values TTm+ ~.m and Tm2m+2. m +  1 (computed as shown later in this 
section), we have found that Eq. (10) can be used in the backward direction for a = l + m + 3, 
1 + m + 2 . . . . .  3 and l = m and l = m + 1, to compute the first two columns of the T" matrix 
accurately, for m up to 299. 

In regard to the remaining columns (m + 2 ~< 1 ~< L) of the T" matrix, we first note that the 
right-hand side of Eq. (10) also vanishes for a = 1 + rn + 3, l + m + 2 or l + m + 1. Therefore, to 
compute each of these columns, we used the initial value T m (computed as shown later in this I + m +  I , I  
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section), Eq. (10) in the backward direction for the three mentioned values of  ~ and then Eq. (13) 
in the backward direction for ~ = l + m, l + m -  1 . . . . .  3 + I7,, where 17'/> 0 depends on the 
column being computed, as explained next. Of  course, it would be nice if we could always use 
Eq. (13) in the backward direction all the way down to ~ = 3. However, it is usually necessary to 
terminate backward recursion of Eq. (13) prematurely (17' > 0) because the absolute values of  T,~t 
tend to saturate when ~ --* 0; if Eq. (13) continues to be used in the backward direction under these 
conditions, the accuracy of the calculation can be severely affected by the propagation of roundoff 
errors. 

The value of 17' for which backward recursion of Eq. (13) should be stopped is, to some extent, 
arbitrary. It may depend, among other things, on the degree of accuracy desired for the T'~"~ and 
also on the precision of the machine used to implement the calculation. To decide when to stop 
backward recursion of Eq. (13), we used the strategy of carrying out two calculations in parallel; 
in one of them we applied a perturbation, multiplying the starting value TT'+,, +j.~ by (1 + E), where 
the factor E was taken as a small multiple of the machine precision for floating-point arithmetic. 
Since we have found that sometimes the perturbation applied on the starting value was damped 
as the calculation progressed, we have also multiplied by (1 + c) any subsequent perturbed term 
that came out exactly equal to its unperturbed counterpart  in the computer. The relative deviations 
between the T ~ obtained from both calculations were continually monitored and backward 
recursion interrupted if a deviation bigger than 3 (another prescribed factor > 6) happened twice 
consecutively. For the columns of the T m matrix where this happened before ~ reached 3, we defined 
17' = e* - 1, with e* denoting the current value of c~ in the program, and then switched to forward 
recursion of Eq. (13). As a general rule, we observed that the values of  17' tend to increase as l ~ L; 
it was always possible, however, to compute the majority of  the terms in a column by backward 
recursion of  Eq. (13). In order to complete the calculation for the columns where 17' > 0, we 
computed the first four rows (0 ~< ~ ~< 3) of  the T" matrix as discussed later in this section and then 
used Eq. (13) for ~ = 1, 2 . . . . .  17'-4.  As before, we carried out the forward calculation twice in 
parallel (with one of the calculations being subject to a perturbation) and made a provision for 
warning message displays during program execution any time a deviation bigger than 6 occurred 
twice consecutively between both calculations. 

We now discuss our methods for computing the initial values required for backward and forward 
recursion of Eq. (13). For backward recursion, we require the last non-null elements of  all the 
columns of the T" matrix, i.e. T m l = m , m + l ,  L. I f  we let l ~ l - 1  and set 

l + m +  I , l *  • " • , 

= l + m + 1 in the recursion relation 3 

= ( - - 2 - - ) [ ( 2 ~ )  " (:~ + 1 ) m ] re'T" (14) ( l - m  + l)T~.l+~ 2l 1 T7 ,,~+ T~.I+ ~ T~+t.t - ( l +  , ~.t-, 

we find, for l > m, 

TT~-"+ " '  = 7 ~ m  2 1 + 2 m + J  , + r e . l - I ,  

a formula relating the last non-null element of  column 1 to the last non-null element of  column 
( l - 1 ) .  Equation (15) can thus be used recursively to generate all required initial values for 
backward recursion of  Eq. (13), provided the last non-null element of  the first column, T2~ + ~.,,, 
is known. We can derive a recursion formula for T'~,, + ~.,, if we let m ~ m - 1 and set ~ = 2m + 1 
in Eq. (6); combining the result with Eq. (15), we find 

( 2 ) [ ( 2 m - 1 ) ( 2 m + l ) l T ' ~ , ~ ' , , , , _ , ,  (16) 
T2%, + 1.,, = - L(4-mm ~ 1)(4m + 3)_] - ' 

which can be started with T°0 = 1/6. 
To initiate forward recursion of Eq. (13), we have already mentioned that we require the first 

four rows of the T" matrix. Defining the linear combinations 

. . . .  (17a) Uo, i -  To.i, 

U m - TT,~+ T" (17b) 
I . l  - -  0 . / ,  

U2~l = T2~1 + 3T~.l + 2T~.t (17c) 
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and 
u3mt = T~.t+. 5 T~,~ + 9 T~. ~ + ,  5 T'~0.t, (17d) 

for  ! = m, m + 1 . . . .  , L, we can show, with the help o f  Eq. (4), that  the U ~ ,  ~ = 0 . . . . .  3, satisfy 
the recursion relation 

(2+cz  + l + m ) U ~ . , = [ ( - ( l + m -  1)(l + m~) 1 . (18) - m  1 ) ( l - -  ( 3 + a - l  +m)U~.t  2. 

Clearly, we need U,mm and U,~m+l, ~ = 0 . . . . .  3, tO start  Eq. (18). We can deduce convenient  
formulas  for these start ing values directly f rom Eq. (4). For  c~ = 0, we find that  U m and U ~ 0, m 0, m + l  

can be compu ted  recursively f rom 

U0mm+k = [ ( 2 m -  1 + k ) ( 2 m  + k ) l  (19) 

where k = 0 or  k = 1, and U0°., = 1/(2 + k)  for k = 0 or 1. For  ~ = 1, 2 and 3, we can express all 
required start ing values in terms of  U m and U ~ 0. m 0. m+l as 

/ 2 m  + 1\ ,, 

e m __( O ' ~ v m  2. m -- ~m + 2]  0. m, ( 2 0 C )  

U m ( 18 ~ U m ( 2 0 d )  
2.m+,=\2m + 5 '  ] O.m+,, 

[ 60 1 U m = • U m (20e) 
3.,, (2m + 1 ) (2m + 5) o. ,~ ÷ ~ 

and 
( 2 m + l  ) ]  

U"  = 40 U0 ~, ,,. (20f) 
3 .m+2  m + 2 ) ( m  + 3  

Once U~m~, ~ = 0 . . . . .  3 and l = m, m + 1 . . . . .  L, are computed ,  we can easily obta in  the first four  
rows o f  the T m matr ix  by inverting Eqs. (17). We find, for l = m, m 4- 1 . . . . .  L, 

To~t = U'o,i, (21a) 

T, m, = U,m~- U too,t, (21b) 

T2~.t = U2~l-  3Ul~.t + u0mt (21c) 

and 
m __ m m T3. t - U3,I-  5U~t+ 6U~I-- Uo.i. (21d) 

To  conclude this section, first we note that  we m a y  encounter  singularities while using Eq. (13) 
in the forward  direction. These singularities arise because the factor  (4 + ~ - 1 + m)  which appears  
in the denomina to r  when Eq. (13) is used in the forward direction can be zero. Clearly, the p rob lem 
occurs once for  each of  the co lumns  of  the T m matr ix  where the condi t ion 17'/> l - m is satisfied 
and can be avoided simply by using Eq. (5) to compute  the elements that  cannot  be computed  by 
Eq. (13). Second, it should be ment ioned that  the T~z integrals do approach  very large values as 
m ~ oo. Consequent ly ,  in order  to avoid compu te r  overflows, we have used a special f loat ing-point  
num ber  representat ion 6 in our  p r o g r a m  that  consists in using different m e m o r y  al locations to store 
the mant issa  and the base 10 exponent  of  each of  the required T~.t. This way, avoidance o f  
compu te r  overflows in our  p r o g r a m  was easy to achieve a l though it implied a sensible increase in 
computa t iona l  cost. 
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4. N U M E R I C A L  I M P L E M E N T A T I O N  A N D  C O N C L U D I N G  R E M A R K S  

We have p rogrammed and implemented our  scheme for comput ing  the T,mt integrals on two 
computers:  a C D C  C Y B E R  170/750 and a C D C  4360. The program was written in the F O R T R A N  
language and was implemented in single precision on the long word-length machine (CYBER 
170/750) and double precision on the short  word-length machine (CDC 4360). 

In regard to the factors c and 6 discussed in Sec. 3, we elected to use E = 3 x l 0  -14 and 
6 = 3 x 10 -9 on the C Y B E R  machine and E = 3 x 10 -~5 and 6 = 3 × 10 -~° on the C D C  4360. We 
note that  the magnitude o f  6, the factor  controlling the accuracy of  the calculation, was selected 
in order to try to avoid, or  at least minimize, the occurrence o f  warning messages associated 
with accuracy criterion violations at run time (see Sec. 3). With these choices o f  E and 6, we 
did not  observe any warning messages while running our  program on the C D C  4360 
for ~ = 0, 1 . . . . .  L + m + 1, l = m, m + 1 . . . . .  L and m = 0, 1 . . . . .  L, where L = 299. On the 
CYBER,  a similar calculation originated 13 warning messages; an analysis o f  the magnitudes o f  
the deviations between the perturbed and the unperturbed results revealed that  the least accurate 
o f  the elements responsible for these warning messages had an accuracy o f  8 significant figures. 
Therefore, our  C D C  4360 results can be regarded as 10-figure accurate while our  C Y B E R  results 
are on the borderline o f  the 8- and 9-figure accuracy levels. We should make it clear to the reader, 
however, that  our  computa t ional  scheme is not capable o f  providing results accurate to these 
accuracy levels for null or  near-null T~m~ elements that have non-null  neighbors. 

As a way of  increasing our  confidence on the effectiveness o f  the proposed scheme, we also 
checked our  results against reference results generated by Mar inho  8 who used the Mathematica 
system 9 to perform the integral o f  Eq. (1) for selected values o f  ct, l and m and to some results o f  
a F O R T R A N  multiple-precision arithmetic package. 1° As the T~mt are rational numbers,  both 
classes o f  reference results are exact, providing a benchmark for the calculation. At this point, one 
might  ask why the tools that we used to generate the reference results cannot  be used to compute  
the required T~t on a routine basis. The answer to this question is simple: a l though these tools 
are relatively economical  for small to moderate  values of  ct and l, they become highly expensive 
when any of  these indices is large and so a complete calculation o f  the required T~t integrals with 
these tools is not  feasible in this case. 
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