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Abstrac t - -An integral transformation technique and the spherical harmonics method are used, 
along with Hermite cubic splines, to define an iterative technique for solving a class of  
nonlinear radiative transfer problems in a solid cylinder of  infinite length. Computat ional  
aspects of  the technique are discussed, and the method is used to establish numerical results 
for several test problems. 

I N T R O D U C T I O N  

In a paper I published in 1984 we used an integral transformation technique that was developed 
by Mitsis 2 in order to reduce a class of  radiation transport problems formulated in cylindrical 
geometry to more easily solved "pseudo" problems. In Ref. 1 the inhomogeneous source term in 
the equation of  transfer was assumed to be given, and so now we generalize that work to allow 
coupling between radiative and conductive modes of heat transfer. More specifically, we use the 
integral transformation technique ~'2 along with the spherical harmonics method 3-5 and Hermite 
cubic splines to solve a cylindrical version of the steady-state problem in combined-mode 
(conduction and radiation) heat transfer that has been formulated by (~Zl~lk. 6 In regard to other 
semi-analytical work on this class of problems, we note that Thynell and t3zl~tk have reported 7 a 
derivation of  the integral form of  the equation of transfer and that the same two authors later 
published 8 some numerical results relevant to the albedo problem.~ 0zt~lk and Thynell s also gave 
some numerical results for the case of a prescribed inhomogeneous source term that is quadratic 
in the optical variable. In regard to combined-mode, conduction and radiation, heat transfer in 
a solid cylinder, we note that Tsai and (~Zl~;lk 9 have reported a study of the effects of  some of  the 
physical parameters on the transient temperature and heat flux distributions in a solid cylinder. 
Here we attempt to provide, for the steady-state case, benchmark quality results for the temperature 
distribution and the relevant heat fluxes in a solid cylinder of infinite length. 

As this work is the fifth in a series of papers based on slabs: :° spheres, ":2 and now cylindees, 
our presentation here will be brief. 

We consider the equation of transfer written as 

°fo'f: = - -  I ( r ,  # ' ,  c~') d $ '  d# '  + (1 - m) trn2 T4(r) (1) 

for r e (0, R), fl • [0, l] and 4)•  (0, rr). We seek a solution to Eq. (1) subject to the boundary 
condition 

fo' - -  I ( g ,  I~', ~b')(l - #,2)1a cos ~b' d~b' d# '  (2) 
7~ 

for # ~ [0, l] and ~ e [n/2, it]. Here r • [0, R] is the optical variable, 0 is the polar angle, # = cos 0, 
is the azimuthal angle and t~ is the albedo for single scattering. 

227 



228 C.E .  SIEWERT and J. R. THOMAS JR. 

Note  that  in writing Eqs. (1) and (2) as we have, we have taken into account  the facts that  

I(r, --q, c~) = I(r, rl, 0), rl~ [0, 1], (3a) 

and 

I(r, l~, 2x - c~) = I(r, It, c~), c~ ~ [0, ~]. (3b) 

In regard to the boundary  condition,  we note that  p is the coefficient for diffuse reflection and 
that  E is the emissivity of  the surface. In addit ion n is the index of  refraction and a is the 
S te fan-Bol t zmann  constant .  

The nonl inear  aspect  o f  this p rob lem comes f rom the fact that  the tempera ture  distr ibution T(r) 
that  appears  in Eq. (1) must  satisfy the heat -conduct ion equat ion 6 

 d{r 
dr 

subject to the bounda ry  condit ions T(R) = K where T is the tempera ture  that  also appears  in 
Eq. (2), and T'(r)= 0, for r = 0. In addit ion,  k is the thermal  conduct ivi ty of  the medium,  fl is 
the extinction coefficient, the constant  h is used to denote prescribed heat  generat ion in the medium 
and qr(r) is the radiative heat flux, i.e. 

4L f; q~(r) I(r,/~, q~)(1 -/~2)':- '  cos ~b dq~ d~. (5) 

As in Refs. 10 and 12, we do not address the existence and uniqueness aspects o f  the formula ted  
problem,  and so we proceed to define our  iterative solution and to compute  some numerical  results 
for a selection of  test problems.  

B A S I C  F O R M U L A T I O N  

To  follow a tradit ion in the heat t ransfer  literature, 6 we normalize  the p rob lem by introducing 
a convenient  reference tempera ture  Tr and using 

I(r, p, 49 ) = ( ~ -  T4r )I*(r, p, O ), (6) 

and 

to rewrite our  radiat ion p rob lem as 

(7 4). qr(r) = Tr qr (r) (7) 

with 

l sin  ) 1 - - -  + 1  I*(r,  p, O ) 
F 

=-- I*(r,/~', ~b') dq~' d/~' + (1 - o ) O 4 ( r )  (9) 
7~ 

for r s (0, R),  g e [0, 1] and ~b s (0, 7r) and 

4Pfo ' ; f " :  I * ( R ,  # ,  ~b) = E O 4  -k - -  I*(R,  U', ~b') (1 - #'2)'.'2 cos ~b' d4~' d # '  (10) 
7~ 

for /~  ~ [0, 1] and q~ ~ [x/2, rr]. In addit ion 

d 2 d 1 d 
r ~ 0 (r) + ~ 0 (r) = 4rrNc dr [rq* (r)] - rH ( 11 ) 

T 
O(R) = O = - ~  and O(r) l r=0 = 0. (12a and b) 

T(r) = T~O(r) (8) 



Nonlinear radiative transfer problems in a solid cylinder 229 

Here 

In addition 

q*(r) = 4 I*(r, la, q~)(l -/~2)'/2 cos ~b d~b d/~. (13) 

where, in general, 

fo'  f~ (r) = 4 f (r ,  t~, qS)(1 -/~2),/2 cos ~b d~b du. (23) 

Once the two sub-problems have been solved we can compute the desired radiative heat flux from 

q*(r) = Ol(r) + 2f~ (r). (24) 

k~ 
N ¢ -  4trn2T ~ (14) 

is called the conduction-to-radiation parameter, 6 and 

n = [kfl2Tr]-'h (15) 

is the normalized, and presumed given, constant that represents heat generation in the medium that 
is independent of the radiation intensity. 

We find it convenient to express the radiation intensity as 

I*(r, #, c~ ) = ~k(r, ~t, ~p ) + 2f(r, p, cb ) (16) 

where, first of all, f ( r ,  I~, ok) is the solution of the albedo problem considered in Ref. 1, i.e. 

I ( 1 - / ~ 2 ) 1 / 2 ( c ° s ~ b 0 t ~ r - - r l s i n ~ )  ] + 1  f ( r , l ~ , C ~ ) = - - f o f o  f ( r ' ~ t ' ' c ~ ' ) d ~ ' d l a ' w  ' ~ l r  (17a) 

for r e (0, R),/~ e [0, 1] and ~b ~ (0, n) and 

f ( R , / ~ , ~ ) = l ,  / ~ [ 0 , 1 ]  and (k~[n/2, z]. (17b) 

We also seek ~k(r,/~, tk) such that 

[ (1- /a2) ' /2 (  c°s~b--d0r lr s i n ~ b ~ ) +  ll~b(r,p, ~b ) 

of0f0 =--  O ( r , # ' , c ~ ' ) d c ~ ' d l ~ ' + ( l - w ) O 4 ( r )  (18a) 
72 

for r ~ (0, R), # ~ [0, 1] and ~b e (0, n) and 

if(R,/~, q~) = 0, /~ ~ [0, 1] and 4) ~ [n/2, r~]. (18b) 

It follows from Eqs. (9), (10), (16), (17) and (18) that the constant 2 must be defined as 

2 =  ( l - p A  *) - ' [  EO4 + p-~z ~b' (R) 1 (19) 

where, in general, 

=4;0;0 01 (r) O(r, #, ~b)(l - /~2)m cos q~ dq~ d#. (20) 

The albedo A * used in Eq. (19) was defined in Ref. 1 as 

A* 4 f 0 1 f  ~/2 = -  f (R,  U, qS)(1 - #2)'/z cos ~b d~b d/~. (21) 
7t do 

We note from Ref. 1 that A * can also be expressed as 

A * = 1 + l f ~  (R)  (22) 
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In addition, if we consider the radiative heat flux to be known, we can solve Eq. (11) and use 
Eqs. (12) to find 

O(r) = O + ¼(R:-  r2)H - q*(x)dx. (25) 

We note that the albedo problem is independent of the temperature distribution O (r) and thus does 
not require an iterative-type solution. On the other hand, there clearly is coupling, that is evident 
from Eqs. (18a), (20), (24) and (25), between the ~ problem and the temperature distribution O(r). 

Focusing our attention now on the albedo problem, we conclude from Eq. (17a) that 

l (l m) xfo(x) dx (26) f l ( r )  = r 

where 

;ol; fi(r) = 4 f(r, U, ¢)  de  du. (27) 

Referring to Ref. 1, we observe that fo(r) can be expressed as 

;0' fo(r) = 4r~ f(r, U) d# (28) 

where F(r, U) is a solution of the "pseudo problem" defined by 

[ 2[02 1 c3' 1IF(r, (29a) u ~S~r~+-;~)- u)+~ fo'r(r,u)du=O, 
for r e (0, R) and U ~ [0, 1], and 

F(R,u)+Y(R,u)O=-F(r,u)I,=R=I, Ue[0,1]. (29b) 
o r  

Here 

Ko(Rlu) 
F(R, U) = U K, (R/u) (30) 

where Ko(z) and K~(z) are modified Bessel functions. ~3 
In the following section of this paper we develop our spherical harmonics solution for F(r, U), 

and so now we consider the ~ problem. 
From Eq. (18a) we deduce that 

f0 1 (1 - w) x[4gO4(x) - 00(x)] dx (31) 0,(r)  r 

where 

;o; 00(r) = 4 0(r, U, 4~) dq~ du. (32) 

Again we refer to Ref. 1 and note that O0(r) can be expressed in terms of a solution of a pseudo 
problem. We therefore write ~ 

~'o(r) = 4~ T(r, U) du (33) 

where it(r, U) is defined as a solution of 

rOr] 1 i t ( r ,u)+w g~(r ,u)du=-(1-w)O4(r) ,  (34a) 

for r ~ (0, R) and U s [0, l], and 

0 
it(R, U) + I~(R, U) ~r it(r, p)l,= ~ = 0, U s [0, 1]. (34b) 
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Clearly once the albedo problem has been solved and we have used an iterative technique to 
establish ~b~(r) and O(r), we can compute the conductive, radiative and total heat fluxes, viz. 

q~(r) = - k f l  d T(r), (35a) 

fo'f: q~(r) = 4 I(r, p, ~)(1 - p2)~/2 cos ~b d~ d/~ (35b) a 

and 

q(r ) = q~(r ) + qr(r). (35c) 

Using Eq. (25), we rewrite Eqs. (35) as 

q¢(r) r 1 
kilT, = 2 H - ~ q* (r), (36a) 

and 

qr(r) 1 
- qr* kflTr 4rtNc (r) (36b) 

q(r)  r 
= - H .  ( 3 6 c )  

~/~T, 2 

We proceed now to develop a spherical harmonics solution that will allow us to compute O (r) and 
the desired heat fluxes. 

A SPHERICAL HARMONICS SOLUTION OF THE ALBEDO PROBLEM 

Since the Pu eigenvalues {~j} can be computed accurately and efficiently as described in Refs. 3 
and 14, and since Garcia and SiewerP 5 have described very precise methods for computing the 
Chandrasekhar polynomials {gt(~j)} for both the PN method and the FN method, 16 it is only a minor 
exercise to solve the pseudo problem that defines F(r, I~). We consider N to be odd, let 
J = (N + 1)/2 and write 

where, in general, 

N - I  J 
F(r,/g) = ~ (2l + 1)P,(#) ~ Djo(r/~j) e-"~-')/¢Jg,(~j) (37) 

•=0,2.4 j= l  

L(z)  = L(z)  e-" and /~(z) = Kv(z) e: (38a and b) 

and L(z)  and K~(z), v = 0, 1, 2 . . . . .  are modified Bessel functions. 13 In order to find the constants 
{Dj} required in Eq. (37), we substitute Eq. (37) into Eq. (29b) and use the Marshak projections 
scheme 4 to obtain, for ct = 0, 1 . . . . .  J - 1, the system of linear algebraic equations 

)-", ~ (2 I+I )Dj  S~,Iio(R/~j)+~T~,,(R)i~(R/~j) gt(¢j)=S~,o, (39) 
j - I  I-0,2,4 

where as discussed in Ref. 4 

In addition 

fO I S~,t = P2~,+t(I.t)Pt~)d#. (40) 

~0 
1 

T~, t(R) = P2~ +, (/~)Pt(#) Y(R, #) d#. (41) 
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Once we have solved the linear system given by Eq. (39), we can use Eqs. (22), (26) and (28) to 
find some results for the albedo problem, viz. 

and 

J 

fo(r) = 4n ~ Djo(r/¢j) e -(R- r)/~j, (42) 
j = l  

J 

fl (r) = - (1 - m)4n ~. Dj~j]l (r/~j) e -(R -r)/~j (43) 
j = l  

1 
A * = 1 + -f~ (R). (44) 
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AN I T E R A T I V E  S O L U T I O N  OF THE SECOND PROBLEM 

Considering now that A * and f~ (r) are available, we develop, in essentially the same way as we 
did in Refs. 10 and 12, an iterative solution of the second problem. We express our PN 
approximation to ~(r ,  g), for N odd and J = (N + 1)/2, in the form 

N - I  J 

~(r , /J)  = ~ (2l + 1)P,(#) ~ Aj[o(r/~j) e -'R-rl/¢jgt(~j) + Up(r, #) (45) 
1=0,2,4 j = l  

where Tip(r, I~) denotes a particular solution of Eq. (34a). Following Refs. 5 and 11, we express 
the particular solution as 

where 

and 

~ , ( r , # )  = ~ (2l + 1)Pt(kt) [L(r/~j)Vj(r) + Ko(r/~j)Uj(r)]gz(~j) (46) 
•=0,2,4 j =  I ~ j  

t 
" r 

Uj(r) = xS(x)]o(X/~j) e -It "/¢J dx (47a) 
0 

R 

Vj(r) = xS(x)ffo(X/{j) e -~x r)/~j d x  (47b) 

and where the constants Cj, j = 1, 2 . . . . .  J, are given by 

) 2 h , (48) Cj= g2k-2(¢j) 2k-2 j = 1 , 2 , . . . , J ,  
k = l  

w i t h h 0 = l - m a n d h t = 2 l + l , l > 0 .  Here 

S(r) = (1 -- m)O4(r). (49) 

In order to find the constants {Aj} required in Eq. (45), we substitute Eq. (45) into Eq. (34b) and 
again use the Marshak projection scheme to obtain, for a = 0, 1 . . . . .  J - 1, the system of linear 
algebraic equations 

where 

[ , l ~ (2l + 1)Aj S~.11o(R/~j) + ~  T..,(R)I,(R/~j) gl(~j) = R~, (50) 
j =  I 1=0,2,4 

R , = - ~  ~ ( 2 l + 1  S,I~2o(R/¢j)- T,.,(R)Kt(R (R)g,(¢j). (51) 
j = t l = O ,  2 , 4  " " 
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Once we have solved the linear system given by Eq. (50) to find the constants Aj we can use Eqs. (45) 
and (46) in Eqs. (31) and (33) to find 

Oo(r) = 4~ J=,~ Ajio(r /~j) e -(R- r,/~j + -~J [Io(r /~j)Vj(r) + I(o(r /~j)Uj(r)] (52) 

and 

At this point we can substitute Eqs. (43) and (53) into Eq. (25) to find the next iterate of the 
temperature distribution. We thus find we can write 

O ( r ) - - O  +¼(R~-r2 )H 1 - ~  A(r) (54) 

where 

J 

A(r) = 2 (Aj + 2Dj)~][]o(r/~j) e -("-')/¢j - ]0(R/~j)] 
j = l  

J 

+ ~ Cj[l~o(r/~j)Uj(r)- Ko(R/~j)Uj(R) + ]o(r/~j)Vj(r)]. (55) 
j= l  

To evaluate this solution, we proceed, as in Refs. I0 and 12, to solve a collection of  test problems. 

N U M E R I C A L  M E T H O D S  AND RESULTS 

Before reporting some numerical results for several test problems, we make note of  some 
additional matters regarding the numerical solution of  the second pseudo problem. First of all, 
although we can use Eq. (54) as it is written, we prefer, in order to save some computation time, 
to follow our work in Refs. 10 and 12 and to use Hermite cubic splines to interpolate that equation. 
It follows that since we are using a spline representation of  the temperature distribution we could, 
in fact, evaluate the integrals in Eqs. (47) analytically; however, for the current version of  our 
algorithm we use a standard Gauss quadrature scheme and evaluate the integrals by numerical 
integration. 

In regard to the (outer) iterations between the ~b problem and the heat conduction equation, we 
note that we have added an inner iteration step to improve the convergence of  the method. Thus 
at each step in the outer iteration process we solve Eq. (54) iteratively, since the functions Uj(r) 
and Vj(r) depend on 69(r), to find a new temperature O(r). 

Having encountered considerable difficulty in obtaining a converging computation for cases 
where the effects of  radiation are very strong, we have used, for the first few iterations, a relaxation 
technique ~7 to keep the computation from exploding. However, after completing a certain number 
of  iterations with relaxation in place, we removed the relaxation procedure and completed the 
calculation to obtain our final results. For these cases we also found it helpful to start our 
computation with the initial temperature distribution O(r)= O rather than the radiation-free 
result. 

As we wish to make available some numerical results that have been obtained with the methods 
discussed here, we consider the six test problems defined in Table 1. Our converged results for the 
normalized temperature distribution and the normalized heat fluxes, defined from Eqs. (36) as 

qc(r) r 1 
at(r) = kflTr = 2 H - ~ q*(r), (56a) 

and 

q,(r) 1 
Qr (r ) = kfl-----~ = 4rt-----~ q r* (r ) (56b) 

q(r) r 
Q (r ) = kflTr = 2 H, (56c) 
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Table 1. Physical data for different problems. 

Problem e p O w R N¢ H 

1 0.8 0.2 1.0 0.9 1.0 0.05 1.5 
2 0.9 0.1 1.0 0.9 0.5 0.05 100 
3 0.9 0.1 1.0 0.9 0.05 0.0005 4000 
4 0.9 0.1 1.0 0.9 0.5 0.005 40 
5 0.9 0.I 1.0 0.9 5.0 0.5 0.4 
6 1.0 0.0 1.0 0.9 1,0 0.1 1.0 

are given in Tables 2-7. Having varied the order of the PN approximation, the number of Hermite 
splines used and the number of Gauss points used to evaluate the Uj(r) and ~ ( r )  functions, we 
have some confidence that the results given in Tables 2-7 are correct to within one unit in the last 
digit given. 

To conclude this work we would like to record a few remarks concerning matters that are still 
unresolved. First of all, as for the problems solved in Refs. 10 and 12, there are, to our knowledge, 
no existence and/or uniqueness theorems that apply directly to this problem, and of course it would 

Table 2. Normalized temperature distribution and heat fluxes 
for Problem 1. 

r/R O(r) q,(r) Q,(r) Q(r) 

0.00 1.14135 0.0 0.0 0.00 
0.10 1.14057 1.58317(-2) 5.91683(-2) 7.50(-2) 
0.20 1.13815 3.28689(-2) 1.17131(-1) 1.50(-1) 
0.30 1.13391 5.24174(-2) 1.72583(-1) 2.25(-1) 
0.40 1.12753 7.59858(-2) 2.24014(-1) 3.00(-1) 
0.50 1.11852 1.05392(-1) 2.69608(-1) 3.75(-1) 
0.00 1.10618 1.42868(-1) 3.07132(-1) 4.50(-1) 
0.70 1.08959 1.91149(-1) 3.33851(-1) 5.25(-1) 
0.80 1.06748 2.53521(-1) 3.46479(-1) 6.00(-1) 
0.90 1.03829 3.33766(-1) 3.41234(-I) 6.75(-I) 
1.00 1.0 4.35937(-1) 3.14063(-1) 7.50(-1) 

Table 3. Normalized temperature distribution and heat fluxes 
for Problem 2. 

r/R O(r) Qc(r) Q,(r) Q(r) 

0.00 2.68018 0.0 0.0 0.0 
0.10 2.67697 1.31221(-1) 2.36878 2.50 
0.20 2.66648 2.97875(-1) 4.70212 5.00 
0.30 2.64585 5.45711(-1) 6.95429 7.50 
0.40 2.60944 9.42846(-1) 9.05715 1.00(+i) 
0.50 2.54736 1.59384 1.09062(+1) 1.25(+1) 
0.60 2.44331 2.65103 1.23490(+1) 1.50(+1) 
0.70 2.27228 4.30604 1.31940(+1) 1.75(+1) 
0.80 1.99985 6.72698 1.32730(+1) 2.00(+1) 
0.90 1.58658 9.91733 1.25827(+1) 2.25(+1) 
1.00 1.0 1.35877(+1) 1.14123(+1) 2.50(+1) 

Table 4. Normalized temperature distribution and heat fluxes 
for Problem 3. 

r/R O(r) Q~(r) Or(r) Q(r) 

0.00 2.04106 0.0 0.0 0.0 
0.10 2.03634 1.90642 8.09358 1.0(+1) 
0.20 2.02159 4.05550 1.59445(+1) 2.0(+1) 
0,30 1.99494 6.71132 2.32887(+1) 3.0(+1) 
0.40 1.95313 1.01762(+1) 2.98238(+1) 4.0(+1) 
0,50 1.89126 1.47952(+1) 3.52048(+1) 5.0(+1) 
0.60 1.80264 2.09346(+1) 3.90654(+1) 6.0(+1) 
0.70 1.67883 2.89189(+1) 4.10811(+1) 7.0(+1) 
0.80 1.51008 3.89136(+1) 4.10864(+1) 8.0(+1) 
0.90 1.28655 5.07816(+1) 3.92184(+1) 9.0(+1) 
1.00 1.00000 6.40005(+1) 3.59995(+1) 1.0(+2) 



Nonlinear radiative transfer problems in a solid cylinder 235 

Table 5. Normalized temperature distribution and heat fluxes 
for Problem 4. 

r/R o(o O~(O Q,(~) O(O 
0.00 1.32936 0.0 0.0 0.0 
0.10 1.32898 1.61753(-2) 9.83825(-I) 1.0 
0.20 1.32767 3.70481(-2) 1.96295 2.0 
0.30 1.32508 6.91398(-2) 2.93088 3.0 
0.40 1.32039 1.23314(-1) 3.87689 4.0 
0.50 1.31208 2.18860(-I) 4.78114 5.0 
0.60 1.29725 3.90260(-I) 5.60974 6.0 
0.70 1.27079 6.97497(-1) 6.30250 7.0 
0.80 1.22364 1.23819 6.76181 8.0 
0.90 1.14079 2.15037 8.84963 9.0 
1.00 1.0 3.57497 6.42503 1.0(+1) 

Table 6. Normalized temperature distribution and heat fluxes 
for Problem 5. 

,/R 0(,) Qo(,) Qr(,') Q(O 

0.00 1.59143 0.0 0.0 0.0 
0.10 1.58908 9.45763(-3) 9.05424(-2) 1.0(-1) 
0.20 1.58188 1.94624(-2) 1.80538(-I) 2.0(-1) 
0.30 1.56940 3.07732(-2) 2.69227(-1) 3.0(-1) 
0.40 1.55068 4.46777(-2) 3.55322(-1) 4.0(-1) 
0.50 1.52391 6.35493(-2) 4.36451(-1) 5.0(-1) 
0.60 1.48559 9.18078(-2) 5.08192(-1) 6.0(-1) 
0.70 1.42025 1.37339(-1) 5.62661(-1) 7.0(-1) 
0.80 1.34329 2.12767(-1) 5.87233(-1) 8.0(-1) 
0.90 1.20882 3.33971(-1) 5.66029(-1) 9.0(-1) 
1.00 1.0 5.10041(-1) 4.89959(-1) 1.0 

Table 7. Normalized temperature distribution and heat fluxes 
for Problem 6. 

,/R o(0 Qo(r) Q,(r) Q(O 
0.00 1.13784 0.0 0.0 0.0 
0.10 1.13682 2.05282(-2) 2.94718(-2) 5.0(-2) 
0.20 1.13371 4.18525(-2) 5.81475(-2) 1.0(-1) 
0.30 1.12839 8.47934(-2) 8.52068(-2) 1.5(-1) 
0.40 1.12067 9.02177(-2) 1.09782(-1) 2.0(-1) 
0.50 1.11024 1.19058(-1) 1.30942(-1) 2.5(-1) 
0.60 1.09671 1 .52323(-I )  1.47677(-1) 3.0(-I) 
0.70 1.07959 1.91102(-1) 1.58898(-1) 3.5(-1) 
0.80 1.05827 2.36547(-1) 1.63453(-1) 4.0(-1) 
0.90 1.03202 2.89839(-1) 1.60161(-1) 4.5(-1) 
1.00 1.0 3.52111(-1) 1.47889(-1) 5.0(-1) 

be useful to know if this class o f  problems has been well formulated mathematically.  Also, as we 
have no p r o o f  that  the s traightforward iteration scheme we use converges, we can only conjecture 
that  the results given in Tables 2-7 are correct. Finally we note that for the six problems considered 
here, we observed what  appeared to be convergence toward the established temperature distri- 
bution; however  we did encounter  problems where the method failed to converge. 

While it is clear that  the numerical methods used in this work can be used to solve some combined 
mode,  radiat ion-conduct ion,  heat transfer problems in a cylinder, we note that  there are, in this 
class o f  problems, cases that  we have not  been able to solve. It is anticipated that  more  sophisticated 
iteration techniques will be investigated in future work.  
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