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Abstract-The spherical-harmonics method, also called the PN method, is used to develop 
solutions to a class of multi-group or non-gray radiation transport problems. The multi- 
group model considered allows an anisotropic scattering law and transfer from any group to 
any group. In addition to a spherical-harmonics solution for the case of a homogeneous 
radiative-transfer equation, a particular solution for the PN method is derived for the case of 
multi-group radiative transfer in a homogeneous plane-parallel medium that contains group 
sources that vary with position and direction. Computational aspects of the developed 
solutions are discussed, and numerical results for a test case are reported. 

INTRODUCTION 

We consider here the multi-group or non-gray radiation transport equation written as 

P; ‘P(G P) + S’p(z, CL) =; i P,(P)T, 
I-O s 

I 

J',W)~P(z, P') b + W P) (1) 
-I 

for z E (0, z,,) and p E [ - 1, 11. Here the Legendre polynomials are denoted by P,&), and the 
transfer matrices T, are such that particle transfer (by, say, scattering and/or fission) between and 
within all energy groups is allowed. In addition, the elements tj, (z, p), &(z, p), . . . , t,b,,,(z, p) of the 
M-vector Y(z, CL) are the group angular fluxes or intensities, the elements s, , s,, . . . , sy of the 
diagonal S matrix are the group total cross sections, z is the position variable measured in cm and 
p is the direction cosine, with respect to the positive z axis, that defines the direction of motion. 
Finally, we use E(z, ,u) in Eq. (1) to represent an inhomogeneous (specified) source that could 
describe, for example, spontaneous emission or could be present in the equation because of a 
mathematical decomposition, as Chandrasekhar’ did, of some previously formulated problem. 

Along with Eq. (l), we consider here boundary conditions of the form 

Y’(O, CL) = F,(P) (2a) 

and 

‘p(% -P) = F&) (2b) 

for p E [0, 11. Here F,(p) and F,(p) are considered given. 
In order to use dimensionless units we introduce an optical variable T = ZS,in and an optical 

thickness TV = ZgS,in, where s,,,~,, is the minimum of the set {si}, and rewrite Eqs. (1) and (2) as 

for z e(O,t,) and /J E[-1, 11, and 

y(O, P) = F, (cl) (da) 

and 

P(%> -P) = F,(P), (4b) 

for p E [0, 11. Here the diagonal matrix Z has entries ci = Si/S,in, the dimensionless transfer matrices 

are defined by C, = T,/s,i” and Q(r, p) = E(z, p)/S,i,. 

95 
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THE HOMOGENEOUS EQUATION 

Following our previous work, for example Refs. 2-5, with the spherical-harmonics method, 
we express our approximate PN solution to the homogeneous version of Eq. (3) as 

N 21+1 
Ypc(r, P) = c 

I=0 
2 P,(p) i [A,em”5j + (- l)‘B, e.~(‘O~‘)‘5,]G,(~,)N(5j) 

,=I 

where the constants Aj and B, are to be fixed by the boundary conditions. We consider N to be 
odd, and so the spectrum is given by 5 = <,, j = 1,2, . . . , J = M(N + 1)/2. Here the A4 x Mmatrix 
of polynomials G,(t) are the result of a multi-group extension of the Chandrasekhar polynomials,’ 
and the lj denote the J zeros of det G, + , (4) that lie in the right half-plane. Finally the vector N(t,) 
is used to denote a null-vector of G,, , (r,). To be specific, we note from Ref. 6 that the matrix 
version of the Chandrasekhar polynomials required here can be defined by the starting value 

Go(t)=1 (6) 

and the three-term recursion formula 

t-W,(l) = (I+ l>G+, (4) + IG, , (5) (7) 

forl=O,l,.... Here I denotes the M x A4 identity matrix and 

forI=O,l,...,Land 

h,=(21+ l)Z -C, 

h, = (21 + l)Z 

@a) 

(gb) 

for I > L. It should be noted that in Ref. 6, Siewert and Thomas reported a method for computing 
the discrete spectrum for the formally exact method of elementary solutions,’ and while the method 
used in Ref. 6 became (in high order) a very good technique for computing the required discrete 
spectrum, the method can also define (at every order N of the approximation) exactly the spectrum 
we require here. To pursue this point, we consider 5 to be on the spectrum, let 

T,(t) = G,(tNt) (9) 

forl=O,l,..., N + 1 and multiply Eq. (7) by N(r) to obtain 

th,T,(O=Q + l)T,+,(t)+1T,- t(5) (10) 

for l=O,l,... , N. Following Ref. 6, we continue to consider N to be odd and eliminate the 
odd-order T vectors from Eq. (10) to obtain, for 1 = 0,2,4, . . , N - 1, 

where 

J&T,-,(5) + Y,T,(O + Z/T,+AO = t2T,(5) 

XI= I(1 - l)h;‘h;_‘,, 

(11) 

(12a) 

and 

Y,= 12h;‘h;_‘, + (I + l)*h;‘h;;, (12b) 

Z,=(1+1)(1+2)h,‘h;:,. (12c) 

Equation (11) and the truncation condition TN+, (0 = 0 can now be expressed as the eigenvalue 
problem 

AX = (‘X (13) 
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where 

A= 
. . . . . . . . . . (14) 

0 0 0 . . . YN-5 ZN-5 0 
0 0 0 . . . XN-3 YN-3 ZN-3 
00 0 . . . 0 XN-, YN-, 

Here the A matrix is M(N + 1)/2 square and the X vector has entries T,(g), T,(r), . . . , T,_,(r). 
It thus is clear that the J = M(N + 1)/2 eigenvalues of A are the squares of the Jf pairs of zeros 

of detG,+,(O. 

Yo z, 0 . . . 0 0 0 

x2 Y* z* . . . 0 0 0 

0 x, Y, . . . 0 0 0 

We can now use, for example, the linear-algebra package EISPACK’ to compute the eigenvalues 
and eigenvectors of the A matrix. Of course the eigenvectors of A contain only the even-order 
T vectors, i.e., T,(<),T2(<), . . . , TN_ ,(t). However, given the even-order T vectors, we can 
immediately find the odd-order T vectors, i.e., T, (<), T,(t), . . . , TN(t), from Eq. (10). With the 
eigenvalue spectrum and the T vectors so established, we rewrite our spherical-harmonics solution 
to the homogeneous version of Eq. (3) as 

N 21+1 
FJr, cl) = 1 2 P,(p) i [Aj e-“cj + (- l)‘B, ed’o-‘)‘tj]T,(<j) 

I=0 j=i 

with only the constants {A,, Bj} left to be determined from the boundary conditions. 

(15) 

A PARTICULAR SOLUTION 

Giving attention now to the problem of finding a particular solution of Eq. (3) appropriate to 
the spherical-harmonics method, we note first of all that Roux, Smith, and Todd’ used the method 
of variation of parameters to reduce the job of finding a particular solution for an isotropic source 
term for the one-group or gray model to the need to solve a system of linear algebraic equations, 
which subsequently was solved analytically by Siewert and Thomas.’ Following the paper by 
Siewert and Thomas,’ McCormick and Siewert’O were able to generalize the results of Ref. 5 to 
find a particular solution for the formally exact method of elementary solutions and for the 
spherical harmonics method for the case of an angularly- and spatially-dependent inhomogeneous 
source term. 

To begin we express the desired particular solution as 

N 21+1 
Fp,(r, p) = 1 

/=o 
2 P,(p) i [Ai e-‘/b + (- 1)/B,(r) e-(‘o-‘)‘e~]T,(~j) 

j=l 
(16) 

where the functions Aj(r) and B,(t) are to be found. Substituting Eq. (16) into Eq. (3), multiplying 
the resulting equation by P&u>, for fl = 0, 1, . . . , N, and integrating over ~1, we find 

j$, tj[A,!(7) e-ricj - (- l)flB;(r) e-cro-‘)‘~~]hsTp(<j) = 2Q,(?) (17) 

where 

QB(T)=~~~,Q(~,~)~~(~)d~ (18) 

and where the symbol prime is used to denote differentiation with respect to r. At this point 
we let 

and 

xi(r) = [,[Aj(r) e-‘/Cl - B;(r) e-(*O-‘)~~J] (19a) 

Yj(r) = t,[A( (t) e-‘/S + B; (2) e-(‘O- ‘)‘cl] (1W 
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and rewrite Eq. (17) as 

C. E. SIEWERT 

and 

,$, Y,(r)T,, ,((,I = &i-,Qw ,(T) 

for k = 1,2, . . . , (N + 1)/2. In order to express Eqs. (20) in matrix form we introduce 

and 

so that we can write 

(2Ob) 

(214 

Here 

T,X(T) = U(T) and T,Y(T) = V(T). (22a, b) 

and also 

x(T) = [i;/::j and Y(r)= [i;;::j . (2% b) 

As an alternative to formulating our eigenvalue problem as Eq. (13), we can eliminate the 
even-order T vectors from Eq. (10) to find 

where 

B= 

y, z, 
x3 y3 

0 x5 

0 0 

0 0 

0 0 

BY=t2Y 

0 . 

z, . 
y5 

0 . 

0 . 

0 

Y N-4 Z N-4 0 

X N-2 yN--2 ZN 2 

0 xN yi’ 

0 0 

0 0 

0 0 

(25) 

(26) 
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Here 

Y;= N*h,‘h,!, (27) 

and the Y vector has elements T,(t), T,(r), . . . , TN(t). 
At this point we are ready to solve Eqs. (22) to find X(r) and Y(r); however, lacking a required 

proof, we must now assume that the matrices A and B are not defective so as to ensure that T, 
and T, are invertible. Following this assumption, we can write 

and 

X(z) = T;‘U(T) 

Y(r) = T,‘V(z). 

(29 

(28b) 

We can now use Eqs. (28) in Eqs. (19) to find 

A’(r) = ;D erDfT;‘V(z) + T;‘U(z)] 

and 

(294 

B’(T) = ;D e@o-‘)D~,y’V(~) - T;‘U(t)] (2W 

where 

In addition, we have introduced 

] and B(z)= [af5. (3% b) 

D=diag 
1 1 1 

1,s ,..., r, . (31) 

Of course, we can integrate Eqs. (29) to find the final results required in Eq. (16), viz. 

ecrDA(T) = fD 
s 

‘em(‘m”)D~;lU(x) + T;‘V(x)] dx (32a) 
0 

and 

s 

TO 

e-(~O-rPB(~) = ;D e-(“-‘)D[T;‘U(x) - T;‘V(x)] dx. (32b) 
r 

In order to obtain the results given by Eqs. (32) for the functions {A,(T)} and {Bj(r)} required 
in Eq. (16) we had only to make the assumption that the matrices A and B are not defective. 
Now, following those assumptions, we can obtain somewhat more explicit results. To this end, 
we first let T,(tj) and T,(cj) denote thej-th columns of the matrices T, and T, respectively, so that 
we can write 

and 

As A and B are considered to have 

ATe(tj) = tfTe(tj) (334 

BTo (<j) = tf To t(j)- PW 

complete sets of eigenvectors, we let @ (cj) and f,*(tj), 
where the tilde is used to denote the transpose operation, represent the left eigenvectors of A and 
B, i.e. 

F: (5j)A = r:TZ ((1) (34a) 

and 

T,* (5j)B = <f ‘R’ (<j), (34b) 
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that are orthogonal to the corresponding right eigenvectors. We thus can write 

TZ(ti)T,(<j) = Ne(5i)d,, 

and 

(35a) 

TZ(5i)T,(<j) = No(ti)hi,j. (35b) 

If we now take the transpose of Eqs. (34) and note Eqs. (lo), (14) and (26) we can conclude that 

where the vectors Tf(tj) satisfy a three-term recursion formula similar to Eq. (lo), viz 

<iTf(S) = (I+ l)Tj+, (0 + IT:- ,(O (37) 

for I=O,l,... , N. These vectors also have the truncation condition Tfy+ ,(tj) = 0 for 
j= 1,2 )...) J. 

Considering now Eqs. (35) and (36) we conclude that we can write 

Ne(5j) = i ~:,-,(rj)h,,-,T,,-,(5,) (3ga) 

and 
k=l 

No(tj)= 2 ~~k--I(5,)h2k~,T2k-,(5j) (3gb) 
k=l 

where K = (N + 1)/2. In fact, we can also deduce from Eqs. (10) and (37) that N,(&) = N,,(t,). We 
can now find from Eqs. (32) the explicit results 

A,(r) e-‘/G = S! tj m$OTA(cj) l: Qa(x)e-"-")lt~ dx (394 

and 

B.(r) e-(romr)/t, = see0 (- l)“TA(<,) ITo Q,(x) e-c” -r)/4 dx 
I Wb) 

i 

where 

Cj= i ~lk-2(Sj)hU(~ZT2k-2(5/) -‘T 
( 1 

j=1,2 J. 3 . , (40) 
k=l 

Finally, we rewrite the desired particular solution as 

where 

and 

P,(r, P) = c N y p/(P) i F [U,(r) + (- l)‘h(r)lT/(tJ) 
I=0 j=l J 

s 

r U](7) = u,(x)e-('- r)/t, dx 

0 

(41) 

(424 

with 

V,(r) = 
s 

” uj(x) e-(“-‘)lS dx (42b) 
r 

and 

u,(X)= 2 f'A<tJ>Qe(x> 
*=O 

(434 
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AN APPLICATION 

Having established in previous sections our spherical-harmonics solutions for the homogeneous 
and inhomogeneous versions of the equation of transfer, we are now ready to solve the general 
problem defined by Eqs. (3) and (4). We write 

IV 21+1 
‘p(r, CL) = YP,(r, p) + 1 2 P,(,u) i [Aj e-“cj + (- l)‘B, e-@O-‘)‘tj]T,(tj) (44) 

I=0 J=I 

where the constants Aj and Bj are to be found. Substituting Eq. (44) into Eqs. (4), we find 

N 21+1 
c ~PI(P) f: [Aj+ (-1)‘Bje-‘“‘ejlT,(5j) =F,@L)- Y’p(O, P) VW 
I=0 j=l 

and 

N 21+1 
c 
I=0 

UP, i [Bj+ (-l)‘~je-‘“‘~]T,(Sj) =Fz(p) - pp,(ro, -_cL) 
j=l 

Wb) 

for p E [0, 11. As we can satisfy only approximate versions of Eqs. (49, we choose here to use the 
Marshak and the Mark approximations to the boundary conditions.” 

For the Marshak approximation, we multiply Eqs. (45) by P 2a + , (p) and integrate over p from 
0 to 1 to obtain the system of linear algebraic equations 

N21+1 J 
c- 
I=0 

2 SE,, jg, [Aj + ( - 1 )‘Bj e-‘“‘SjlT, C(j) 

I 

I 

= 
Pza+,(~)F,(~)G - c N y S,,( - 1)’ i F V,(O)T,(t,) (46a) 

0 I=0 j=l j 

and 

N 21+1 
c 
I=0 

2 S,,, i [Bj + (- l)‘Aje-‘O’S]T,(Sj) 
J=l 

I 
N 21+1 

= 
s 

P2m+,(p)Fz(p)dp - 1 
0 I=0 

2 sm./(- l)lj$, z Uj(ro)T,(Sj) (46b) 

fora=O,l,... , (N - 1)/2. Here the constants 

SK, = 
I’ 

Pzol+, (TV’, dp (47) 
0 

can be evaluated as mentioned in Ref. 3. 
For the Mark approximation, we let &, for k = 1,2, . . . , K = (N + 1)/2, denote the K positive 

zeros of PN+ , (p) and consider Eqs. (45) only at these points to obtain 

N 21+1 
c Tp!bkk) i [Ai+ (-1)‘Bje-‘“‘e’lT,(5j) =F,(Pk)- yp(O,~k) 
/=o j=l 

(484 

N 21+1 
c 
I=0 

Fp/(pk) i [Bj+(-l)'~je-'"'S'lT,(Sj)=F,(~k)-JPp(~o, -pk) (48b) 
j=l 

fork=1,2 ,..., K. 

Considering now that we have solved either Eqs. (46) or (48) to find the constants Aj and Bj, 

we can find the group fluxes and currents, 

s 

I 
Yob) = ‘ph P) dp (494 

-I 
and 

I 
P,(z) = 

s 
‘P(G PL)P dp, WW 

-I 
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by integrating Eq. (44). We find 

YO(7) = f: {Ajem”5J + Bje-(‘o~‘)‘4 +? [U,(7) + V,(r)]}T,,(4,) 
,=I , 

and 

(504 

8, (7) = i {Aje-“o - BjeP(‘O~“‘t~ + 2 [U,(T) - V,(z)]}T, (tj). (50b) 
,=I 1 

Of course, having found the constants Aj and B,, we can also compute the the angular fluxes for 
each group. Rather than compute the angular fluxes from Eq. (44) we substitute Eq. (44) into the 
right-hand side of Eq. (3) and then integrate the resulting equation to find the group angular fluxes. 
In this manner we find 

‘P(7, p) = epZripF, (p) + L 
s 

1 
e-Z”-“)iPQ(x, cl) dx + E-(7, cl) 

P 0 

+ f t P/(P) i {5j[AjC(7 : PI-‘> (,I + (- l)‘B, em (Tom*)W3(7 : ,uZ -‘, &)])I; -‘C,T,(t,) (5la) 
I-O ,=I 

and 

zC(% - ‘):lr& (/*) + i 

s 

% 
F(7, -p) = em eerc~‘+‘)“‘Q(x, -p) dx + E-(7, -n) 

7 

+i $ P,(p) i (~j[(-l)‘A,em’~st3(70-7:pE~‘, 4,)+B,C(7,-7:~~~‘,5,)1}2~‘C,T,(5,) (51b) 
I-O .j= I 

for ~1 E [0, 11. Here we have introduced the definitions 

and 

where 

and 

In addition 

(52a) 

(52b) 

(534 

S(u. x y) = 1 - e-a,‘r e-&j 
. 9 

x+y 
(53b) 

~(T,~)=;,$~P~(~) i C, ‘u,(x)C(s -x:,uP&)dx 
j=l is 0 

[ s 

I 

+(-1)’ ~(7)s(7:~z-‘,5i)+ o u,(x)e- ‘(‘- ‘),“S(x : p,Z -I, t,) dx 11 .Z -‘C,T,([,) (54a) 

and 

Z(7, -n) =; $ P,(p) i c, 
is 

T0 o,(x)C(x-7:pP,&)dx+(-1)’ 
[ 

U,(r)S(z,-7:/Z I,<,, 
(-0 ]=I 7 

s 

70 
+ u,(x) e- z(1--W(70 - x: ,uZ-‘, [,) dx X --‘C,T,(t,) (54b) r 11 

for p E [0, 11. 

AN ALTERNATIVE SOLUTION 

In the previous section we developed what we consider to be a very straightforward solution 
to the basic multi-group or non-gray problem defined by Eqs. (3) and (4). Here, as an attempt to 
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improve the accuracy of the solution, we follow Chandrasekhar’ and decompose the solution into 
scattered and unscattered components. To this end, we first write 

where pp,(r, p) satisfies 

F(r, p) = F0(r, p) + @(r, p) (55) 

a 

subject to the boundary conditions 

~~(0,~1)=F,(~) (57a) 

and 

~&Cl, -p) = F*(p) (57b) 

for p E [0, 11. It follows that @(r, cl) must satisfy 

P~@~P)+~+(w)=; i p,@L)C, s ’ P,(~')~(z,y')d~'+Q,(z,~) (58) 
I-O -I 

subject to 

and 

for p E [0, 11. Here 

@(O, p) = 0 

@(ro, -p)=O 

Qo(z, P) =; i p&K s ’ p,(~'Yo(~, ~‘1 G’. 
1-O -I 

(594 

Wb) 

(60) 

We can readily solve Eqs. (56) and (57) to obtain 

Yo(r, p) = e-rr/rF, (p) + A 
s 

z 
e-z(7-X)“‘Q(x, p) dx (61a) 

p 0 

and 

r(To - T)iPF2 @) + i s '0 

!Po(7, -p) = e- e-z(X-T)lfiQ(x, -p) dx 
7 

@lb) 

for p E [0, 11, and so we can now consider Qo(r, p) in Eq. (58) as known. Since Eqs. (58) and (59) 
define a problem in the class of problems defined by Eqs. (3) and (4), we can use our foregoing 
development to establish our spherical-harmonics solution for @(T, p). 

NUMERICAL METHODS AND RESULTS 

As our basic formulation is complete, we are now ready to discuss the numerical methods we 
use to implement the solution, First of all, we use the driver problem RG from the EISPACK8 
collection to compute the eigenvalues and eigenvectors of the A matrix given by Eq. (14). As the 
elements of these eigenvectors provide only the even-order T,(&) we then use Eq. (10) to compute 
the odd-order T,(&). We have also carried out a similar computation to find the vectors Tf(t,); 
however, at the end of the day, we found it faster to compute the inverses of the matrices T, and 
T, given by Eqs. (21) and to define the vectors T!(cj) from these inverses. At this point the constants 
{ Cj} were computed from Eq. (40), and the integrals given by Eqs. (42) were evaluated by Gaussian 
quadrature. We then solved, using the subroutines DGEFA and DGESL from the LINPACK” 
collection, either Eqs. (46) or Eqs. (48) to find the constants {Aj> and {B,}, and finally the desired 
results were found by evaluating Eqs. (50) and (51). 
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1.50520 

Table 1. The total cross sections (in cm-‘). 

1.57051 3.51907 6.26226 1.40294(+1) 4.21492(+1) 

In order to check out our solution, we first considered the 20-group problem defined and solved 
by Garcia and Siewert.13 This problem has anisotropic scattering of order 10 but has no 
up-scattering. The problem is, however, an excellent test case because results accurate to five 
significant figures are giveni for all group angular fluxes as well as group fluxes, group currents 
and albedo and transmission factors for each group. In regard to our results here, we found that 
with, say, N = 99 we could obtain results accurate to all five figures for the angular fluxes, the fluxes 
and the currents for all groups for all (of those considered in Ref. 13) of the points interior to 
the surface of the layer. On the other hand, as is typical of the spherical-harmonics method, our 
solution on the boundary was, again with, say, N = 99 good only to three significant figures. By 
using the alternative formulation discussed in the previous section, we were able to obtain some 
modest improvement in our boundary results, but, of course, this second solution required 
considerably more computational time. 

In order to provide a test of our general multi-group solution we next consider a six-group 
problem that has anisotropic scattering and up-scattering. The cross sections for this problem were 
provided by R. D. M. GarciaI and are listed in Tables 1 and 2. The total cross sections and the 
transfer matrices given for this six-group problem were derivedI for neutron scattering in water, 
and, of course, are subject to some approximations; however, here in our numerical calculations, 
we consider the input data to be exact. 

8.07750(-l) 

6.26456(-l) 

6.16969(-2) 

6.16969(-3) 

6.16969(-4) 

6.83147(-5) 

1.73809 

1.00096 

3.23741(-2) 

1.16883(-3) 

8.28375(-5) 

2.28725(-5) 

Table 2(a). The transfer cross sections T, (in cm-‘). 

0.0 0.0 0.0 0.0 

9.84040(-l) 9.79447(-2) 4.70592(-2) 1.26378(-l) 

5.22489(-l) 3.09892 2.01540 3.24243 

5.15850(-2) 2.97524(-l) 3.88257 8.22842 

5.15850(-3) 3.48269(-3) 2.43839(-l) 2.09399 

5.72919(-4) 9.81407(-5) 6.67680(-3) 1.27601(-l) 

Table 2(b). The transfer cross sections T, (in cm-‘). 

0.0 0.0 0.0 0.0 

2.06953 3.65035(-2) -7.17931(-3) -6.57000(-3) 

7.97905(-l) 1.84248 -8.37651(-l) -9.50478(-l) 

2.58418(-2) -1.42702(-2) 1.51150 -1.42204(-l) 

9.49379(-4) -1.60567(-3) 7.80252(-2) 1.18387 

9.04254(-5) -1.63418(-5) 3.64032(-4) 2.94178(-2) 

0.0 

3.97098(-l) 

9.62747 

2.42148(+1) 

5.46759 

1.77484 

0.0 

-6.21269(-3) 

-8.87500(-l) 

-5.72883(-l) 

1.21816 

5.93333(-l) 

Table 2(c). The transfer cross sections T, (in cm-‘). 

1.89361 0.0 0.0 0.0 0.0 0.0 1 
-1.16776(-2) 2.03360 -2.78866(-2) -3.66853(-3) -5.40201(-3) -1.56529(-2) 

-1.38579(-l) -1.00130(-l) 4.28177(-l) -4.78174(-l) -1.90615(-l) -3.91507(-l) 

-1.52290(-2) -1.16769(-l) -6.28730(-2) 5.52373(-l) -5.57599(-l) -1.08378 

-1.53296(-3) -1.27412(-2) -3.69913(-4) 4.15341(-2) 7.64138(-l) 1.96411(-l) 

-1.61574(-4) -1.41761(-3) -4.41786(-6) -2.23975(-I) 3.03330(-2) 2.98538(-l) 

Table 2(d). The transfer cross sections T, (in cm-‘). 

1.28480 0.0 0.0 0.0 0.0 0.0 

-1.17471 1.09070 -2.12993(-2) -7.43655(-4) -5.91497(-4) -5.66126(-4) 

-1.05643(-l) -1.00250 4.61562(-l) -1.88398(-l) -8.54669(-2) -7.69580(-2) 

-4.05881(-3) -8.45487(-2) -2.85371(-2) 7.24719(-l) -1.03599(-2) 6.50889(-2) 

-2.88894(-4) -3.29773(-3) -1.53968(-4) 5.10368(-2) 7.61976(-l) 2.89226(-l) 

-7.47744(-5) -3.13307(-4) -1.46113(-6) 5.06034(-5) 3.23582(-2) 2.85246(-l) 
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Table 3. The group fluxes PO(r). 

Group T/Q = 0.0 T/Q = 0.25 T/To = 0.5 r/70 = 0.75 T/TO = 1.0 

1 1.09 1.6205(-4) 4.8524(-8) 1.4567(-11) 4(-15) 
2 2.30(-l) 3.7447(-2) 1.9639(-3) 1.0277(-4) 1.79(-6) 
3 2.92(-l) 1.8547(-l) 9.7989(-3) 5.1278(-4) 4.37(-6) 

4 3.06(-2) 2.0281(-2) 1.3884(-3) 7.2654(-5) 4.39(-7) 

5 6.00(4) 6.1078(4) 3.2260(-5) 1.6882(-6) 7.91(-9) 

6 7.31(-6) 7.2593(-6) 3.8325(-7) 2.0056(-S) 7.94(-11) 

Table 4. The group currents @P, (7). 

I Group T/To = 0.0 T/To = 0.25 r/nl = 0.5 T/TO = 0.75 

1 4.7192(-l) 1.0441(4) 3.1293(-8) 9.3942(-12) 3(-15) 

2 -9.9291(-2) 5.9818(-3) 3.1144(-4) 1.6359(-5) 1.0985(-6) 

3 -1.6297(-l) 8.7772(3) 4.6933(4) 2.4656(-5) 2.5198(-6) 

4 -1.7026(-2) 5.9229(A) 3.1693(-5) 1.6650(-6) 2.4654(-7) 

5 -3.2783(-4) 6.7184(-6) 3.5924(-7) 1.8873(-S) 4.3167(-g) 

6 -3.8625(-s) 2.8826(-S) 1.5337(-9) 8.0572(-11) 4.1041(-11) 

In addition to the data given in Tables 1 and 2, we note that here we use, as was suggested by 
GarciaI for a health-physics application, z,, = 30 cm which is equivalent to r0 = 45.156. For the 
boundary conditions, we use 

F,(P) = [i] and F2(p)= [i] (62a, b) 

for p E [0, 11. Finally, for this problem, there is no inhomogeneous source term in Eq. (3), 
i.e. Q(r, CL) = 0. 

In Tables 3 and 4 we report our results for the group fluxes and currents, as computed from 
Eqs. (50). To obtain the results shown in Tables 3 and 4, we have used both the Mark and Marshak 
boundary conditions. We have used both the straightforward formulation and, what we call, the 
Chandrasekhar formulation, and we have increased the order of the approximation until we have 
established some confidence that the reported results are accurate to f 1 unit in the last digits given. 
For the considered test problem, we found the results given in Tables 3 and 4 to be stable as the 
order of the approximation varied from, say, N = 199 to 499. In conclusion, we note that we found, 
for the considered test problem, no appreciable difference (especially as the order of the 
approximation was increased) in the results obtained from the two standard approximations, the 
Marshak and the Mark, to the true boundary conditions. 

In conclusion it should be noted that the results given in Tables 3 and 4 have not been 
confirmed, as we would have liked, by comparison with results from independent calculations. 
Though some effort has been made to find an existing computer code that can solve the considered 
multi-group problem, no success can be claimed. It appears (at least to the author) that several 
of the existing multi-group codes are not able to yield correct results for problems that have 
significant components of up-scattering. Needless to say, it is possible that errors have been made 
in the programs (written by the non-expert author) that yielded the results in Tables 3 and 4, and 
so the author would be grateful for communications that either confirm or dispute the reported 
results. 
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