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Abstract—The spherical-harmonics method, also called the Py method, is used to develop
solutions to a class of multi-group or non-gray radiation transport problems. The multi-
group model considered allows an anisotropic scattering law and transfer from any group to
any group. In addition to a spherical-harmonics solution for the case of a homogeneous
radiative-transfer equation, a particular solution for the P, method is derived for the case of
multi-group radiative transfer in a homogeneous plane-parallel medium that contains group
sources that vary with position and direction. Computational aspects of the developed
solutions are discussed, and numerical results for a test case are reported.

INTRODUCTION
We consider here the multi-group or non-gray radiation transport equation written as

1

0 1 &
p— P u)+S¥u) =5 P,
0z 2,54

P ()P (z, p")du’ + E(z, u) M

for z€(0,z) and ue[—1,1]. Here the Legendre polynomials are denoted by P,(u), and the
transfer matrices T, are such that particle transfer (by, say, scattering and/or fission) between and
within all energy groups is allowed. In addition, the elements ¥, (z, 1), Y,(z, 1), . . ., Y (2, p) of the
M-vector ¥(z, u) are the group angular fluxes or intensities, the elements s,,s,, ..., sy of the
diagonal S matrix are the group total cross sections, z is the position variable measured in cm and
u is the direction cosine, with respect to the positive z axis, that defines the direction of motion.
Finally, we use E(z, ) in Eq. (1) to represent an inhomogeneous (specified) source that could
describe, for example, spontaneous emission or could be present in the equation because of a
mathematical decomposition, as Chandrasekhar' did, of some previously formulated problem.
Along with Eq. (1), we consider here boundary conditions of the form

YO,u)=F (1) (2a)
and

¥ (z, —n) =F(u) (2b)

for p €[0, 1]. Here F, (1) and F,(u) are considered given.
In order to use dimensionless units we introduce an optical variable T = zs,;, and an optical
thickness T, = ZySmin, WheTe 5., is the minimum of the set {s;}, and rewrite Eqs. (1) and (2) as

a 1 L 1
e P, u)+ZP(t,u)= 5120 Pz(u)C:f 1 P(u)P(r, u)dp + Q(z, p), 3)
for 1 €(0,1,) and u e[—1, 1], and
PO,u)=F (u) (4a)
and
¥ (7, —u) =F,(p), (4b)

for u €[0, 1]. Here the diagonal matrix X has entries 6, = s,/Smi,, the dimensionless transfer matrices
are defined by C,=T,/s.., and Q(z, u) = E(t, #)/Snin-
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96 C. E. SIEWERT

THE HOMOGENEOUS EQUATION

Following our previous work, for example Refs. 2-5, with the spherical-harmonics method,
we express our approximate P, solution to the homogeneous version of Eq. (3) as

N2+ 1 J
Po(o 0= T o P T e+ (— 1B e 091G (NG )
=0 j=1

where the constants 4; and B, are to be fixed by the boundary conditions. We consider N to be
odd, and so the spectrum is givenby { =¢,,j =1,2,...,J = M(N + 1)/2. Here the M x M matrix
of polynomials G,(¢) are the result of a multi-group extension of the Chandrasekhar polynomials,’
and the &; denote the J zeros of det Gy, (¢) that lie in the right half-plane. Finally the vector N(¢))
is used to denote a null-vector of Gy ,({). To be specific, we note from Ref. 6 that the matrix
version of the Chandrasekhar polynomials required here can be defined by the starting value

Gy(§) =1 (6)
and the three-term recursion formula
¢hG(&)=( + DG, (8 +1G, 1 (8) (7N
for I =0,1,.... Here I denotes the M x M identity matrix and
h=02/+1)X —-C (8a)
for/=0,1,...,L and
h,=0Q2/+ 1)~ (8b)

for I > L. It should be noted that in Ref. 6, Siewert and Thomas reported a method for computing
the discrete spectrum for the formally exact method of elementary sotutions,” and while the method
used in Ref. 6 became (in high order) a very good technique for computing the required discrete
spectrum, the method can also define (at every order N of the approximation) exactly the spectrum
we require here. To pursue this point, we consider ¢ to be on the spectrum, let

T, (&) = G(EIN() 9)
for /=0,1,..., N+ 1 and multiply Eq. (7) by N(¢) to obtain
EhT, &)=+ DT, (O +IT, ((S) (10)

for /=0,1,..., N. Following Ref. 6, we continue to consider N to be odd and eliminate the
odd-order T vectors from Eq. (10) to obtain, for / =0,2,4,..., N — 1,

X,T, (&) + Y, T(E) + Z,T,. (&) =&T,(&) (1
where
X,=1(/ — Dh; 'h '}, (12a)
Y,="h "h! + (I + D*h'hy (12b)
and
Z,=(+1)({+2h "h . (12c)

Equation (11) and the truncation condition Ty, ,(£) = 0 can now be expressed as the eigenvalue
problem

AX = £2X (13)
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where

(Y, 2z, 0 ... 0o o o0 |

X, Y, Z, 0 0

0 X, Y, ... 0 0 0

A=+t o : S (14)

0 0 0 ... Yy Zy, O

0 0 0 ... Xy, Yv, Zy_,

Lo 0 0 ... 0 Xy, Yy, |

Here the A matrix is M (N + 1)/2 square and the X vector has entries To(&), T,(E), ..., Ty_;(&).
It thus is clear that the J = M (N + 1)/2 eigenvalues of A are the squares of the J + pairs of zeros
of det G, ,(&).

We can now use, for example, the linear-algebra package EISPACK? to compute the eigenvalues
and eigenvectors of the A matrix. Of course the eigenvectors of A contain only the even-order
T vectors, i.e., Ty(&), T,(&),...,Ty_ (). However, given the even-order T vectors, we can
immediately find the odd-order T vectors, i.e., T,({), T,(£), ..., Ty(£), from Eq. (10). With the
eigenvalue spectrum and the T vectors so established, we rewrite our spherical-harmonics solution
to the homogeneous version of Eq. (3) as

N2A+1

W R =
(T, 1) l; 5

with only the constants {4, B;} left to be determined from the boundary conditions.

Pi(u) ZJ: (4,67 + (= 1)B;e ™~ "4]T(E) (15)

A PARTICULAR SOLUTION

Giving attention now to the problem of finding a particular solution of Eq. (3) appropriate to
the spherical-harmonics method, we note first of all that Roux, Smith, and Todd® used the method
of variation of parameters to reduce the job of finding a particular solution for an isotropic source
term for the one-group or gray model to the need to solve a system of linear algebraic equations,
which subsequently was solved analytically by Siewert and Thomas.’ Following the paper by
Siewert and Thomas,® McCormick and Siewert'® were able to generalize the results of Ref. 5 to
find a particular solution for the formally exact method of elementary solutions and for the
spherical harmonics method for the case of an angularly- and spatially-dependent inhomogeneous
source term.

To begin we express the desired particular solution as

N2A+1 z
Po(e.0) = 3 5= R T A€+ (< DB (0 e HIT(E) (16)

where the functions 4,(r) and B,(7) are to be found. Substituting Eq. (16) into Eq. (3), multiplying
the resulting equation by Py(u), for f =0,1,..., N, and integrating over u, we find

Y. A1) &~ — (~ 1PB]() v~ W Ihy T, (6) = 2Q4(6) an
where
2 1!
00 =212 [ o an ()

and where the symbol prime is used to denote differentiation with respect to 7. At this point
we let

X(r) = §lA;(r) e — Bj(r) e~ %] (19a)
and
Yi(r)=¢[A](t) e " + Bj(t) e 0~ %] (19b)
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and rewrite Eq. (17) as

2 X,(OTy 2(&) =2hz;' ,Qy (1) (20a)

J
and

Z Yj("-' )Ty 1(5,') = 2h2_klf 1Qu (1) (20b)
j=1

for k=1,2,...,(N + 1)/2. In order to express Egs. (20) in matrix form we introduce

rTO(él) T (&) To(&) ... Te(&)
| @) @ @) . TWE) (21a)
To @) Ty i@ Tyi(&) -0 Ty i(&)
and
(T TE)  TE) ... T(E)
To — TS(&I) T3(52) T3(é}) . T3(€J) (21b)
([ TW@)  TW&) @) . TaE)
so that we can write
T.X(t)=U(x) and T.Y(r)= V(). (22a, b)
Here
hy ' Qy (1) h'Q, (1)
un=2| ®EO | g yey=2 | OO (23a,b)
hi' Qy_ () h7'Qu(r)
and also
X, (1) Y (1)
Xxm= | | and voy= | O (24a, b)
X,(0) Y,(x)

As an alternative to formulating our eigenvalue problem as Eq. (13), we can eliminate the
even-order T vectors from Eq. (10) to find

BY = %Y (25)
where
(v, z, o 0 0 0 |
X, Y, Z, 0 0 0
0 X, Y, 0 0 0
B= | : : : Lo (26)
0 0 Yo . Zy., O
XN—Z YN-—Z ZN«—Z
.o 0 0 X, \
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Here
= NZhy'hy!, 27

and the Y vector has elements T, (&), T;(£), ..., Ty(£).

At this point we are ready to solve Eqgs. ( 22‘ to find X(t) and Y(t); however, lacking a required

proof, we must now assume that the matrices A and B are not defectlve so as t
and T, are invertible. Following this assumption, we can write

)
(1]

S

»

=

[¢]
=g
o

-
!

X(t) =T, 'U(r) (28a)
and
Y(t) =T;'V(z). (28b)

We can now use Egs. (28) in Egs. (19) to find

A'(r) =3;De®[T;'V(r) + T, U(x)] (29a)
and
B/(x) = }D e~ O[T, V() - T Uv)] (29b)
where
A (1) B,(7)
A() = AZ:(T) and B(r)= 32:(1) (30a, b)
A,(1) B,(x)

In addition, we have introduced

1 1 i
D =dia . 31
g{a 5 c,} G
Of course, we can integrate Eqgs. (29) to find the final results required in Eq. (16), viz.
e PA(r) =1iD J e =T 'U(x) + Ty ' V(x)] dx (32a)
and
e - "PB(r) =1 f oe“"'”"[’l‘; "U(x) — T;'V(x)] dx. (32b)

In order to obtain the results given by Egs. (32) for the functions {4,(t)} and {B;(r)} required
in Eq. (16), we had only to make the assumption that the matrices A and B are not defective.
Now, following those assumptions, we can obtain somewhat more explicit results. To this end,
we first let T (&) and T,(&;) denote the j-th columns of the matrices T, and T, respectively, so that
we can write

AT (&) =& T(&) (33a)

and
BT, () = & To(&). (33b)

As A and B are considered to have complete sets of eigenvectors, we let 'i';“ (¢;) and ’i‘:," &),
where the tilde is used to denote the transpose operation, represent the left eigenvectors of A and
B, ie.

THE)A=ETHE) (34a)
and

Tx(£)B =& T3 (&), (34b)
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that are orthogonal to the corresponding right eigenvectors. We thus can write

T*ENT(E) = Ne(€)5,, (352)
and
T €DTo(&) = No(€)3, - (35b)
If we now take the transpose of Eqs. (34) and note Eqs. (10), (14) and (26), we can conclude that
ho T3 (&) h, T} (&)
)= | MR | e fre- | BTG (362, b)
h,_\Th () By T}()
where the vectors T} (¢;) satisfy a three-term recursion formula similar to Eq. (10), viz
ERT] (&) = (I + DT, (&) + IT]_,(¥) (37)

for /=0,1,...,N. These vectors also have the truncation condition T}, ,((,)=0 for
Jj=12,...,J.
Considering now Egs. (35) and (36), we conclude that we can write

Ne(@) = T Th o Ta o) (382)
and
X -
No(fj) = kz, T;k -1 (éj)h2k— 1 Tzk— l(éj) (38b)

where K = (N + 1)/2. In fact, we can also deduce from Egs. (10) and (37) that N.(¢,) = N,(¢;). We
can now find from Egs. (32) the explicit results

N T
A(r)e =% ) T;(éj)f Q. (x) e~ dx (39a)
j a=0 0
and
C X ~ To
Bi(r)e oy =2 % (—1)“TI(€,-)J Q.(x)e 7% dx (39b)
j a=0 T
where
K -1
Cj=< Z T;k—Z(éj)thZTM—Z(éj)) , J=12,...,J. (40)
k=1
Finally, we rewrite the desired particular solution as
N2l +1 o
Vo600 = T 5= PG X200+ (- DY ITE) (a1)
=0 j=1 8
where
Ulr)= j ux)e "% dx (42a)
0
and
Vit)= f ’ v(x)e "% dx (42b)
with
N -~
ux) = Y TLE)Qu(x) (43a)
=0
and

y(x)= T (= DTUEHQ). (43b)
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AN APPLICATION
Having established in previous sections our spherical-harmonics solutions for the homogeneous
and inhomogeneous versions of the equation of transfer, we are now ready to solve the general
problem defined by Eqs. (3) and (4). We write

Y2A+1
L {ANES NADED)
=0

Piw) 3 [, + (= 1YBye-t-95]T,(&,) (4d)

j=1
where the constants 4; and B, are to be found. Substituting Eq. (44) into Eqgs. (4), we find
N2 +1

1=0

Pi(u) Z [4;+ (—1)'B;e ™ MNT (&) =F, (1) — P, (0, ) (45a)

and

Pi(u) Y [B;+ (— 1)d;eR1T(&) = Fo(n) — Py (70, — 1) (45b)

y2+1
)
=0 j=1
for u €0, 1]. As we can satisfy only approximate versions of Eqgs. (45), we choose here to use the
Marshak and the Mark approximations to the boundary conditions.!

For the Marshak approximation, we multiply Eqgs. (45) by P,,,,(u) and integrate over u from
0 to 1 to obtain the system of linear algebraic equations

N2l+1 J

,;, 2 S“’ z [A + (-— l)lB e—fo/éj]T (Cf)

Y2A+1

_ j Prsi @WF ydu — 3 21

al(_l)lz ’V(O)Tz(i) (46a)
=0 2 g

J=17%j
and

i 2 s Z [B,+ (= 1)d;e *5IT(C)
1 21+ 1
=L Py (WF,(p) dp — Z +

1=0

Seu(=1) Zl ?U(ro)Tl(é) (46b)

fora =0,1,...,(N —1)/2. Here the constants

Sy = L Py (0)P(u)dp 47)

can be evaluated as mentioned in Ref. 3.
For the Mark approximation, we let g, fork =1,2,..., K =(N + 1)/2, denote the K positive
zeros of Py ,(u) and consider Eqgs. (45) only at these points to obtain

y2aA+1 4
355 R 3 U+ (<178 e BT ) = Fy) = #0, ) (482)

and
J

1
Pie) X [B+ (= 1)'4,e7™NIT(E) = Fo(ue) — P, — 1) (48b)

j=1

N2
2
=0

fork=12,...,K
Considering now that we have solved either Eqgs. (46) or (48) to find the constants 4; and B;
we can find the group fluxes and currents,

¥o(t)= JI ¥(z, 1) du (49a)

and

i
¥.(1)= j ¥ (z, u)p dp, (49b)
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by integrating Eq. (44). We find

J
Y. ()= Z {Aje”/ff + Bje“"””/ff + % [U(t) + V()T (&) (50a)
and j '
W)= 3 {4e 75— Be o +% [U,) = VDT (). (50b)

Of course, having found the constants 4, and B;, we can also compute the the angular fluxes for
each group. Rather than compute the angular fluxes from Eq. (44) we substitute Eq. (44) into the
right-hand side of Eq. (3) and then integrate the resulting equation to find the group angular fluxes.
In this manner we find

T

) 1 )
P (o) =e U () + f eI -9nQ(x, p) dx + E(z, )

0

1 X J ,
+5 Y Piu) Y {4, CpE )+ (—1YBe o YuS(ruX L EIE TICT(E)  (Sla)

I=0 Jj=1
and

T

‘ I [
Y, —u) =e[(TO_TWF2(/‘)+_j e HIMQ(x, —p)dx + E(r, —p)
u

T

] N J
+5 2 Piw) Y AGH(= Ao 58—t uE &) + BCGy— T uE L ENE ICTE) (SIb)
I1=0 j=1

for u €[0, 1]. Here we have introduced the definitions

Cla:pX ' &) =diag{C(a, u/o,, &), Cla, nfo,, &), ..., Cla, ulay, &)} (52a)
and
S(a : ”z 719 é}) = dlag{S(a! #/O-I ’ éj)’ S(a’ 1“/62’ éj)s st S(as /l/O'M, é/)} (52b)
where
Cla:xyy="—¢" (53a)
X —y
and
1 _ e-u,’x e*{l,’)’

In addition

139]

1 N J T
CEEPRATD) C,{ f 4 (x)C(x —x: uE ', &) dx

j=1 0

+ (=1 [K(r)S(r uE L E) + J‘r v(x)e H IS X 7 &) dx:I}Z “ICTHE) (54a)
0

and

1 N J
Ee-m=3 L PW L C,-U

T

T

Ovj(x)C(x —1ipX L E)dx +(— ])’I:Uj(r)S(rO— TouX &)

+ JTO u(x)e BTG (ry — x uX " &) dx]}z T'CTHE) (54b)
for u €[0, 1].

AN ALTERNATIVE SOLUTION

In the previous section we developed what we consider to be a very straightforward solution
to the basic multi-group or non-gray problem defined by Eqgs. (3) and (4). Here, as an attempt to
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improve the accuracy of the solution, we follow Chandrasekhar' and decompose the solution into
scattered and unscattered components. To this end, we first write

P, u)=P(r, 1)+ P(7, 1) (55)
where ¥, (1, u) satisfies

0
#Ewo(%l‘) + Z¥(z, 1) = Q(z, 1) (56)
subject to the boundary conditions

¥, (0, ) =F,(n) (57a)
and

Po(t0, —u) =F, (1) (57b)

for u €0, 1]. It follows that @ (z, u) must satisfy

a 1 L 1
po-@(c W+ I p)=7 > Pz(u)C,'[ P(p)®(r, 1) dp’ + Qo(r, 1) (58)
I=0 —1
subject to
&0, u)=0 (59a)
and
D(10, —p)=0 (59b)
for u €[0, 1]. Here
1 L 1
Q(n ) =3 > Pz(u)le P(p")¥o(z, u')dp". (60)
=0 -1
We can readily solve Eqgs. (56) and (57) to obtain
Po(5, 1) = ¢ FF, () +i j e 5= MQ(x, ) dx (61a)
0
and
1 k<
Po(z, —p) =e 50" F, (u) +; f oe""‘"’“‘Q(x, —p)dx (61b)

for u €[0, 1], and so we can now consider Q,(z, 1) in Eq. (58) as known. Since Egs. (58) and (59)
define a problem in the class of problems defined by Eqgs. (3) and (4), we can use our foregoing
development to establish our spherical-harmonics solution for @ (t, ).

NUMERICAL METHODS AND RESULTS

As our basic formulation is complete, we are now ready to discuss the numerical methods we
use to implement the solution. First of all, we use the driver problem RG from the EISPACK®
collection to compute the eigenvalues and eigenvectors of the A matrix given by Eq. (14). As the
elements of these eigenvectors provide only the even-order T,(£;) we then use Eq. (10) to compute
the odd-order T,(£;). We have also carried out a similar computation to find the vectors Tj(&);
however, at the end of the day, we found it faster to compute the inverses of the matrices T, and
T, given by Eqs. (21) and to define the vectors T](¢;) from these inverses. At this point the constants
{C;} were computed from Eq. (40), and the integrals given by Eqs. (42) were evaluated by Gaussian
quadrature. We then solved, using the subroutines DGEFA and DGESL from the LINPACK"
collection, either Eqs. (46) or Egs. (48) to find the constants {4;} and {B,}, and finally the desired
results were found by evaluating Eqs. (50) and (51).
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Table 1. The total cross sections (in cm™").
3.51907 6.26226 1.40294(+1)

| 150520 1.57051 4.21492(+1) |

In order to check out our solution, we first considered the 20-group problem defined and solved
by Garcia and Siewert." This problem has anisotropic scattering of order 10 but has no
up-scattering. The problem is, however, an excellent test case because results accurate to five
significant figures are given" for all group angular fluxes as well as group fluxes, group currents
and albedo and transmission factors for each group. In regard to our results here, we found that
with, say, N = 99 we could obtain results accurate to all five figures for the angular fluxes, the fluxes
and the currents for all groups for all (of those considered in Ref. 13) of the points interior to
the surface of the layer. On the other hand, as is typical of the spherical-harmonics method, our
solution on the boundary was, again with, say, N =99 good only to three significant figures. By
using the alternative formulation discussed in the previous section, we were able to obtain some
modest improvement in our boundary results, but, of course, this second solution required
considerably more computational time.

In order to provide a test of our general multi-group solution we next consider a six-group
problem that has anisotropic scattering and up-scattering. The cross sections for this problem were
provided by R. D. M. Garcia' and are listed in Tables 1 and 2. The total cross sections and the
transfer matrices given for this six-group problem were derived'* for neutron scattering in water,
and, of course, are subject to some approximations; however, here in our numerical calculations,
we consider the input data to be exact.

Table 2(a). The transfer cross sections T, (in ¢cm~').

8.07750(-1) 0.0 0.0 0.0 0.0 0.0
6.26456(-1) 9.84040(-1) 9.79447(-2) 4.70592(-2) 1.26378(-1) 3.97098(-1)
6.16969(-2) 5.22489(-1) 3.09892 2.01540 3.24243 9.62747
6.16969(-3) 5.15850(-2) 2.97524(-1) 3.88257 8.22842 2.42148(+1)
6.16969(—4) 5.15850(-3) 3.48269(-3) 2.43839(-1) 2.09399 5.46759
6.83147(-5) 5.72919(—4) 9.81407(-5) 6.67680(-3) 1.27601(-1) 1.77484
Table 2(b). The transfer cross sections T, (in cm™').
1.73809 0.0 0.0 0.0 0.0 0.0
1.00096 2.06953 3.65035(-2) -7.17931(-3) —-6.57000(-3) -6.21269(-3)
3.23741(-2) 7.97905(-1) 1.84248 -8.37651(-1) -9.50478(-1) ~8.87500(-1)
1.16883(-3) 2.58418(-2) -1.42702(-2) 1.51150 -1.42204(-1) -5.72883(-1)
8.28375(-5) 9.49379(-4) -1.60567(-3) 7.80252(-2) 1.18387 1.21816
2.28725(-5) 9.04254(-5) -1.63418(-5) 3.64032(-4) 2.94178(-2) 5.93333(-1)
Table 2(c). The transfer cross sections T, (in cm™").

1.89361 0.0 0.0 0.0 0.0 0.0
-1.16776(-2) 2.03360 -2.78866(-2) -3.66853(-3) -5.40201(-3) -1.56529(-2)
-1.38579(-1) -1.00130(-1) 4.28177(-1) —-4.78174(-1) ~1.90615(-1) -3.91507(-1)
-1.52290(-2) -1.16769(-1) -6.28730(-2) 5.52373(-1) -5.57599(-1) -1.08378
-1.53296(-3) -1.27412(-2) -3.69913(—4) 4.15341(-2) 7.64138(-1) 1.96411(-1)
-1.61574(-4) -1.41761(-3) -4.41786(-6) -2.23975(—4) 3.03330(-2) 2.98538(-1)

Table 2(d). The transfer cross sections T, (in cm™').

1.28480 0.0 0.0 0.0 0.0 0.0
-1.17471 1.09070 -2.12993(-2) -7.43655(-4) -5.91497(-4) -5.66126(-4)
-1.05643(-1) -1.00250 4.61562(-1) -1.88398(-1) -8.54669(-2) -7.69580(-2)
-4.05881(-3) -8.45487(-2) -2.85371(-2) 7.24719(-1) -1.03599(-2) —6.50889(-2)
-2.88894(-4) -3.29773(-3) -1.53968(-4) 5.10368(-2) 7.61976(-1) 2.89226(-1)
~7.47744(-5) -3.13307(—4) -1.46113(-6) 5.06034(-5) 3.23582(-2) 2.85246(-1)
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Table 3. The group fluxes P,(z).

Group T/10=0.0 /10 =025 7/r0=0.5 7/1 = 0.75 /10 =1.0
1 1.09 1.6205(—4) 4.8524(-8) 1.4567(-11) 4(-15)
2 2.30(-1) 3.7447(-2) 1.9639(-3) 1.0277(—4) 1.79(-6)
3 2.92(-1) 1.8547(-1) 9.7989(-3) 5.1278(—4) 4.37(-6)
4 3.06(-2) 2.6281(-2) 1.3884(-3) 7.2654(~5) 4.39(-7)
5 6.00(—4) 6.1078(—4) 3.2260(-5) 1.6882(-6) 7.91(-9)
6 7.31(-86) 7.2593(-6) 3.8325(-7) 2.0056(-8) 7.94(-11)
Table 4. The group currents P, (x).
Group /70 =0.0 /1 =025 /=05 /19 =0.75 T/r =10
1 4.7192(-1) 1.0441(—4) 3.1293(-8) 9.3942(-12) 3(-15)
2 ~9.9291(-2) 5.9818(-3) 3.1144(~4) 1.6359(-5) 1.0985(~6)
3 -1.6297(-1) 8.7772(-3) 4.6933(—4) 2.4656(~5) 2.5198(-6)
4 -1.7026(-2) 5.9229(~4) 3.1693(-5) 1.6650(-6) 2.4654(-7)
5 -3.2783(-4) 6.7184(-6) 3.5924(-7) 1.8873(-8) 4.3167(-9)
6 ~3.8625(-86) 2.8826(-8) 1.5337(-9) 8.0572(-11) 4.1041(-11)

In addition to the data given in Tables 1 and 2, we note that here we use, as was suggested by
Garcia' for a health-physics application, z, = 30 cm which is equivalent to 7, = 45.156. For the
boundary conditions, we use

1 0
0 _ 10

Fiw=| 7| and F= | (622, b)
0 0

for p €[0,1). Finally, for this problem, there is no inhomogeneous source term in Eq. (3),
ie Q(t,u)=0.

In Tables 3 and 4 we report our results for the group fluxes and currents, as computed from
Eqgs. (50). To obtain the results shown in Tables 3 and 4, we have used both the Mark and Marshak
boundary conditions. We have used both the straightforward formulation and, what we call, the
Chandrasekhar formulation, and we have increased the order of the approximation until we have
established some confidence that the reported results are accurate to + 1 unit in the last digits given.
For the considered test problem, we found the results given in Tables 3 and 4 to be stable as the
order of the approximation varied from, say, N = 199 to 499. In conclusion, we note that we found,
for the considered test problem, no appreciable difference (especially as the order of the
approximation was increased) in the results obtained from the two standard approximations, the
Marshak and the Mark, to the true boundary conditions.

In conclusion it should be noted that the results given in Tables 3 and 4 have not been
confirmed, as we would have liked, by comparison with results from independent calculations.
Though some effort has been made to find an existing computer code that can solve the considered
multi-group problem, no success can be claimed. It appears (at least to the author) that several
of the existing multi-group codes are not able to yield correct results for problems that have
significant components of up-scattering. Needless to say, it is possible that errors have been made
in the programs (written by the non-expert author) that yielded the results in Tables 3 and 4, and
so the author would be grateful for communications that either confirm or dispute the reported
results.
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