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Abstract--A pair of biorthogonality relations, relevant to some elements of  a generalized 
spherical-harmonics solution of the homogeneous equation of  transfer, is derived and used, 
along with linear-algebra techniques, to develop a particular solution appropriate to the 
scattering of polarized light. The considered radiative-transfer model is based on a general 
treatment of polarization effects in a plane-parallel medium that contains a source that varies 
with position and both direction variables. 

1. I N T R O D U C T I O N  

A particular solution is useful in developing solutions to boundary-value problems since it enables 
one to solve the inhomogeneous radiative-transfer equation using methods developed for solving 
the homogeneous equation, provided of course that the boundary conditions of the new problem 
are appropriately adjusted. This flexibility becomes important for problems involving inhomo- 
geneous transport equations which have complicated sources. 

We consider in this work situations in radiative transfer for which a complete azimuthally- 
dependent solution is required to analyze the radiation field I in a homogeneous plane-parallel 
medium, and we extend our earlier work 2 on particular solutions (for a theory that did not include 
polarization effects) so as to be able to solve the polarization case for a general inhomogeneous 
source term in the equation of transfer. 

For the case of a radiative-transfer model that includes polarization effects and a source of 
radiation located within the medium, we consider the equation of transfer ~ 

a (I) # ~ I(z, #, ~b) + I(z, #, ~) = -~-~ I 

for z ~ (0, %), # 6 [ -  1, 1] and ~ ~ [0, 2n], and the boundary conditions 

I(O, g, ~b) = Ft(g,  ~b) (2a) 

and 

I(%, - #, ~) = F:(g, ~), (2b) 

for # ~ [0, 1] and ~ E [0, 27r]. Here m is the albedo for single scattering (m < 1) and % is the optical 
thickness of the layer. In addition, # is the direction cosine as measured from the positive ~ axis, 
~b is the azimuthal angle and P(#, #' ,  q~ - q~') is the phase matrix. We allow phase matrices that 
have an expansion of the form that was derived by SiewerP '4 from the fundamental paper of Ku~rer 
and Ribari~. 5 We therefore write 

1 L 

P(#, #', ~b - ~b') = 2~=o (2 - #o,,.) [Cm(g, #')cos m(~b - ~') + Sin(#,/~')sin m(~b - ~')]. (3) 

Here 

Cm(g, #') = Am(#, #') + DAm(#, #')D (4a) 

531 
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and 

where 

and 

In addition 

sm(R, R') = Am(R, R')D - DAm(R, R') (4b) 

L 

Am(R, R ' ) =  E n~'(R)n, nT'fR') 
I=m 

(5) 

D = d i a g {  1, 1, - -  1, - -  1 } .  (6) 

m (t Ill  (R) = [ 0  +m)!J- re)IT/2 P?(R) 0 0 i 1 0 R?(R) --TT(R) 

0 - -T?(R) R?(R) 
0 0 0 P?(R 

(7) 

where 
d m 

PT'(R) = (1 -- #2)t/2 ~ Pt(R) (8) 

is used to denote the associated Legendre functions 6 and where the functions RT'(R) and TT'(R) 
are as defined in Refs. 3 and 4. To complete the definition of the phase matrix we note that the 
so-called "Greek constants" {oct, fit, Yt, fir, Et, ~t} defined in Refs. 3 and 4 are to be used in 

o o  1 B t =  ~t ocl 0 0 , 
0 ~t -Et  

0 *t ft  

with flo = 1 and ~t = oct = ~t = el = 0, for I = 0 and 1. 

(9) 

We assume here that the boundary data Fl(#, ~)  and F2(R, ~) and the source term S(z, #, ~) 
are given, and so we will be looking for a particular solution that will account for the presence 
in Eq. (1) of a prescribed inhomogeneous driving force. We note that Chandrasekhar ! separated 
the collided and the uncollided components of the radiation intensity and that, in so doing, he was 
led to consider Eq. (1) for a case where the source term depended on ~, # and ~ in a special way. 
Here we allow the source term to depend on the three independent variables in a more general 
manner, and we seek the required particular solution appropriate to the use of the generalized 
spherical-harmonics method (see Ref. 7 and the references quoted therein). 

To preview what follows, we note that Secs. 2 and 3 are preliminary to this current work in that 
we first carry out a useful Fourier decomposition of our problem, and then we review the 
generalized spherical-harmonics method relevant to the developed homogeneous equations. In 
Sec. 4 we develop some new and useful biorthogonality relations, and in Sec. 5 we report the 
particular solution. Finally, in Sec. 6 we develop an existence proof to support the use of 
biorthogonality relations to find the particular solution. 

2. THE F O U R I E R  DECOMPOSITION 

In Ref. 8 it was shown, for a radiative-transfer model that did not take into account polarization 
effects, how to carry out a Fourier decomposition of the solution to Eq. (1) for the case of an 
isotropically emitting inhomogeneous source term and for general boundary conditions that 
depend on R and ~. In Ref. 3 the Fourier decomposition for the polarization case was reported 
in the context of an incident beam of polarized light and no inhomogeneous source term. Such 
Fourier decompositions have proved useful since the complete solution can be constructed from 
the solution of L + 1 transport problems that are independent of the angle ~. Here we develop 
a similar Fourier decomposition for the polarization case that has an inhomogeneous source term 
that depends on all three independent variables. 
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and 

To start, we write 

1 
I e-(~- ~)/~S(x, #, ~)  dx (lOa) • 4 , )  = 
do 

l f , o  - e-(X-°/~S(x,-#, ¢ )  dx, (10b) ¢) = 

for # ~ [0, 1], and note that [(v, #, ~b) satisfies 

0 
/~ ~ ~(¢, #, ¢ )  + ~(z, #, ¢ )  = S(z, #, ~b). (11) 

We next express .~(~, #, ¢ )  in the Fourier series 

Z(z,/~, ~)  = a0(~,#) + ~ [ a . ( ~ , # ) c o s n ( ~ -  ~ , ) + b . ( z , / ~ ) s i n n ( ¢ - - ¢ r ) ]  (12) 
n = l  

where 

and, for n >t 1, 

and 

ao(z, #)  = 1 f~" ~(~, U, ¢ )  de  (13a) 

(13b) 

b,(z, #) = ~ 3o "=(~' #' ¢)sin n(¢ - ~b,) d~b. (13c) 

Here ~b, denotes an arbitrary reference angle. We also expand the boundary data in the Fourier 
series 

F~(#, ¢)  = a.,o(#) + ~ [a,~,(/~)cos n(~ - ~b,) + b~(/Osin n(¢  - ~b,)] (14) 
n = l  

where, for ~ = 1 or 2, 

and, for n/> 1, 

We now let 

and 

a~o(# ) = ~ F~(#, ¢ )  de  (15a) 

1 F~(~, 40cos n(¢  - ¢,) d4~ (15b) = 

1¢ 

1 V.(#, ~)sin n(~ - ~b,) de.  b.~, (/~) = 

L 

f,(#, ~b) - -  a~.0(#) + ~ [a,~,(#)cos n(¢  - ¢ , )  + b,~(/~)sin n(~b - ¢,)] 
nf f i l  

05c) 

( 1 6 )  

and substitute 

I(z, #, ¢ )  ffi IF, (#, ~b) - f,(#, ~b)] e -'/~ + "r(z, #, ~b) + Z(T,/~, ~b) (17a) 

and 
l(z, - # ,  ~b) -- 0F2(#, ~b) - f2(#, ~b)] e -('o- ~)/~ + r (z ,  - / J ,  ¢ )  + Z(z, - # ,  ~b), (17b) 

for # e [0, 1], into Eqs. (1) and (2) to find 

0 w f t f  2. 
= P(#,/~',  ~ - ~')Y(z, g', ~')  dt~' d/~' + Q(z, #, ¢),  (18)  j-,jo 

QSRT 50/5--43 
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for z e (0, %), It ~ [ -  1, 1] and ~ e [0, 2n], and 

lf(0, U, ~b) = f~(it, qb) and lf(%, - i t ,  qb) = f2(u, ~b), (19a,b) 

for It ~ [0, 1] and ~ e [0, 2n]. Here 

m P(It, It', ~b - ~ ' )a(z ,  It', ~b ') d # '  dIt'. (20) Q(z, It, ~b) = ~ , 

Following Refs. 3, 7, and 9, we now introduce 

<De~/(X) = (2 - 60~,)diag{cos reX, cos mx, sin mx, sin mx} (21a) 

and 
<I~'2 (X) = (2 - 60~,)diag{ - sin reX, - s i n  mx, cos mx, cos mx} (21b) 

and express the phase matrix as 
L 

e(It, It', ~b - ~b') = ~ [~¢~'t (~b - 4~')A'(It, It')D, + <l~'~ (~b - ~')Am(It, It')D2] (22) 
. = 0  

where 
D~ =diag{l ,  1,0,0} and D2=diag{0,0 ,  1, 1}. (23a,b) 

We can now substitute Eqs. (12) and (22) in Eq. (20) to find 
L 

Q(~, It, ~b) = ~ [q~ (~ - q~,)Q~'(z, It) + ~'~ (~b - ~,)Q~'z (z, It)] (24) 
m~0 

where 

and 

of = A ' ( # ,  #')[(1 + 60~)D,  a . ( z ,  # ' )  + (1 - 6o¢.)D2b.(x,  #')] dit' Q~'(z, #)  -~ , (25a) 

t~f' = A'(it ,  It') [(1 + 6o¢,)D2a.(z, # ' )  - (1 - 6o~)D, b.(x, #')] dit'. (25b) QT(z,u) ~ -, 

After substituting 
L 

Y(z, It, $ )  = ~ [<1~ (~ -- ~b,)YT(z, #)  + q~2 (~b - qb,)~l'~'(z, It)] (26) 
m=0 

into Eq. (18) and making use of  Eq. (24), we find that the components of  Y(z, It, ~b) must satisfy 

°f_ 0 "r~(z ,  I t)  + r ~ ( z ,  I t)  -~ i # ~ = A'(it ,  It ')T ~' (z, # ') d# '  + Q~' (z, It) (27) 

for ~ = 1 and 2 and for m = 0, 1, 2 , . . . ,  L. It is clear that the Fourier decomposition is now 
complete. 

In order to abbreviate the notation, we henceforth suppress the sub- and superscripts on T and 
the source term Q in Eq. (27) and consider, after noting Eq. (5), 

# N "I'(T, It) + "l['(z, U) = -~ IlT'(it)Bt II~'(it ')r(z, It') dit '  + Q(z, It). (28) 
I=m - I  

3. THE S O L U T I O N  OF THE H O M O G E N E O U S  E Q U A T I O N  

We are now in a position to be able to extend our previous work 2 in order to find the particular 
solutions of  Eq. (28) that are required in Eq. (26) to establish the complete solution given by 
Eqs. (17). As we intend to use the variation of  parameters method to establish our particular 
solution, we first require the generalized spherical-harmonics solution of  the homogeneous version 
of  Eq. (28). We note that in Ref. 7 Garcia and Siewert made use of  some basic properties of  the 
matrix IlT'(it), viz. the three-term recursion formula 

[(2• + 1)itI + VT']H~'(it) = UT'+ tHe'+ t (it) + U~'H~"_ t (#)  (29) 
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for 1 = m, m + 1 . . . . .  where 

UT' = (12 - m2) '/2 diag{1, (1 - 60.t)(1 - 6,.t)(/2 _ 4),/2/1, (1 - 60.t)(1 - 6,j)(/2 _ 4),/2/1, 1} (30) 

and 

VT' = 2m(21 + 1) 
1(1 + 1) 

and the or thogonal i ty  condi t ion '° 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 0 0 0 

where 

(31) 

f /  6u, At, (32) 
2 

, I l T ' ( # ) n ? ( # )  d/~ = 21 + 1 

At = diag{1, (1 - 60.t)(1 - 6 , . / ) ,  (1 - 60.t)(1 - 6,.t), 1}, (33) 

[~jh, + V~']TT'(~j) = U~'+, TT+, (~j) + UT'T~'_, (~j) (35) 

for  1 = m, m + 1 . . . . .  Here 

ht = (21 + 1)I - mBt.  (36) 

In addition, we note  that  the vectors TT(~j) are elements o f  a certain eigenvector. More  specifically, 
if the vectors TT'(~j) for  l = m, l = m + 1 . . . . .  M are used as the elements o f  a vector T(~j), i.e. 

T ( ¢ j )  = ] T m + ) ( ¢ j )  
(37) / 

L 
~j and the eigenvectors T(~j) are subsets o f  the 

where 

W =  

B~ C~ 0 . . .  0 0 0 

A~+, B~+, cm+, . . .  0 0 0 

0 Atom+2 Bmm+2 ' ' '  0 0 0 

: : • . . .  : : : 

0 0 0 " .  B ~ _ 2  C ~ _ 2  0 

0 0 0 ""  A ~ _ l  B ~ _ ,  C~,_,  

0 0 0 . . .  0 A ~  B ~  

WT(~j) = ~jT(~j) (38) 

Here  the elements o f  the block tr idiagonal W matr ix are given by 7 

AT' -- hF' U~', BT' = - hF i V~' and C7' = h71U~j+ i. (40a,b,c) 

(39) 

then, as repor ted in Ref. 7, the eigenvalues 
eigenvalues and eigenvectors defined by 

to find the solution we use. 
Lett ing Th(T, #)  denote  the solution o f  the homogeneous  version o f  Eq. (28), we write 7 

2 1 + 1  m 
l"h(Z,#) = ~ m ~ H ,  (# )  ~ {Aje-% +(-1)l-'DBye-(~o-O/~J}T~(~j) (34) 

jffil 

where M = m + N and where the constants  {Aj} and {By} are arbitrary.  In writing the generalized 
spherical-harmonics solution as Eq. (34), we have assumed that  the order  o f  the approximat ion  
N is odd.  We also note  7 that  ~j, with ~(~j)  > 0, for  j = 1, 2 . . . .  J,  are the eigenvalues relevant to 
the generalized spherical-harmonics me thod  and that  the vectors TT(~y) satisfy the three-term 
recursion formula  
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As we intend to use a formulation of  the generalized spherical-harmonics solution that is slightly 
different from that given in Ref. 7, some additional comments are appropriate• First of  all, if we 
let A be the block diagonal matrix 

A = diag{D, - D ,  D, - D  . . . . .  - D }  (41) 

then we see that 
AWA = - -  W, (42) 

and so from Eq. (38) we conclude that 

W AT(e/) = -- ~j AT(~j) (43) 

and thus that the eigenvalues of  W occur in + pairs. In writing our solution of  the homogeneous 
equation as Eq. (34) we have already taken into account the fact that the eigenvalues {~j} occur 
in + pairs, and so, in general, J = 2N + 2. However, as noted in Ref. 7, the cases m = 0 and m = 1 
are special. For  m = 0 the matrix W has an eigenvalue ~ = 0 of  multiplicity 4 and 4 corresponding 
linearly independent eigenvectors. It turns out that because of the special form of  the matrices 
H°(#) ,  for I = 0 and I = I, the eigenvectors corresponding to ~ = 0 make no contribution to the 
solution. And so for the case m = 0 we can take J = 2N and use only the eigenvalues of  W that 
lie in the right half-plane. In a similar manner, for the case m = 1 the matrix W has eigenvalues 
+ I whose corresponding eigenvectors are such that again they make no contribution to the 
homogeneous solution. For  this reason we can use, for the m = 1 case, J = 2N + 1 and we can 
ignore the eigenvalue ~ = I. 

Following Ref. 7, we now reduce our eigenvalue problem as defined by Eq. (38) to a half-size 
eigenvalue problem for ~ .  We first partition the matrices AT, BT' and Cj" into 2 × 2 blocks, i.e. 

[ O  t'A" O ] BT'= [2B7,0 'BT' 1 and C7'= ['C7' 2c~'O] (44a,b,c) AT' = 2A7, , 

Next we carry out a 2 × 2 row and column shuffle by writing down the 2 x 2 rows and columns 
in the order 1, 4, 5, 8, 9, 12, 13 . . . .  and then 2, 3, 6, 7, 10, 11 . . . .  so that we can write Eq. (38) as 

[0 U ]  T.(¢j)  = ~jT.(~j, (45, 

where the block tridiagonal U and L matrices are given by 

and 

U =  

IBmm I m Cm 0 " "  0 0 0 

2 . . . .  0 0 0 2Am + l B,. + 1 2C~ + t 

O lAin+2 1 . . . .  Bin+ 2 0 0 0 

: • : " , .  : : : 

0 0 0 " ' " 2 B ~  - 2 2 C ~ -  2 0 

0 0 0 " ' " lAin M - l  IB.~- I *C~_ t 

0 0 0 " "" 0 2 A ~  2 B ~  

(46) 

L =  

2Bin 2 m C m O " •  O 0 0 

i m 1 . . . .  O 0 0 A m +  I I B m + l  Cm+ 1 

0 2Am+2 2Bin+2 " ' '  0 0 0 

. . . " . .  : : : 

0 0 0 1 m • " • B M -  2 1 C ~ _  2 0 

0 0 0 " " " 2 A ~ -  ! 2 B ~ -  1 2C~./- I 

0 0 0 • • • 0 IA~ tB~t 

(47) 
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In addition, 

where 

T.(~j) = [ T"(~j) ] 
LTb(¢j)J' 

(48) 

|T~(~:) 

2T~, +i (~j) 
Ta(~j)= l m  and Tb(~j) = 

|Tram+ i (~j) 

lT~nd (~j) 

(49a,b) 

In writing Eqs. (49), we have used, in a manner similar to that used in Eqs. (44), ITT'(~j) and 2TT'(~j) 
respectively to denote the first two and the second two components of TT'(~j). 

It follows, since we can conclude from Eq. (45) that 

MaTa(~/) = ~]T,(~j) and MbTb(~j)= ~]Tb(~j), (50a,b) 

where Ma = UL and Mb = LU, that the squares of  the eigenvalues we seek are the eigenvalues of 
either Ma or Mb. 

From a computational point-of-view, it is clear that finding the J eigenvalues and eigenvectors 
of Mo or M b and using 

Tb(~j)= LT.(~j) or T.(~j)=~UTb(~j)  (51a,b) 

is preferable to finding the 2J eigenvalues and eigenvectors of W. 

4. B I O R T H O G O N A L I T Y  RELATIONS 

We begin with the observation from Ref. 2 that orthogonality relations can be used to obtain 
the particular solution of the scalar equation of transfer. Since Eq. (28) contains an asymmetric 
matrix B~, we expect that some sort of biorthogonality relations may exist for the vectors TT'(~i). 

It can be shown that 

Bt = FBtF and Bt = EBIE (52a,b) 

where the tilde denotes a transpose, 
F=diag{1 ,  1, 1, - 1 }  and E=diag{1,  1, - 1 ,  1}. (53a,b) 

It is clear that D = EF, F = DE and E = FD. As Eq. (35) contains the non-diagonal matrix VT' we 
note that 

VT' = FVT'F and V7' = - EVT'E. (54a,b) 

If  we now postmultiply the transpose of Eq. (35) by F and use Eqs. (52) and (54) we find that 

+ V?] = $?+, + (55) 

We next premultiply Eq. (35) by I"7'(~;)F, postmultiply Eq. (55) by TT'(~j) and sum each equation 
over I. After subtraction of the two results and use of  T~t + 1 (~j) = 0, we find that all the inner 
products on the right-hand side cancel as in a Christoffel-Darboux-type formula. Thus we find 

M 

(~,- ~:) ~ "i'T(~i)Fh,T?(~:) = 0. (56) 
lffira 

If we now assume that the eigenvalues {~:} are distinct, we can deduce from Eq. (56) the 
biorthogonality relation 

1 M - 

t ~=m TT(~')FhtTT(~J) = Cf' 6,,/ (57) 
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where the normalization constant C~ is given by 

We note that throughout this paper we follow the convention that the eigenvalues {{j} are labeled 
such that ~({~) > 0; however, we can consider Eq. (35) with {j changed to - ~j if we also consider, 
as was done in Ref. 7 to obtain the form of  the solution given by Eq. (34), that 

TT( -¢ j )  oc (-- 1)'- ~DT~'(~j). (59) 

We can thus rewrite Eq. (56) as 
M 

(¢, + ~j) ~ 'FT'(-~,)Fh, TT'({j) = 0 (60) 

o r  
M 

(~, + ~j) ~] ( -  l)'-*['~'(~,)Dlra/TT'(~j) = 0. (61) 
I=m 

Again, assuming that the eigenvalues are distinct, we find from Eq. (61) a second biorthogonality 
relation, viz. 

M 

(-- 1)'-"~7'(~i)Eh, TT(~j) = 0. (62) 
I=m 

Equation (62) can also be written as 
K K 

"[~+~_2(¢,)Eh,,,+2k_2T~+2~_2(,~j) = ~ 'r~+2k_m(¢,)Eh,,,+2k_~T~+.~_,(¢j) (63) 
k = l  k = l  

where K = (N + 1)/2. This is a generalization of  an identity proved in Ref. 2 for the special case 
o f  = 

The biorthogonality relations given by Eqs. (57) and (62) are basic to our derivation of the 
required particular solution of Eq. (28). 

5. THE P A R T I C U L A R  SOLUTION 

To develop our particular solution, we consider Eq. (34) and thus propose 

-- n ? ( . )  + ( -  ((,4) 
I=m j = l  

where the functions {~j(~)} and {~j(~)} are to be determined. Substituting the solution proposed 
in Eq. (64) into Eq. (28), multiplying the resulting equation by II~'(/~), for 
/~ = m ,  m 4- I, m 4- 2 . . . . .  M, and integrating over ~ from - 1 to 1, we find, after using Eqs. (29), 
(32) and (35), 

J 

~.~ ~j{eS~f f (~)e  -'~[~j - -  (-- 1)P--"D.~ (T) e-('o-')/¢J}T~'(~j) = 2h~ -I Q~('c) (65) 
j = l  

where the superscript prime is used to denote differentiation with respect to • and where 

= 2f l  4- 1 fl 
2 3-  n~'(a)Q(T,/~) d/~. (66) 

I 

Considering that solutions to Eq. (65) exist (this point is addressed in S~.  6), we can now 
premultiply Eq. (65) by T~'(~i)F, sum over fl and use Eqs. (57) and (62) to find 

~ ( x )  e-X/~J = ~ ~ TT'(~j)FQT/(x). (67a) 
~j l--m 

Similarly, we premultiply Eq. (65) by ( - 1 ) a - " ~ ' ( ~ ) E  and sum over fl to obtain 

~ (x) e -('°- x)/~j = _ ~ ~ ( _  1)~- m,~ (~j)EQ~'(x). (67b) 
~j l=m 
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We can now multiply Eq. (67a) by exp(x/~j) and integrate over x from 0 to ~ to find 

C. ' ~  
aC'(z) e-'/¢' = ~ fo , - .  "r~'(~j)FQ~t (x) e-(' -x'/¢J dx. (68a) 

In a similar way we find from Eq. (67b) that 

• , (,) e -(,o = ,)/¢j = ~ r ,o ~ ( _ i ),- ~ ( ~, )EQ~t (x) e -(x - ')/¢, (Ix. (68b) 
Cj J, , - .  

In obtaining Eqs. (68) we have discarded the values of ~¢j(0) and mj(c0) since they give 
contributions already contained in Eq. (34). 

To summarize our final results from Eqs. (64) and (68): A spherical harmonics particular solution 
for radiative transfer with polarization is given in terms of the eigenvalues {~j} and eigenvectors 
T~'(~y) by 

--~ 21+1 . --~ Cj ~ {~ , ( { j ) f~  Fi~,(x)e_(,_x)/{ j (tx L(~,#) = ~L - T  - n ,  (#) YL lffim j=l ~j [l--m 

+(-1) ' - 'D ' r~ ' ( { j )  f[EQ~(x)e-(X-O/~J (:lx}T~'(~j) (69) 

with the constants Cj given by Eq. (58). New biorthogonality relations for the vectors T~(~) are 
given by Eqs. (57) and (62). 

6. AN EXISTENCE PROOF 

As the use of the biorthogonafity relations in Sec. 5 to find expressions for the functions {~q¢~ (~)} 
and { ~  (z)} presupposes, in fact, that there exist solutions to Eq. (65), we now wish to complete 
our development by providing an argument that solutions {d~ (T)} and { ~  (z)} to Eq. (65) do exist. 

In Ref. 11 a particular solution appropriate to a spherical harmonics solution of a multi-group 
radiation-transport problem was developed, and so here we can take advantage of some of the 
similarities between that work and this. We therefore let 

(70a) 

and 

(70b) 

and rewrite Eq. (65), f o r / / =  m, m + 1 . . . . .  M, as 

J J 
Xj(~)T.(~j) ffi V~(x) and ~ Yj( '~ )Tb(~ j  ) = Vb('C ). (71a,b) 

j f t  j f l  

In order to obtain Eqs. (71) we first defined 

VT(~) ffi 2hFIQT/(z) (72) 

for l = m, m + 1, m + 2 . . . . .  M. We then let tV?(¢) and 2V?(z) denote, respectively, the first two 
and the second two components of VT'(¢) and define 

Vo(O ffi 

'V~(O 

~V~+~(~) 

~W,(O 

and Vb(Z) = 

W:(~) 
I m V.+l(O 
~V~+:(~) 

'W,(O 

(73a,b) 
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Here, in order  to avoid having to deal explicitly with the special ease m ffi 0 and m = 1, we consider 
J = 2N + 2 for  all m. We now let Ta and T b be J x J matrices that  have, respectively, the vectors 
{T~(~j)} and {Tb(~j)} as columns, 

X ( O  = 

so that, with 

x,(o 
X2(z) and 

X+(~) 
we can write Eqs. (71) as 

TaX(T) = Va('f ) 

Y(T) = 

Y, (*) 
Y*!*) 

Y,i*) 

(74a,b) 

and TbY(x) = Vb(*). (75a,b) 

We are now ready to solve Eqs. (75) to find X(T) and Y(x); however,  lacking a required proof, 
we must  now assume (a similar assumpt ion  was required in Ref. 11) that  the matrices M ,  and M b 
are not  defective so as to ensure that  T~ and Tb are invertible. Fol lowing this assumption,  we can 
write 

X(z) = T~-tVa(z) 

I f  we now let 

A.>= / 
J 

we can eliminate between Eqs. (70) to find 

and 

where 

and V( , )  = Tb-lVb('[). 

I~ l  ('r) 
and B ( * ) =  

L~(~) 

A'(z)  = I G  e~[T~-t Va( , )  + T f  I Vb(Z)] 

B'(T) = ½ G e °° - ,)G [ T f  I Vb ( z )  - -  T~- 1Vo (z) ]  

G = diag . . . . . .  

(76) 

(77a,b) 

(78a) 

(78b) 

(79) 

The development  o f  Eqs. (78) provides, in the context  o f  the assumption that  the matrices M a 
and Mb are not  defective, p r o o f  o f  the existence o f  solutions to Eq. (65). 

We note that  the construct ion used here has been completed to find the same final results for 
the functions {~¢j(z)} and {~j(z)} as given in Sec. 5; however, since the use o f  the bior thogonal i ty  
relations provides a more  concise development,  once the existence o f  solutions has been established, 
we need go no further. 
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