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AImtract--A post-processing technique is used with the spherical-harmonics method to 
develop an accurate result for the radiation intensity in a homogeneous plane-parallel medium 
that contains a source that varies with position. Anisotropic scattering is included in the 
monochromatic  radiative-transfer model, and general reflecting boundary  conditions are 
considered. 

I N T R O D U C T I O N  

To analyze the radiation intensity in a homogeneous plane-parallel medium for the case when there 
is a source of radiation, we consider the equation of transfer 1'2 

~t I(z, l~) + I(z, #) = ~ ~ fliP,(#) Pt(u)I(z, u) du + S(z), (1) 
" ~ l = 0  I 

f o r ,  • (0, %) and # • [ -  l, 1], and the boundary conditions 

;o' I(0, #) = F, (it) + p~ I(0, --#) + 2p d I(0, - u ) u  du (2a) 

and 

f0 
1 

1(%, --#) = F:(#) + p~l('ro, #) + 2p d /(To, u)u du (2b) 

for # e (0, I]. Here m is the albedo for single scattering (w < I), the elements fll are the coefficients 
in a Legendre expansion of the scattering law and z0 is the optical thickness of the layer. In addition, 
p~ and p~, ~ = I and 2, are the coefficients for specular and diffuse reflection. We consider that 
the functions F~ (#) and F~(#) and the inhomogeneous source term S(O are given, and we seek, 
in general, the intensity I(T,#) for ~ •(0, %) and # •[-I, I] as well as the boundary results 
I(0, -#) and 1(%, #) for # • (0, I]. 

Generally in the field of radiative heat transfer, we are interested in beat-flux calculations, and 
to this end the spherical-harmonics, or PN, method has proved to be accurate and easy to use (see 
Refs. 3--7). However, as we intend in the future to use the spherical-harmonics method to solve 
some inverse problems in radiative transfer, we wish to report the details of a post-processing 
procedure that can improve the most elementary spberical-harmonics result for the intensity. The 
post-processing procedure we use has been discussed by Kourganoff s and is known in the 
radiative-transfer literature as the method of source-function integration. We note that Dave and 
Armstrong 9 and Karp ~° have demonstrated that source-function integration can greatly improve 
the basic spherical-harmonics method for intensity calculations. Some of the details of our use of 
the method of source-function integration have already been reported in Refs. 4 and 7; however, 
the work in Ref. 4 does not make use of the general particular solution we now have available for 
the PN method, and although the analysis in Ref. 7 is based on a general non-gray model of the 
equation of transfer, the boundary conditions used in that work are not as general as we consider 
here. 
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THE S P H E R I C A L  H A R M O N I C S  S O L U T I O N  AND POST P R O C E S S I N G  

As discussed, for example, in Ref. 6, the spherical-harmonics solution to Eq. (1) can be expressed 
a s  

~ 2 1 + 1  
I(t ,  g)  = t-o 2 Pt(#) ~ [Aj e-~/¢j + (--  1)tBje-('°-')/¢J]g,(~j) + lp('r,/~) (3) 

- j f f i l  

where the arbitrary constants Aj and Bj are to be fixed by the boundary conditions. Here we write 
the particular solution appropriate to the spherical-harmonics method as 5 

where, in general, 

and 

2l + 1 Cj [U(t, ~j) + ( -  1)iV(t, Cj)]gt(¢j) 
IP( t '#)  = ,_  0_ 2 Pl(#)jffi,~ 

U('c, 4) = f f  S ( x ) e  -(~-')/¢ dx  

(4) 

( 5 a )  

- # )e - ( t0  - ,)/u + 1 f , 0  ~ r ( x ,  _ # ) e -~x  - o/u dx I(t ,  ) I(to,  I # 
# d, 

for t ~ [0, %] and/~ ~ (0, 1]. Here 
N 

~o fliPt(#)It(t  ) + S ( t  ) w 

(9b) 

(1o) 

a n d  

~ '~0 

V(r, 4) = S ( x ) e  -(x-°/¢ dx. (5b) 

To define Eqs. (3) and (4), we note 3-5 that the Chandrasekhar polynomials are denoted by {gt(~)}, 
that the eigenvalues {~j} are, with N odd, the J = (N + 1)/2 positive zeros of  gn+ ~(~) and that the 
constants {Cj} are given by 

) Cj = hv , -2g~-2(¢ j )  , j = 1, 2 . . . . .  J, (6) 
kff i l  

with h t = 2l + 1 - refit , 0 <~ 1 <~ L, and h I = 21 + 1 for l > L. 
In order to determine the arbitrary constants required in Eq. (3) we can substitute Eq. (3) into 

Eqs. (2) and use, for example, the Mark or Marshak projections to generate a system of linear 
algebraic equations that can be solved to find {Aj} and {Bj}. Considering now that we have so 
determined the {Aj} and {Bj}, we note that any required moments 

f_ I t( t )  = P, (#) I ( t ,  #)  d#, l = O, 1 . . . . .  N, (7) 
I 

of the intensity can be obtained immediately by integrating Eq. (3). We find 

Cj [U(t, ~j) + ( - 1)'V(t, ~j)]}g,(~j). (8) l ,( t)  = Z {AJ e-'/¢' + ( -  1)'BJ e-(~°-O/~j + ~s 
j f f i l  

As Eq. (8) generally yields good results for the moments, the idea of  the post processing is simply 
to use Eq. (8) to define the right-hand side of  Eq. (1) and then to find the intensity by solving the 
resulting differential equation. We thus can write 

I(t ,  #) = I(0,/t)e -'/" + 1 t ~ o~-(x, #)e-~ ~ dx (9a) 
# do 
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or, more explicitly, 

,at(z, #) = -2 ~, [JtPt~) ~ {Aj e-'/*j + ( -  1)'B/e-('°-')/~j + [U(z, ~/) 
I - 0  j - I  

+ (-- 1)tV( "c, ~j)]}gt(~j) + S(Q. (11) 

Substituting Eq. (11) into Eqs. (9), we find 

N J 

I(~, #) = I(0, u)e -'/" + 1 V(z, p) + ~,(~, #) + 2 ~ffio fltPt(l~) E ~/[A/C(z: #, ~j) 
Iffi jffil 

+ (-- 1)lBje-(*°-°/¢JS( z: #, ~j)]gl(~/) 

and 

tD' N J 
l(z, --/~) = I(%, --#)e -f~o- °/" + 1 V('r, U) + ,.~('c, --I~) + -- ~ fltPt(lt) ~ ~/[(-  1)rAge -'/¢j 

/.t 2t=o jfl 

(12a) 

for T ~ [0, %] and # e (0, 1], where 

and 

In addition 

x S(% - ~: #, ~/) + BjC(% - "r: U, ~/)]gt(¢/), (12b) 

C(a: x, y )  = 
e-a/x _ e-a/y 

x - y  

S(a: x, y) = 
1 - -  e - a / x  e - a / y  

x + y  

(13a) 

(13b) 

Z(I:,/,t) = -~ fltPt(kt) Cj S (x )C( ' c -x :u ,~ j )dx  +(-1)I[V(~,~j)S('~:U,~j) 
t=o /=t 

+ f~ S(x)e-<'-xm'S(x: u, ~j)dx]}gt(~j) 

and 

o .  ,{f:o 
,F, fT,--#)=-~ ~=ofltet(la)j~]C: S ( x ) C ( x - z : # , ¢ j ) d x  +(-llt[U('r,¢jlS(-co-'C:,,¢j ) 

(14a) 

+ S(x)e-tX-°/~S(%-x:lA~j) dx] gt(~j) (14b) 

for x ~ [0, %] and/~ e (0, 1]. 
The elements of  Eqs. (12) are all now defined except for I(0,/~) and I('c o, -~ ) ,  and were it not 

for the reflection terms in Eqs. (2) these terms would be given by those equations. Thus because 
of  the reflection allowed in Eqs. (2) we must work a little harder to find I(0,/~) and I(zo, -l~) for 
g e (0, 1]. First of  all we can substitute Eqs. (9) into Eqs. (2) to obtain 

and 

I(O, lt)--p]I(zo, - - # ) e - ' ° / " = F ] ( # ) +  p] ~(x ,  -#)e-X/"dx + 2p?J~ 

1 s ~t'0 
t(~o, - u )  - p V ( o ,  ~,)e-,o/, = F2( U) + ~, p~ Jo : ( x ,  ~)e-~,o-x~/, dx + 2p~J~, 

(15a) 

(15b) 
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for It e (0, 1], where 

;o' ;;o Jl = I(zo, --It)e-~°/~It dIt + ~-(x, - -# )e  -x/u dx  d# 

and 

;o I l , f  TM ,/2 = I (0 ,  It)e-WUit dit + ,~-(x, It)e -~o-x)/" dx  dIt. 
J0dO 

We can now solve Eqs. (15) to find 

I(0, #)  = M ( # )  [K, (#)  + p] e-'0/UK2 (it)] 

and 

for  It e (0, 1], where 

and 

with 

I(z0, -- #)  = M (It) [1(2 (it) + p ~z e- ~o/U K, (It)], 

1 ;o 
K,(#)  = FI($)  + - p ]  o~-(x, -it)e-X/u dx  + 2pdg, 

# 

s r TO 
- P 2  K2($) = Fz(it) + I ..~(x, #)e -{~o-x)/z dx + 2pdj2 
It do 

(16a) 

(16b) 

(17a) 

(17b) 

(18a) 

(18b) 

M(it )  = (1 - p ] p )  e-2"olu) - ' .  (19) 

We can now multiply Eqs. (9b) and (9a), evaluated respectively at z = 0 and z = z0, by It and 
integrate to obtain 

J, = I(0, -- # )#  d# (20a) 

and 

J2 = I(~0, #)it d#. (20b) 

In addit ion we can multiply Eqs. (2) by # and integrate to find 

I(0, ~)# d~ = G (#)# d# + (P] + p~)J, (21a) 

and 

f01 f01 I(-c0, - # )#  dit = F 2 (#)# dit + (p ~ + p ~)J2. (21 b) 

We can now multiply Eqs. (17) by It and integrate over # to obtain, after we use Eqs. (21), 

[1 -- pdtp~zl'(2%)]J, -- p~r(,o)& = a (0) +f2('ro) + p~[B(zo) + f i  (2%)1 (22a) 

and 

[ 1 - p 2 d p ] F (2-co)]J2 - P ~ F (%)J, = B (0) + fl  (-co) + P ] [A ('c o ) + f2 (2to)] (22b) 
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where 

and 

fo I f~('c) = M~)e-'/"F=(IZ)l.t d#, = = 1, 2, 

F(Q = 2 f~ M(~)e-'/~l~ dlA 

fo' fl ° A(~) = MO~)e -~/" ~ (x ,  - ~ ) e  -~/~ dx d~ 

~ ( x , / O e  -~'o-x)/" dx d/~. 

(23) 

B(z)= fo'M(p)e-~/" f~° 

(24) 

(25) 

(27b) 

and we can now compare Eqs. (9) and Eqs. (12) to deduce that 

tff N J 
D, (/z) = Pl V(0, #) + Z(0, - IZ) + ~ i~=o_ fl, P,(l~) J=,~ ~j[( - 1)'AjS(%: p, ~j) + Bj C(%:/.t, ~j)]g,(Zj) 

(28a) 
and 

w N J 
D2~) = U(%,/~) + Z(Xo, IZ ) + -- ~_, fl, P,(# ) ~.. { j [AjC(% : /z, {j) + ( -  1)lBjS(zo:/~, {j)]g,( {j) 

2 /=0  j= l  
(28b) 

for # e (0, 1]. At this point we can rewrite Eqs. (25) and (26) as 

and 

fo l A (T) = M(Iz)e-'/"D, ~)lz dlz 

f0 I B(z) = M(p)e-~/~D2Q~)p dp. 

(29) 

(30) 

Finally, we note that as a simplification to the procedure of  solving Eqs. (22) to find J~ and J2, 
we can use Eq. (3) in Eqs. (20) to find the alternative expressions 

and 

J 
2l + 1 So, ~ [ ( -  1)tAj + Bje -*°/*j + Cj V(O, Cj)]gt(¢j) 

Jl=l=o 2 ' j= l  

~ 21+1 S. J Cj 
"/2 = I=o/'" "'"5---,~ oj j=l ~ [A/e-~°/~i + ( -  1)'B/+ -~j U(%, ~j)]g,(~j) (31b) 

(31a) 

and 

K2(l.t) = F2(I.t) + p[D2(I.t) + 2p~J2, 

In order to complete the desired development, we can solve the two linear algebraic equations 
given as Eqs. (22) to find the values of Jt and ./2 required in Eqs. (18) to complete the expressions 
given by Eqs. (17). With I(0,/~) and I(%, - /~)  for/~ e (0, 1] so determined, our results given by 
Eqs. (12) for the intensity are now complete. However, to be more explicit, we can rewrite Eqs. (18) 
as 

K t (l~) = F I (]z) + p~ DI (11) W 2p~J~ (27a)  

(26) 
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where, in general, the constants  S~.~ are given by 3 

fo 1 S~.l = P2~ + l (/~)Pt(~) d/~. (32) 

Some calculations have indicated that  Eqs. (31) can provide useful approximat ions  for Ji and J2. 
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