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Abstract--The spherical-harmonics method is used to develop a solution to an inverse source 
problem in radiative transfer. It is assumed that, with the exception of the inhomogeneous 
source term, all aspects of the radiation-transport problem are known, and we seek to 
determine the inhomogeneous source term from specified angular distributions of radiation 
exiting the two surfaces of a homogeneous plane-parallel medium. Anisotropic scattering is 
included in the monochromatic radiative-transfer model and general reflecting boundary 
conditions are considered. 

I N T R O D U C T I O N  

To analyze a radiative-transfer problem in a homogeneous plane-parallel medium for the case when 
there is a source of  radiation, we consider the equation of  transfer'" 

# ~ I(T,#)+ I(z,#)=2 t~o,tP~) f~lP,(u)l(z,u)du + S(Q,. (1) 

for ~ ~ (0, To) and # ~ [-- 1, 1], and the boundary conditions 

I(0, #)  = F~(#) + p]I(O, - # )  + 2p~ ~ I(0, ~ U~U du (2a) 

and 

I0 I(%, - # )  = F 2 ~ )  + p~I(%, #) + 20~ I(%, u)u du (2b) 

for ~ ~ (0, 1]. Here m is the albedo for single scattering (~ < 1), the elements f t  are the coefficients 
in a Legendre expansion of  the scattering law and % is the optical thickness of  the layer. In addition, 
p~ and pd, ~ = 1 and 2, are the coefficients for specular and diffuse reflection. We consider that 
the functions FI (#) and F2(~) are given, and we seek to determine the inhomogeneous source term 
S(x) given that we know the boundary results I(0, - # )  and I(%, #) for # ¢ (0, 1]. 

Inverse problems in radiative transfer have defined a subject of  interest for the past 20 or so years 
and there exists a considerable body of  knowledge surrounding the subject that has been extensively 
reviewed in a series of  papers by McCormick. ~ The specific inverse problem of  interest examined 
here is one in which we seek to deduce an inhomogeneous source term within a medium of  known 
properties. Thus here, in contrast to papers devoted to the more often studied inverse problems 
where one seeks, for example, to find the {flit} that define the scattering law and/or the albedo for 
single scattering m, we assume that everything except the source is known a n d  we attempt to 
determine the inhomogeneous source term S(x) from the distributions, I(0, - # )  and l(zo, #), for 
# ~ (0, 1], of  radiation that exit the host medium. In Refs. 7 and 8 McCormick and co-workers have 
reported on methods for determining an unknown inhomogeneous source that require that 
measurements be made in the interior of  the medium. There clearly are applications where a 
method; such as the one developed here, that determines the internal source term from 
measurements of  radiation exiting the boundaries could be more useful. 

It seems clear that an inverse problem where only the source term is unknown is inherently much 
simpler than an inverse problem where either the albedo for single scattering or the scattering law 
is unknown. 
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We note that, as with essentially all inverse problems in radiative transfer, basic questions that 
concern the existence and the uniqueness of the solutions and the sensitivity of the established 
algorithm to measurement errors should be addressed. In reviewing the literature on inverse 
problems in radiative transfer, we .have found only one paper 9 that has addressed the important 
issues of the existence and the uniqueness of the solution of the inverse source problem. Larsen's 
paper 9 is devoted to the case of a semi-infinite plane-parallel layer, and so is not immediately 
applicable here; however there are reasons to believe that Larsen's analysis could be generalized 
to the case of a finite layer. 

It is not unusual to find in the general field of inverse radiative-transfer problems methods that 
rely on trial and error techniques and/or iterative procedures (see, for example, Ref. 10.). Our goal 
here is to provide a more deterministic algorithm for the considered inverse-source problem. 

THE SPHERICAL HARMONICS SOLUTION 

As discussed, for example, in Refs. 11-14, the spherical-harmonics solution to Eq. (1) can be 
expressed as 

J 

~. 21 + ] Pt(P) ~, [Aj e-'/*' + (-- 1)tBje-(*°-°/{']gt({j) + Ip(z, p )  (3) 
I(~,lz) =t_o 2 j= 

- 1 

where the arbitrary constants Aj and Bj are to be fixed by the boundary conditions. Here we write 
the particular solution appropriate to the spherical-harmonics method as t2 

M_ 21 + 1 e 2_ Cj [U(z, { j) + ( -  1)'r('~, {J)]g,(¢i) (4) 

where, in general, 

and 

U('c, ~) = ~o S(x) e -('-x)/{ dx (sa) 

0 

V(~, ~) = S(x) e -(x - ")/~ dx. (5b) 

To define Eqs. (3) and (4) we note It-14 that the Chandrasekhar polynomials are denoted by {gl(¢)}, 
that the eigenvalues {~j} are, with N odd, the J = (N + 1)/2 positive zeros ofgM+)(~) and that the 
constants {Cj} are given by 

( ~ ,  hz~-2g (~j))-' cj= ~_~ , j =  1,2 . . . . .  J, (6) 

wi th  ht = 2 / +  1 - m/~l, 0 ~< 1 ~< L,  and ht = 21 + 1 for  ! > L.  
If the source terra S(z) is known we can determine the arbitraxy constants required in Eq. (3) 

by substituting F-xl. (3) into Eqs. (2) and using, for example, the Mark or Marshak projections to 
generate a system of linear algebraic equations that could be solved to find {Aj} and {Bj}. Here, 
since S(x) is not known, we require a variation on this procedure. 

First of all, we choose to express the unknown source term S(~) in terms of a set of linearly 
independent basis functions {0k(l)} defined on the interval [0, 1] so that we can write 

./¢- 

S(*) = ~'. akdpk(*/zo). (7) 
k = 0  

It follows that all we need to do is to determine the unknown coefficients {ak} so that the exit 
distributions we compute match in some sense the exit distributions that are presumed known. 

Using Eq. (7), we can rewrite Eq. (4) as 

X 

Ip(z,/a) = ~ ak ~(X, p) (8) 
k = O  
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where the known functions ~(x,/~) are given by 

_N 2 1 + l p  Z Cj 

where 

a n d  

(9) 

~ o 

Vk(*, ~) = ¢~k(X /,o)e -(~-')/~ dx. (10b) 

We thus can express our solution to Eq. (1) as 

I( , ,  ~)  = P,(p) ~ [Aj e -'/¢j + ( -  l)IBj e -%-  *)/¢J~gt(~/) 
21 + 1 

I = 0  j - - I  

21+ 1 C i t 
+ ~ ak - - T - -  e ' (~)  ~'- ~-- [Vk(*, ~j) + (-- 1) Vk(x, ~j)]gt(~j). (11) 

k = 0  I = 0  ~ j = 1 % j  

In order to find the constants required in Eq. (11) we substitute Eq. (11) into Eqs. (2) and use 
the Marshak projection scheme in the manner of Ref. 13 to obtain, for a - 0, 1 . . . . .  (N - 1)/2, 
a system of  linear algebraic equations given by 

j - ,  ,-o - - T - / [ 1  - ( -  1)'o~]s,~ - 2 ( -  0'o.~ So~S~o }[Aj + ( -  1)'sje- 'o/~,lr, ,(~j) = R. . ,  

and 

j=~| N 2 1 + I l  
, ~ o - - ~  {[ - ( -  1)'#~]S~ - 2 ( -  1)'p d So~S~o }[Bj + ( -  1)'Xj e-*o/¢,]gt(~j) = R2., 

and 

where the constants S,~ are given by 

Io' S,,t--- P,. +, (/*)Pl~) d/~. (13) 

Here the fight-hand sides of  Eqs. (12) are given by 

R t a  = 
. akj.  i=o 2 

x {2pdSojS,.o + Lo~ - (- l)']S..,} ~ Vk(O, ~/)g,(~/) (14a) 

and 

Io' :o°4 R2.~ = P2,+t(l~)F2(p)dl~ + = - i=o 2 

x {2pdSo.,S,.o + [p~ -- (-- I)']S,.,} ~ G(*o, •)g,(¢). (14b) 

If we now write 
X 

= a?  + g (lSa) 
k = O  

./f  

aj = a* + ~ a~a~ (lSb) 
k - O  

(12a) 

(12b) 

G(~, ~) = ~ ¢~k(x/~o)e-"-m dx (IOa) 
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then it is clear that {A*} and {B~} are the solutions of Eqs. (12) with the right-hand sides given 
by 

f0' R ~= = P2= +, (#)F,  (# )  d#  (16a) 

and 

~0 
1 

R~.= = P2=+, (P)F2(P) dg. (16b) 

and 

and 

Rk= _ ~ --~ 21 + 1 -2 dS Cj Uk(%, ~j)g,(~j). (17b) - / . , , = ~ 0 ~ {  p~ o.,S~o+[p'2-(-1)'lS=.,}~ 
For a fixed order N of the spherical-harmonics=method and a fixed value of Jff we can solve our 
systems of  linear algebraic equations to find all {A*} and {aj*} as well as {A~} and {B~}, for 
k = 0, 1 . . . . .  LAP, independent of  the source term. We consider that wc now have done just that. 

Having solved the various systems of linear algebraic equations for the constants {A* }, {B* }, 
{A~} and {B~}, for k •0, l . . . . .  Jff, we can rewrite Eq. ( l l )  as 

I(~, # )  = ----~e,(IZ) ~ [A*e-'/¢J+(-I)tB*e-(~o-')/~/]g,(~/)+ ~ aklk(x,#) (18) 
21 + 1 

1=0 j = l  k=O 

where 

M --2-21+1 J t I, (x, # ) = ,~o P t ~ )  ,~, ~.A ] e-'/~J + ( -  1)in k e - 'o -o/~j 

+ ~ W~(~, ~j) + ( -  1)%(~, ~;)1 g,(~j). (19) 

Note that at this point everything in Eq. (18) is known except the source constants {ak}. 

THE INVERSE SOURCE PROBLEM 

Having developed our spherical-harmonics solution in terms of  the source constants {ak }, we 
are now ready to express these constants in terms of the presumed given distributions of radiation 
leaving the surfaces. We let Sm(~)and $ 2 ~ )  for # ~(0, l] denote the intensities that have been 
observed exiting respectively the surfaces x --0 and z = %. We thus can use Eq. (18) and write 

J f  

~., aklk(O, --#) = Z,(#)  -- I , (0 ,  --/~) (20a) 
k = 0  

.N" 

~., aklk(zo,/z) = $2(/~ ) -- 1,(%, #) (20b) 
k=O 

for # e (0, 1]. Here we use the notation 

l .(x,  #) = ~. T e,(#) ~. [A* e -'/~, + ( -  1)'B* e -(~0- o/~j]gt(~/). (21) 
2l + 1 

I=0 j = l  

Equations (20) now must be solved in some approximate manner. I f  ~1 (p) and ~2(/0 for/~ E (0, 1] 
arc known at a sufficiently large number of points then we can simply evaluate Eqs. (20) at those 
points and solve the resulting system of linear algebraic equations for the Jff + 1 unknown 
constants {ak}. Of course other projection techniques are also possible. For a selected set of 

In a similar manner the constants {A~} and {B~} are the solutions of Eqs. (12) with the right-hand 
sides given by 

- ~  -N 2 1 + 1 " 2  d Rkl ,=-/=l ,~o--~{ plSo.,S=.o+Lo~-(-l)']S~., } Vk(O,~j)gi(~j ) (17a) 
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basis functions {H,(~)}, we can multiply Eqs. (20) by these basis functions and integrate to 
obtain 

~0~v f0 
Mo~ak ffi H , (p )~ ,  (p) dl~ - T,.., • = 1, 2 , . . . ,  N , ,  (22a) 

and 

where 

and 

N ~ a k  = H~(P)~2(P) d/t - T,.2, • = 1, 2 . . . .  , N2, 
k - 0  

(22b) 

fo M ~  ffi H~(p)Ik(O, --I~) dl~, 

fo N,~ = H ~ ) I k ( x o ,  #)  dl~, 

ffi l ~ H,(p) l , (O,  - I~)dp  r~ 
Jo 

(23a) 

(23b) 

(24a) 

f0 T,.2 ffi H ~  )I  . (%, /t) d/~. (24b) 

Here in order to generate a "square" system of  linear algebraic equations we take N~ + N2 = ~V + 1. 
We note that the elements defined by Eqs. (23) and (24) are independent of  the inhomogeneous 

source term, and thus they would not have to be recomputed for a series of applications where 
only the source is changing. 

SOME TEST CASES 

In order to have a specific scattering law for testing our solution technique for the inverse source 
problem, and to avoid having to provide a table of  scattering law coefficients {fl~}, we use here the 
binomial scattering law 

L + I  
p(cos e )  ffi ~ (1 + cos O) L (25) 

which can be represented with L + 1 Legendre coefficients that can be computed with t0 = 1 and ~5 

l=  ~2-T--1- 1) + ! +  1 /~t-, (26) 

for 1 ffi l, 2 . . . . .  L. Here we use Eq. (25) with L = 24 for our scattering law, and we use ~ = 0.9, 
%=2.0 ,  p~ =0.1,  pd •0.2, p~ ffi 0.3 and pd2ffiO.l. 

To define the boundary conditions we use, for our test cases, 

F, (/~) = ~ +/~6(p - ~ )  (27a) 

and 

F2~)  ffi T, (27b) 

for # ~ (0, 1], with the numerical values ~ = 1.0, fl = 0.7, ~ = 0.5 and T ffi 0.6. 
In regard to the basis functions {Ot(x)} used in Eq. (7), we have considered two cases: (i) the 

Hermite cubic splines 16 as used in Ref. (13) and (ii) the Legendre polynomials {Pk(2X -- 1)}. For 
the projection technique that yields Eqs. (22)-(24), we have used 

H,0~) = P2,-~ ~ )  (28) 
and we have used Eqs. (22a) and (22b) respectively with • = 1, 2 . . . . .  N~ and ~ = 1, 2 . . . .  , N2 
where Nt + N2 ffi ~V" + 1. Although the choice is somewhat arbitrary, we have generally taken 
Ni ~ N2 in our calculations. 
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~/¢o So(C) 

C. E. Smw~T 

Table I. The given and the computed inhomo~neous source term. 

~o(~) &(O ~b(~ SAO ~AO 
0.0 1.000 0.993 1.000 0.997 2.000 2.005 
0.1 1.041 1.043 1.309 1.310 2.588 2.587 
0.2 1.170 1.168 1.588 1.589 2.951 2.958 
0.3 1.412 1.410 1.809 1.809 2.951 2.949 
0.4 1.811 1.813 1.951 1.950 2.588 2.580 
0.5 2.441 2.445 2.000 ! .999 2.000 2.000 
0.6 3.421 3.421 1.951 1.951 1.412 1.420 
0.7 4.929 4.924 1.809 1.810 1.049 1.052 
0.8 7.234 7.233 1.588 1.588 1.049 1.043 
0.9 10.73 10.74 1.309 1.308 1.412 1.413 
1.0 16.00 15.98 l.O00 1.001 2.000 1.990 

In regard to the inhomogeneous source term, we have tried 

S~(¢) = [1 + ( , / ,o)2]  4, 

Sb(*) = 1 + sinOrT/¢o) 

and 

S , ( , )  = 2 + sin(2n,/¢o). 

three cases: 

(29a) 

(29b) 

(29c) 

In the accompanying table we list the exact values of  Sa(z), Sb(Z) and So(c) along with the 
estimated values of  the sources ,~a(z), Sb(¢) and So(z) obtained from our solution of  the inverse 
problem. 

While the results in our table are clearly very good, we must admit that there can exist inverse 
source problems that, without further numerical work, we cannot solve as well as the three test 
cases we considered. We have obtained, while using both the Hermite cubic splines and the 
Legendre polynomials as basis functions to represent the unknown source, a system of  linear 
algebraic equations that became poorly conditioned as we increased the number of  terms X + 1 
in the expansion of  the source term. In fact our best results were obtained by using ~4 r = 5 with 
the Legendre basis. Of  course it is often the case that we encounter a poorly conditioned system 
of  equations in trying to solve inverse problems in radiative transfer; however, additional work is 
planned to try to improve the numerical aspects of  this method of  solving the inverse source 
problem. 

In this, our first paper on the inverse source problem, we have not carried out in a definitive 
manner many of  the studies that should be undertaken in order to establish the class of  problems 
and experiments from which we could expect to extract with confidence the desired results. 
However, we can report several observations we have made: (i) for the test problems we considered 
we were able to reduce the accuracy of  the exiting distributions to just two figures and still obtain 
meaningful results for the desired source term; (ii) we were able to obtain good results for the source 
term by using the exiting distributions at only 10 points on each of  the two boundaries; (iii) 
although we generally have used N~ ~ N2 in our calculations, we also were able to obtain good 
results by taking either Nm = 0 or N2 = 0; in other words, we were able to deduce the source term 
from the intensity exiting from only one of  the two surfaces. It is also worthwhile to note that we 
were able to deduce the unknown source term for the three considered test problems even though 
we had, in addition to the driving force of  the inhomogeneous source, radiation incident on both 
sides of  the layer and both specular and diffuse reflection on each of  the surfaces. 

To conclude this work we note that we could generalize the procedure developed here to allow 
both Fm~) and F2(/~) in Eqs. (2) to be unknowns so that we could determine, in principle, S(z), 
F~ (la) and F2(~), for/~ ~ (0, 1], from given observations of  the distributions of  radiation exiting the 
layer. It is also clear that in the event that the algorithm developed here will not extract the source 
to the degree of  accuracy desired, the method could be used to initiate an iterative procedure. The 
method developed here could also be extended to non-gray radiative-transfer models and to models 
that take into account polarization effects. 
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