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Abstract-A sphere-to-plane transformation technique and the spherical-harmonics method 
are used to develop a solution to an inverse-source problem for radiative transfer in a spherical 
body. It is assumed that, with the exception of the inhomogeneous source term, all aspects 
of the radiation-transport problem are known, and we seek to determine the source term from 
a specified angular distribution of radiation that exits the surface of the sphere. 

1. INTRODUCTION 

To analyze a radiation transport problem in a homogeneous sphere for the case when there is a 
source of radiation we consider the equation of transfer’.* 

s I 

Z(r,u)du +S(r) 
-I 

for r E (0, R ) and p E [ - 1, I] and the boundary condition 

I(R, -p) = 0 (2) 

for p E (0, 11. Here a is the albedo for single scattering (m < 1) and R is the optical radius of the 
sphere. We seek to determine the inhomogeneous source term S(r) given that we know the 
boundary result Z(R, p) for p E (0, 11. 

In a recent paper,3 the inverse-source problem for a plane-parallel medium was discussed, and 
a deterministic algorithm for computing a solution was reported. Also in Ref. 3 numerous 
references to basic works and to review articles were made, and so here, since this work is very 
similar to that reported in Ref. 3, we will be brief and note only how we have extended the previous 
paper to cover the case of a spherical body. 

2. THE EXIT DISTRIBUTION AND THE PSEUDO PROBLEM 

Pomraning and Siewert4 derived the integral form of the transport equation applicable to a 
homogeneous sphere with an internal source and illuminated by an external source. As we intend 
to be brief here, we can specialize the results of Pomraning and Siewert to the case of no external 
illumination and use from Ref. 4 the following expression for the distribution of radiation exiting 
the sphere: 

R 

Z(R,P) = 

s [ R\iFl’Z) 

~~~~)+s(x)]n’(x,R,p)[e-R~~+n~.~.R.,l,+e~R,l~n,~.R.“l]ldl (3) 

for p E (0, I]. Here 

Z(r) = 
S’ 

I(r,p)G (4) 
-I 
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and 

fI(s, r, I_() = [.Y ’ - I’ ‘( 1 - /r ‘)I’ ‘. (5) 

As we intend to use Eq. (3) to compute the exit distribution it is clear that we must frrst compute 
the flux I(r) for r l [O, R]. 

Mitsis’ developed, in the context of critical problems in neutron transport theory. a pseudo-slab 
problem the solution of which yielded the flux distribution I(r) in a related sphere. The idea oi 
Mitsis has subsequently been used, see for example Refs. 6 and 7, to solve some basic problems 
in radiative transfer. Here for the purpose of solving the considered inverse-source problem we can 
compute the required flux distribution I(r) fromh.’ 

I(r)=! 
I i‘ll 

@(r. p) d/l (6) 

where @(r, p) is defined by the pseudo-slab problem based on the equation of transfer 

p$@(r,p)+@(r.p)=: ’ 
Ii 

@(r, II) dzr + rS (iti). i7r 

for r E ( - R, R ) and p E [ - I. I], the symmetry condition cD( - r, - p ) = -@(r. p ) and the boundary 
condition 

@(R. -.p) = 0 tX1 

for ~1 ~(0, I]. 
AS we intend to solve our inverse-source problem in terms of moments of the radiation intensity 

exiting the sphere, we multiply Eq. (3) by W,(p) and integrate over Al to obtain 

S’ 

K 

I(R.p)kf’,(p)dp = 
0 s i- 0 .\’ 

~~(.~-)+s(s) Fz(.Y)d.\ 
I 

(4) 

where 

Though other good choices clearly are possible, we take 

W,(P) = P?, , (11). 2 = I. 2. . (111 

where P,(P) is used to denote the Legendre polynomial of order 1. 
In order to solve our inverse-source problem, we now expand the unknown source in terms of 

a set of linearly independent basis functions (4,(.~): so that we can write 

S(r) = i qt$A(r.‘R), r E [O. R]. (I?) 
/, c/ 

We consider now the pseudo problem relevant to each basis function c~,(Y R ). vi/. 

i: 
IIr7r~,(r.~)+O;(r,IO=~ 

ill 
Qa(r. u) du + n$,(/r RI). 

for rE(-R,R) and p~[-I], I], Qk(-r. -IL)= -Qk(r.p) and 

(I+(R, -11) = 0 

for if E (0, I]. If we let 

ii(r) = Am CD, (r, P ) d/c 
I 

and note that 
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then we can write Eq. (9) as 

I(R,p)W,(p)dp = ;zk(x)+6k(x/R) 1 F,(x)dx. (17) 

If we consider Eq. (17) for IX = 1,2,3, . . ., K we can solve that system of linear algebraic equations 
to find the coefficients .(uk} required in Eq. (12) to define the desired source. 

3. THE SPHERICAL HARMONICS SOLUTION 

Following, for example, Refs. 8-10, we express our spherical-harmonics solution to Eq. (13) as 

N 2Z+l 
@k(r,p)= c FP,(p) i A,,j[e -(R+r1,‘5~ - (- l)‘e~(R~r)!5~]g,(<,) + @k,p(r, p) (18) 

I=0 j=l 

where the arbitrary constants Ak., are to be fixed by the boundary conditions. Here we write the 
particular solution appropriate to the spherical-harmonics method as9 

where, in general, 

and 

uk@,t)= r 

s 

x~$~(lx/R I)e-“- ‘)E dx 
-R 

s 

R 

vk(y, 5) = XC#I (Ix/R I)e-(ym’)/ir dx. 
, 

(19) 

(20a) 

(20b) 

To define Eqs. (18) and (19), we 8 ‘O note - that the Chandrasekhar polynomials are denoted by 
{g,(r)}, that the eigenvalues {t,} are, with N odd, the J = (N + 1)/2 positive zeros of gN+ , (0 and 

that the constants {C,} are given by 

cl= i hk-2g:km2(tj) j=1,2 J, 9 .‘.’ 
k=l 

(21) 

with ho = 1 - UJ and h, = 21 + 1 for I > 0. 
If we substitute Eq. (18) into Eq. (14) and use the Marshak projection scheme* we obtain a system 

of linear algebraic equations that can be solved to yield the constants {Ak,j} required to complete 
the solution given by Eq. (18). 

At this point we are ready to try some numerical experiments to see how well we can determine 
the source S(r) from computed moments of the exiting distribution Z(R, p), p E (0, 11. 

4. SOME TEST CASES 

In order to test our algorithm for solving the inverse-source problem in a sphere we choose to 
use the Legendre polynomials {P,(2r/R - 1)) as our basis functions in Eq. (12), and we use Eq. (11) 
to define our projection of the radiation exiting the surface. We note that the required integrals 

(22) 

were evaluated accurately by utilizing the symbolic-computation software package Maple V and 
standard numerical integration techniques. 

For our computations we use 
term, we have tried three cases: 

R = 2 and m = 0.9, and, in regard to the inhomogeneous source 

S,,(r) = 16[1 + (r/R)‘]- 4T (234 

(23b) 
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Ih.00 I6 05 I 000 0.093 2 000 
15.3X I.37 I.3OY I .?OY 2.SXX 

13.6X 13.68 I .58X I .5X8 7.Y5 I 
II.33 I I.33 I .XOY I WY 7.Y2 I 

X.X?7 x x37 I Y5I I .Y.i I 2.iKX 
6.554 h 551 7.000 2 000 2.000 
4.677 4.677 I .Yi I I.051 I.412 
3.246 : ‘46 I .8OY I .XOY I 03’) 
7.212 7.717 I.SXX I .5X8 I .04cJ 
I .3Y I I .3Y I I .3OY I .3OY I112 
I .ooo I 000 I .ooo I .OOO ?.OOO 

and 

.Y, (I’ ) = 2 + sin 
27rr 

i ) K ,’ 
l2.k.) 

For each of the foregoing mum terms wc have cased the spherical-harmonics method IO sol\tx 

the direct problem in order to evaluate the left-hand side of’ Eel. (9). We then used our inbersc 

solution to recompute the assumed source. In the accompanying table WC‘ list the exact \alucs of 

S,,(I.). S’,,(r) and S, (1.) along with the estimated values of the sources Lf,(~), .<,,(v I and $ (I’) obtained 

from our solution of the inverse problem. 

While the results in our table are clearly very good. we must admit that there can exibt inverse 
source problems that. without further numerical work. we cannot solve ;I\ well as the three test 

cases we considered. 
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