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Abstract—A sphere-to-plane transformation technique and the spherical-harmonics method
are used to develop a solution to an inverse-source problem for radiative transfer in a spherical
body. It is assumed that, with the exception of the inhomogeneous source term, all aspects
of the radiation-transport problem are known, and we seek to determine the source term from
a specified angular distribution of radiation that exits the surface of the sphere.

1. INTRODUCTION

To analyze a radiation transport problem in a homogeneous sphere for the case when there is a
source of radiation we consider the equation of transfer'?

é 1 —u?d !
w T+ — LIy + 1) =2 | I u)du +S(r) (1)
or r ou 21,

for r €(0, R) and u e[—1, 1] and the boundary condition
IR, —)=0 (2)

for 1 € (0, 1]. Here @ is the albedo for single scattering (w < 1) and R is the optical radius of the
sphere. We seek to determine the inhomogeneous source term S(r) given that we know the
boundary result 7 (R, u) for u (0, 1].

In a recent paper,® the inverse-source problem for a plane-parallel medium was discussed, and
a deterministic algorithm for computing a solution was reported. Also in Ref.3 numerous
references to basic works and to review articles were made, and so here, since this work is very
similar to that reported in Ref. 3, we will be brief and note only how we have extended the previous
paper to cover the case of a spherical body.

2. THE EXIT DISTRIBUTION AND THE PSEUDO PROBLEM

Pomraning and Siewert* derived the integral form of the transport equation applicable to a
homogeneous sphere with an internal source and illuminated by an external source. As we intend
to be brief here, we can specialize the results of Pomraning and Siewert to the case of no external
illumination and use from Ref. 4 the following expression for the distribution of radiation exiting
the sphere:

R
I(R,u):f I:%I(x)+5(x):|l'l"(x, R,y)lie"“‘*"“‘”""“%—eR“"““'R""i|x dx (3

RV(1 —p2)

for u €(0, 1]. Here

l(r)=J I(r,pu)dp “4)
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and

wn

Mo rop) =[x = r3(l = p )] (5)

As we intend to use Eq. (3) to compute the exit distribution it 1s clear that we must first compute
the flux I(r) for r €[0, R].

Mitsis® developed, in the context of critical problems in neutron transport theory, a pseudo-siab
problem the solution of which yielded the flux distribution 7(r) in a related sphere. The idea of
Mitsis has subsequently been used, see for example Refs. 6 and 7. to solve some basic problems
in radiative transfer. Here for the purpose of solving the considered inverse-source problem we can
compute the required flux distribution 7(r) from®’

1 i
I(r):~f O(r. u)du (6}
A 1
where ®(r, 1) 1s defined by the pseudo-slab problem based on the equation of transfer
¢ w (!
,uE(D(r,uH—(D(r.,u):;J O(r, u)du + rS(r)), (7
) 21

forr e(—R.R)and u €[—1, 1], the symmetry condition ®(—r, — ) = — ®(r. u) and the boundary
condition

(R, —p1)=10 (%)

for 11 €(0, 1].
As we intend to solve our inverse-source problem in terms of moments of the radiation intensity
exiting the sphere, we multiply Eq. (3) by W, (u) and integrate over u to obtain

1 R
w ,
jl(R,u)Wi(u)du:j .\‘[7](.\')+S(,\‘) F(xv)dxy (9)
0 {} i
where
] [k T4 R dt
F(x)=— w [ — e o
() R_L ‘ ( 2Rt ,)“ . (1

Though other good choices clearly are possible, we take
W (u)="P, ((p).a=12 . . (h

where P,(u) is used to denote the Legendre polynomial of order /.
In order to solve our inverse-source problem, we now expand the unknown source in terms of
a set of linearly independent basis functions {¢,(x)! so that we can write

K

Stry=3 a¢(riR). ref0.R]. (12)

k=t

We consider now the pseudo problem relevant to each basis function ¢, (r R ). viz.

é w (!
u(;;(l)k(r,u)—G—(Dk(r,y):,)j @ (r.u)du + rép, (jr/RI). {13
/ < J
forre(—R, R)and pe[—-1,1], O, (—r, —u)= —®,(r. ) and
O (R, — ) =0 (14)
for e (0. 1]. If we let
l i
IA("):;'J @, (r, u)dp {15)
i

and note that

A

O(rop) =) a,®(r. 1) (16)

ko=t
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then we can write Eq. (9) as
1 K R
f (CAGLIED) akf x[%lk(xndn(x/R)]Fa(x)dx. a7
0 =0 0

If we consider Eq. (17) fora =1, 2,3, ..., K we can solve that system of linear algebraic equations
to find the coefficients {a,} required in Eq. (12) to define the desired source.

3. THE SPHERICAL HARMONICS SOLUTION

Following, for example, Refs. 8-10, we express our spherical-harmonics solution to Eq. (13) as
2141 )
O (r,p) = Z — Pl Z A jle BTG — (= 1Ye R ]g (&) + B, (r, 1) (18)

where the arbitrary constants 4, ; are to be fixed by the boundary conditions. Here we write the
particular solution appropriate to the spherical-harmonics method as’

B, (1, ) = ﬁ 2 pw y b ZI00.8) + (- DV E)e) (19)
where, in general, ’
Uy(r, &) = J xR e~V dx (200)
and B
Ve, &)= j " (/R e % dx. (20b)

To define Egs. (18) and (19), we note*' that the Chandrasekhar polynomials are denoted by
{g,(£)}, that the eigenvalues {&,} are, with N odd, the J = (N + 1)/2 positive zeros of gy, ,(¢) and
that the constants {C,} are given by

-1

J
CJ=< Z th—Zgng(éj)) , J=12,...,J, Q1
k=1

with hy=1—w and A, =2/ +1 for / > 0.

If we substitute Eq. (18) into Eq. (14) and use the Marshak projection scheme® we obtain a system
of linear algebraic equations that can be solved to yield the constants {4, ;} required to complete
the solution given by Eq. (18).

At this point we are ready to try some numerical experiments to see how well we can determine
the source S (r) from computed moments of the exiting distribution 7 (R, u), u €(0, 1].

4. SOME TEST CASES

In order to test our algorithm for solving the inverse-source problem in a sphere we choose to
use the Legendre polynomials { P,(2r/R — 1)} as our basis functions in Eq. (12), and we use Eq. (11)
to define our projection of the radiation exiting the surface. We note that the required integrals

1 (R 1?4+ R2—x* dr
F = P ———— -t 2
a(x) RJ‘R_\. 2{1]( 2RT >e T ( 2)

were evaluated accurately by utilizing the symbolic-computation software package Maple V and
standard numerical integration techniques.

For our computations we use R =2 and @ = 0.9, and, in regard to the inhomogeneous source
term, we have tried three cases:

S, (r)=16[1+(r/R)']*, (23a)

S,(r) =1+ sin(%’) (23b)
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Table 1. The given and the computed source term lor R =2 and

w =0.9.
r'R S.(r) S,0r) S,0r) S, S.(r) S
0.0 16.00 16.05 1.000 0.994 2.000 1991
0.1 15.38 15.37 1.309 1.309 258K 2587
0.2 13.68 13.68 1.588 1.588 2.951 2951
0.3 11.33 11.33 1.809 1.809 2.951 2951
0.4 8.837 8.837 1951 1.951 2.58¥ 2588
0.5 6.554 6.554 2.000 2.000 2.000 2.000
0.6 4.677 4.677 1.95t 1.951 1412 1412
0.7 3.246 3.246 1.809 1.809 1.049 1.049
0.8 2212 2212 1.58% 1.588 1.049 1.049
0.9 1.491 1.491 1.309 1.309 1412 1412
1.0 1.000 1.000 1.000 1.000 2.000 2.000
and
S.(r) ’+'(2m) AR
S(#r)=2+sin{ - . {23¢)
R

For each of the foregoing source terms we have used the spherical-harmonics method to solve
the direct problem in order to cvaluate the left-hand side of Eq. (9). We then used our inverse
solution to recompute the assumed source. In the accompanying table we list the exact values of
S,(r). Sy(r) and S, (r) along with the estimated values of the sources S,(r). S.(r)and S (r) obtained
from our solution of the inverse problem.

While the results in our table are clearly very good. we must admit that there can exist inverse
source problems that. without further numerical work. we cannot solve as well as the three test
cases we considered.
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