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Abstract-A projection scheme for generating PN boundary conditions based on the shifted 
Legendre polynomials is discussed. The projection scheme yields N+l conditions for each bound- 
ary of a slab, just twice the number of conditions required. The resulting overdetermined system 
of equations is subsequently reduced to a square system by means of a standard least-squares 
technique. Tests carried out for several problems indicate that the procedure is numerically sta- 
ble in high-order, in contrast to the findings of some years ago when a similar projection scheme 
was first proposed. 

1. INTRODUCTION 

AS is well known (Davison, 1957; Gelbard, 1968), the spherical-harmonics (PN) method for solving 
transport problems cannot accommodate boundary conditions exactly, and so this aspect of the method has 
become a subject of research interest in transport theory. In the 40’s, Marshak (1947) and Mark (1945) 
developed the boundary conditions that carry their names and that are still widely used (Garcia et al, 
1994a). In the 60’s, Federighi (1964) and Pomraning (1964a, 196413) ’ t m ro d uced the idea of using variational 
principles to derive boundary conditions for the PN method. Recently, Larsen and Pomraning (1991) derived 
a class of PN boundary conditions by means of asymptotic analysis. A comparison of the performance of 
all these types of boundary conditions in low order (N 5 5) has been reported (Rulko ei al., 1991), the 
main conclusion being that there is no boundary condition that can be identified as the most (or the least) 
accurate for all problems. 

Some years ago we used (Garcia and Siewert, 1982) a projection scheme based on the polynomials 
$3(2/~-l), where Pc(2~ - 1) denote the shifted Legendre polynomials, to generate the boundary conditions 
required in a spherical-harmonics solution of the standard problem in radiative transfer (Chandrasekhar, 
1950). Since in transport problems boundary tonditions are always specified on an half-range interval 
for the p variable--(O,l) or its negative counterpart-and the shifted Legendre polynomials are half-range 
orthogonal, it was expected that such a scheme could be an improvement over the traditional Marshak 
scheme. Although the shifted Legendre scheme did, in fact, prove to be more accurate than the Marshak 
scheme for the considered test problem (Garcia and Siewert, 1982), later on it yielded ill-conditioned linear 
systems when used in high order for a more challenging class of problems (Benassi et al., 1984), and since 
then it has not been used again. 

In this paper we reexamine the idea of using the shifted Legendre polynomials to define a projection 
scheme for generating PN boundary conditions for azimuthally symmetric problems. However, instead of 
using the polynomials pPk(2~ - 1) for k = 0, 1, . . . , (N - 1)/2 as in our previous work (Garcia and Siewert, 
1982), we use the polynomials Pk(2~ - l), Ic = O,l,. . . , N, to define our projection scheme. Our motivation 
for this choice comes from the fact that moments of order > N do not make any additional contribution when 
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this projection scheme is used, provided one can express the original boundary conditions of the problem 
as polynonnals of degree no larger than N. In this way, we find exactly twice the number of conclitions 
we require, and so we use least-squares (Jennings, 1977) to reduce the resulting overdetermined system 
of equations to a square system for the coefficients of the PN approximation. Unlike the procedure of our 
previous work (Garcia and Siewert, 1982), our new procedure yielded well-conditioned systems in high order 
for all test problems that we tried. 

The outline of the paper is as follows. In Sec. 2, we report our proposed projection scheme to obtain l’~ 
boundary conditions and the least-squares technique that we use for reducing the overdetermined system to 
a square system. In Sec. 3, we discuss some aspects relevant to the computational implementation of our 
procedure. In Sec. 4, we record some observations regarding the performance of our projection scheme as 
compared to the Mark and Marshak schemes, and we tabulate some numerical results for a test problem. 
Finally, in Sec. 5, we summarize the main conclusions of our study. 

2. THE PROJECTION SCHEME AND REDUCTION BY LEAST SQUARES 

We start with the transport equation, for 0 < I < a and -1 5 p 5 1, 

and the boundary conditions, for p > 0, 

and 

Q(O, lI) = F(P) 

Q(e, --II) = G(P), 

(2a) 

(2b) 

where F(p) and G(p) are considered known. As usual, c denotes the mean number of secondary particles 
emitted per collision and PI, with @s = 1 and lpll < 21+ 1, I= 1,2,. . . , L, are the coefficients in a Legendre 
expansion of the scattering law. In this paper we restrict our discussion to the case c < 1, i.e. that of a 
non-multiplying medium. 

The essential idea behind the Pry method is that the first N + 1 moments of Eq. (1) are satisfied by 
the PN approximation, with N odd, 

(3) 

where tin(z), the n-th Legendre moment of the particle distribution function at position Z, can be expressed, 
for c < 1, as (Benassi et al., 1984) 

A(Z) = k [Aje- 2/4 + ( -l)nBje-(a-z)lb] gn(tj). (4 
j=l 

Here J = (N + 1)/2, g”(t) is the Ch an d rasekhar polynomial of order n, the eigenvalue tj is the j-th positive 
zero of gN+i(t) and {Aj} and {Bj} are coefficients to be determined from the boundary conditions of the 
problem. 

In the conservative case (c = l), we note that one of the eigenvalues becomes infinite, and so the 
expression for the moments given by Eq. (4) must be modified (B enassi et al., 1984). In what follows we 
consider c < 1; the required modifications for the case c = 1 are given in the Appendix of this paper. 
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We begin our development by noting that Eqs. (2) and (3) imply that, for p > 0, 

5 (?y) +“(v”(PL) - F(P) = 0 
n=o 

and 

~(-1)” (F) 1cIn(~)Pn(p) -G(p) = 0. 
n=o 

(5b) 

Next we introduce the assumption that both F(p) and G(p) can be expressed by polynomial expansions 
of order 5 N. In the event that any of the incident particle distributions happens to have delta-function 
contributions, we can overcome this difficulty by decomposing the original problem into two problems: one 
for the uncollided and the other for the collided particle distribution function (Chandrasekhar, 1950). The 
uncollided problem can then be solved analytically and the collided problem does not involve delta-function 
incident distributions. With the above assumption about F(p) and G(p), the left-hand sides of Eqs. (5a) 
and (5b) are clearly polynomials of order N and, by projecting these equations against the shifted Legendre 
basis (Pk(2~ - 1)) and using Eq. (4) with 5 = 0 and I = a, we obtain, for k = O,l,. . . , N, 

$ (y) Ct,, 6 [Aj + (-1)“Bje-“‘“]Sn(~j) = Fk 
j=I 

(f-3 

and 

g (y) Ck,n k [(-1)“Aje-“” + Bj]gn(tj) = Gk, (6b) 
j=l 

where we have defined 

J 

1 

Ck,n = %(%‘ - lPn(p)+r (7) 
0 

J 
1 

Fk = pk(% - l)J’(~)+ W 
0 

and 

J 1 
Gk = pk(%‘ - l)Gb)+ W) 

0 

Equations (6a) and (6b) constitute an overdetermined system of 2(N + 1) algebraic equations for the N + 1 
unknown coefficients { Aj } and { Bj } . It should be emphasized here that the fact that we are using a 
projection scheme based on an orthogonal basis on [0, l] is what causes the system of Eqs. (6a) and (6b) 
to be finite. A similar approach using the Marshak projection scheme would produce an infinite system 
that could be made finite only by truncation. Here we still have the problem that there are twice as many 
equations as there are unknowns, but, by using least squares to reduce the number of equations, we can 
keep, in an average sense, all the information given by Eqs. (6a) and (6b) for k = 0, 1, . . . , N. 

In order to show how to apply the least-squares technique to our overdetermined system, we prefer to 
use matrix notation. We thus write Eqs. (6a) and (6b) as 

Ma+NEb=f 

and 
NEa+Mb=g, 

(9a) 

(9’1) 
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where M and N are (N + 1) x J matrices with elements given, for i = 1,2,. . . , N + 1 ad j = 1,2,. , J, 
respectively by 

and 

Ad,,, = $ (‘ilIi-1> G-l,“h(E,) 
n=i-I 

Ni,j = 5 (-1)” (T) Ci-l,nSn(&)l 
n=i-1 

(lOa) 

E is a J x J diagonal matrix with exp(-e/<j), j = 1,2,. . , J, as elements, a and b are column vectors 
of dimension J with the unknown coefficients A, and Bj, j = 1,2,. . . , J, respectively as elements, and f 
and g are column vectors of dimension N + 1 with elements fi = Fi_r and gi = Gi-r, i = 1,2,. . . , N + 1, 
respectively. The system of equations expressed by Eqs. (9a) and (9b) can be written in a more compact 
form as 

Px=r, (11) 

where 

and 

x= 0 ; 
f r= 0 g 

(13) 

(14) 

Our solution to the overdetermined system given by Eq. (11) is computed by the least-squares technique 
with equal weights (Jennings, 1977). The application of this technique reduces our problem to that of finding 
the solution of the normal equations, expressed by the square system of order N + 1 

PTPx = PTr. (15) 

Once this is done, the coefficients {Aj} and {Bj} become available and the particle distribution function 
could, in principle, be computed with Eqs. (3) and (4). However, it is well known (Garcia et al., 1994a) 
that much improved results can be obtained by postprocessing Eq. (3) with the source-function integration 
technique (Kourganoff, 1952). The resulting postprocessed expression for the particle distribution function 
is given, for p > 0, by 

and 

9(x, -p) = G(p)e-(“-‘)“’ + i 5 PrPr(p)I’c(z, -p), (16b) 
I=0 

where K = min{L, N}, and by defining 

(17a) 

and 

s(x:P,o= 
1 - ,-4Pe-4C 

PL+fl ’ 
(171,) 
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we can write I’r(z, izp) as 

rf(z!P) = gtj[ajc(X 1 /L,[j) f (-l)‘BjS(X 1 ~,I,)C-‘“-““~‘]g,(~j) 

j=1 
(18a) 

and 

j=l 

(18b) 

In addition to the particle distribution function, integrated quantities such as the total flux (we use here 
the terminology and notation of neutron transport theory) 

the total current 

J 

1 
J(x) = /4~>~)d~> (20) 

-1 

and the partial currents 

J*(x) = O1 pQ(x, fp)dp 
J 

(21) 

may also be of interest when solving transport problems. In the F’N approximation, these quantities can be 
written in terms of the Legendre moments of the particle distribution function as 

4(x) = hdx), (22) 

J(x) = h(x) (23) 

and 

(24) 

where the definition (-l)!! = 1 is to be used. 

S. COMPUTATIONAL IMPLEMENTATION 

In this section, we discuss several aspects relevant to the computational implementation of our shifted 
Legendre projection scheme. 

We begin with the constants Ck,, defined by Eq. (7). Th ese constants can be computed in a fast 
and accurate way by using a recurrence relation derived, as shown below, with the help of some recurrence 
relations obeyed by the Legendre polynomials. We first let n -+ n + 1 in Eq. (7) and multiply the resulting 
equation by (n + 1). We then let n + n - 1 in Eq. (7), add the resulting equation multiplied by n to the 
previous result and use 

(2n + l)P?dP) = [ -$ Pn+1(P) - -jpl(P) 
1 

to obtain 

(n + l)Ck,n+l + G,n--l = I’ P%(% - 1) [ $p.+&) - =&PA(P)] d/l. (26) 
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After an integration by parts, Eq. (26) yields 

(n + 2)Ca,n+1 t (n - l)C+I = - J 1 d 
p-P#cl - 1) [Pn+l(p) - Pn-1(p)ld~1. 

o dp 

Letting k + k + 1 in Eq. (27), subtracting the resulting equation from Eq. (27) and using 

-3+1(2P - 1) - -3(2p- 1) 1 =(Ictl)[h+1(2p - 1)t P&(Zcc - l)], (28) 
we obtain our final result, viz. 

(~+~+wctl,ntl+(~- k--WEtl,n-1 =(n- kt l)Ck,“+i +(n+k)C+*, (29) 

Having in mind that Ck,, = 0 for k > n, we can generate the required Ck,n, provided the first row is known, 
by using Eq. (29) row by row and adopting the convention that whenever a negative index occurs during 
the calculation, the corresponding element should be set equal to zero. With the help of Eq. (25), we can 
show by direct integration that the first row is given by 

co,, = ( > & P?a-l(O) - ~“tlw (39) 

or, in a more explicit way, by C’s,0 = 1, Co,, = l/2, 

C0,2m = 0 (3Ia) 

C0,2mt1 = - 
Zm-1 ( > 2mt2 CO,lm-17 (31b) 

form= 1,2,.... Once the first row is computed, Eq. (29) can be used sequentially, as explained, to generate 
the remaining rows. 

Additional computational aspects that should be mentioned here include the calculation of the PN 
eigenvalues (j, j = 1,2,. . . , J, and the corresponding Chandrasekhar polynomials g”(t), n = O,l,. . . , N. 
In regard to the calculation of the Pry eigenvalues, we follow a procedure established in a previous work 
(Benassi ei al, 1984) that reduces this task to the calculation of the eigenvalues of a tridiagonal matrix of 
order J. The accurate calculation of the Chandrasekhar polynomials in high order has been the subject of 
a specific work (Garcia and Siewert, 1990). 

Finally, in regard to the computational solution of the linear system given by Eq. (15), we recall 
that, since the matrix of coefficients PTP is positive definite, we are allowed to use particularly economical 
solution methods. For this purpose, we have elected to use subroutines DPOCO (or DPOFA) and DPOSL 
of the LINPACK package (Dongarra et al., 1979). 

4. NUMERICAL TESTS 

In order to evaluate the performance of the proposed PN boundary conditions, we have solved several 
basic half-space and slab problems and compared the numerical results of the shifted Legendre (SL) scheme to 
those of the Mark and Marshak schemes. We have verified that all three projection schemes are numerically 
stable in high order and that no scheme is better than the others for all problems. For each problem, the 
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scheme with the best performance was found to depend on the input data (the parameter c, the scattering 
law order and coefficients, the incident particle distribution functions F(p) and G(p) and the slab thick- 
ness o) and also on the order of the approximation (N) used. 

As an example of the kind of results we got, we show in Tables 1 to 4 the deviations of various orders of 
PN approximations (using Marshak, Mark and SL boundary conditions) from the exact results found with 
the FN method (Garcia el al., 199413) for the exit partial currents and total fluxes at the boundaries of a 
homogeneous layer defined by c = 0.95, a = 1, L = 299 and Mie scattering law coefficients that are given 
in Table 3 of Benassi el al. (1984). Th e b oundary r = 0 of the layer is illuminated by an isotropic incident 
photon distribution specified by F(p) = 1, while the boundary I = a is a free boundary, i.e. G(p) = 0. 

Table 1. Percent Deviations of PN Results for the Par- 

tial Current J-(O) in the Photon Transport Problem 

N Marshak Mark 

3 -7.82 -11.7 

5 -2.52 -2.66 

7 -1.07 -0.76 

9 -0.63 -0.30 

19 -0.18 -0.066 

29 -0.074 -0.020 

39 -0.039 -0.0074 

99 -0.0052 0.0004 

199 -0.0011 0.0004 

299 -0.0005 0.0002 

Exact result: J-(O) = 0.0554611 

SL 

-12.4 

-0.99 

0.50 

0.44 

-0.043 

-0.032 

-0.017 

-0.0013 

0.0 

0.0002 

Table 2. Percent Deviations of PN Results for the 

Total Flux q5(0) in the Photon ‘Bansport Problem 

N Marshak Mark 

3 -5.06 -3.09 

5 -2.79 -1.28 

7 -1.73 -0.61 

9 -1.22 -0.35 

19 -0.53 -0.12 

29 -0.34 -0.075 

39 -0.24 -0.051 

99 -0.080 -0.011 

199 -0.034 -0.0025 

299 -0.021 -0.0008 

Exact result: 4(O) = 1.19334 

SL 

-1.43 

0.31 

0.69 

0.68 

0.31 

0.19 

0.14 

0.060 

0.030 

0.020 
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Table 3. Percent Deviations of P~J Results for the Par- 
tial Current J+(o) in the Photon Transport Problem 

N 

3 

5 

7 

9 

19 
29 

39 

99 

199 

299 

Marshak Mark SL 

0.95 1.81 1.90 

0.28 0.48 0.26 

0.12 0.18 0.034 

0.070 0.097 0.021 

0.023 0.024 0.032 

0.0093 0.0090 0.017 

0.0048 0.0045 0.0098 

0.0005 0.0005 0.0015 

0.0 0.0 0.0005 

0.0 0.0 0.0003 

Exact result: J+(o) = 0.398339 

Table 4. Percent Deviations of PN Results for the 

Total Flux $(a) in the Photon Transport Problem 

N 

3 

5 

7 

9 

19 

29 

39 

99 

199 

299 

Marshak Mark SL 

8.78 7.11 5.43 

4.05 2.77 0.90 

2.15 1.18 -0.36 

1.37 0.60 -0.61 

0.60 0.18 -0.28 

0.38 0.10 -0.18 

0.27 0.067 -0.14 

0.087 0.014 -0.062 

0.037 0.0030 -0.031 

0.023 0.0012 -0.021 

Exact result: $~(a) = 0.689678 

By examining the results reported in Tables 1 to 4, we conclude that, for this problem, the convergence 
rate of the SL scheme is the best in low order, while in high order the convergence rate of the Mark scheme 
exceeds that of the other two schemes. 

For the same problem, we show in Tables 5 and 6 our Pzgg results for the exit photon distribution 
function at z = 0 and at z = a respectively, along with exact results generated with the FN method that 
are thought to be accurate to within fl in the last figure shown. As is usual with the PN method, we 
observe that for all schemes the PN results deviate from the exact results to a greater extent near 1~1 = 0; 
the largest deviations in the entries of Tables 5 and 6 for p = 0 are displayed by the Marshak scheme with 
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-0.29% and 0.61% respectively and the smallest by the Mark scheme with -0.023% and 0.052% respectively. 
The deviations of the SL scheme for p = 0 are comparable in magnitude to those of the Marshak scheme, 
although somewhat smaller (0.25% and -0.52%). 

Table 5. Exact and P299 Results for q(O, -p) in the Photon Transport Problem 

P Exact Marshak 

0.0 0.678762 0.676795 0.678604 0.680431 

0.01 0.611804 0.612264 0.612786 0.613162 

0.05 0.513350 0.513374 0.513406 0.513426 

0.1 0.445222 0.445228 0.445237 0.445244 

0.2 0.333214 0.333216 0.333219 0.333222 

0.3 0.243922 0.243924 0.243925 0.243926 

0.4 0.178698 0.178698 0.178699 0.178699 

0.5 0.132535 0.132535 0.132536 0.132536 

0.6 0.100070 0.100071 0.100071 0.100071 

0.7 0.0771522 0.0771522 0.0771523 0.0771525 

0.8 0.0608134 0.0608135 0.0608135 0.0608136 

0.9 0.0490996 0.0490997 0.0490997 0.0490996 

1.0 0.0406760 0.0406760 0.0406760 0.0406758 

Mark I SL 

Table 6. Exact and P299 Results for @(a, /J) in the Photon Transport Problem 

/I Exact Marshak Mark SL 

0.0 0.199761 0.200989 0.199864 0.198727 

0.01 0.242840 0.242555 0.242230 0.241997 

0.05 0.312997 0.312982 0.312962 0.312951 

0.1 0.371665 0.371662 0.371656 0.371654 

0.2 0.490703 0.490702 0.490701 0.490702 

0.3 0.601739 0.601738 0.601738 0.601740 

0.4 0.689742 0.689742 0.689742 0.689744 

0.5 0.755851 0.755851 0.755851 0.755853 

0.6 0.804936 0.804936 0.804936 0.804937 

0.7 0.841482 0.841482 0.841482 0.841483 

0.8 0.868893 0.868893 0.868893 0.868894 

0.9 0.889584 0.889584 0.889584 0.889584 

1.0 0.905301 0.905301 0.905301 0.905301 
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5. CONCLUDING REMARKS 

In this paper we have reported a shifted Legendre projection scheme for generating PN boundary 
conditions free from ill-conditioning in high order, a deficiency found in an existing scheme (Garcia and 
Siewert, 1982) that is also based on the shifted Legendre polynomials. 

In regard to the performance of the proposed scheme, we have concluded from our comparisons with 
the results of the Marshak and Mark projection schemes for several problems that none of the three schemes 
is more (or less) accurate than the others for all problems, a conclusion similar to that of a previous study 
that compared, in low order, variational and asymptotic Pry boundary conditions to Marshak and Mark 
boundary conditions (Rulko et al., 1991). 
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APPENDIX 

Modifications for the Conservative Case 

We report in this Appendix the modifications required in our formalism by the conservative case (c = 1). 
As mentioned in Sec. 2, one of the eigenvalues in Eq. (4) b ecomes infinite when c = 1, and so we follow 
Benassi et al. (1984) and replace Eq. (4) for n = 0 by 

+0(z) = Al(a - x) + Blr + 6 [Aje-“ZCj + Z?je-(‘-2)‘~j], (A.la) 
j=2 



Stable shifted-Legendre projection scheme 331 

for n = 1 by 

and for n = 2,3,. . . , N by 

$1(x) = (3 - /&)-‘(A, - B,), (A.lb) 

tin(z) = 2 [Aje-"'J + (-l)RB,e-(“-r)“j]g,(~j), (A.lc) 
j=Z 

where[j,j=2,3 ,..., J, denote the finite eigenvalues. 
If we now follow the procedure reported in Sec. 2 for the non-conservative case, we find that the linear 

system for the conservative case can still be expressed as in Eqs. (9a) and (9b), except that the first element 
of the diagonal matrix E is now given by 1, the elements of the first column of the M matrix by 

(A.2a) 

MZ,I = ;(3 -PI)-’ 

and,fori=3,4 ,..., N+l, 
Mi,l = 0, 

and the elements of the first column of the N matrix by 

(A.2b) 

(A.2c) 

&,I = -;(3 - PI)-‘1 (A.3a) 

Nz,l = -;(3 -PI)-’ (A.3b) 

and,fori=3,4 ,..., N+l, 
Ni,l = 0. (A.3c) 

In order to compute the PN solutions, the expressions for the postprocessed particle distribution func- 
tion given by Eqs. (16a) and (16b) can also be used for the conservative case, provided I’,(z, &cl) is defined, 
for I = 0, a.5 

I’~(z,p) = AI {(u + p)[l - e-z’P] -z} + &{z - ~[l - e-““‘1) 

+ 2 0 [AjC(s : ,U, [j) + BjS(s : CL, ~j)e-(“-‘)/‘j] (A.4a) 
j=2 

and 

ro(x,-p) = Al{a - 5 - ~[l - e-(a-r)lr]} + &{r - Q + (a + p)[l - e-(“-z)l@]} 

+ C 0 [AjS(a - x : I-1, [j)c-z’Cj + BjC(a - z : p, [j)], (A.4b) 
j=2 
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for I= 1, as 
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and 

r,(r, p) = (Al - B,)(3 - PI)-’ [l - c-*“‘] 

rl(z, --cL) = (B, - A1)(3 - PI)-’ [l - e-@-=)‘@I, 

and,forl=2,3 ,..., K,as 

l)'BjS(X 

(A.5a) 

(A.5b) 

(A.6a) 

and 

I?I(x,-/J) = e[j[(-l)‘AjS(a-3 : ~,<j)e-‘/‘j + BjC(a- x : p,<j)]gl({j). 

j=2 
(A.6b) 

Finally, the integrated quantities defined in Sec. 2-total flux, total current and partial currents-can be 
expressed here as in Eqs. (22) to (24), but Eqs. (A.la) to (A.lc) must be used to compute the required 
Legendre moments. 


