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Abstract-Elementary considerations are used to carry out a Fourier decomposition of the 
radiation intensity for a model atmosphere that has a ground defined by a general reflection 
function. In contrast to simpler problems, the intensity here has both sine and cosine compo- 
nents that are coupled by way of the boundary condibons at the ground. Copyright @I996 
Elsevier Science Ltd 

1. INTRODUCTION 

In a recent paper,’ Godsalve carried out a Fourier analysis for an anisotropically scattering atmo- 
sphere illuminated by an incident solar beam. Interestingly, in order to represent better a remote- 
sensing problem, Godsalve allowed the ground to reflect in an asymmetrical manner, and this ground 
condition is such that both sine and cosine components are required in a Fourier decomposition of 
the radiation intensity. However, in reading the paper of Godsalve, we have discovered that serious 
errors were made in that work in regard to the coupling, by way of the boundary condition at the 
ground, between the sine and cosine components of the solution. In this work we report what we 
believe to be a correct Fourier decomposition that can be used to solve this new class of radiative- 
transfer problems. We note also that Godsalve introduced the discrete-ordinates approximation at 
the beginning of his analysis, and so a set of well-posed component problems that can be used with 
other solution techniques is not readily available from his paper. Thus here for a general model of 
ground reflectance, we develop a complete formulation, for all of the component problems related 
to a Fourier decomposition of the radiation intensity, that is independent of the solution technique 
to be used. 

We let Z(T, P, Q)) denote the intensity (radiance) of the radiation field and utilize the equation of 
transfe? for a plane-parallel medium to model our atmosphere. We write 

P;Z(T. P, 9) + Z(T, P. ~1 = g 
II 
‘, ;np(Cos@)I(T. P’, ~‘NN’d~ (1) 

where T E (0, TO) is the optical variable and m is the albedo for single scattering. In addition, 
P E [ - 1, 11 and Q, E [O, 27~1 are, respectively, the cosine of the polar angle (as measured from the 
positive T axis) and the azimuthal angle which describe the direction of propagation of the radiation. 
We note also that the phase function p(cos 0) is represented by a finite Legendre expansion in terms 
of the scattering angle 0, viz. 

L 

p(cos 0) = 1 fi/P/(COS 0) (2) 
I-O 
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where the coefficients are such that /30 = 1 and l&l < 21+ 1. 
We assume that the atmosphere is illuminated uniformly by a solar beam with a direction specified 

by (~0, VO), and so we seek a solution to Eq. (1) that satisfies the boundary conditions 

and 

forpE (O,l] andpE [0,2rr]. 

(3a) 

(3’4 

As we wish to include the possibility that there could be some phenomenon (e.g., rows of plants, 
or ocean waves) related to the ground that introduces a special direction into the problem, we make 
no assumptions here regarding the symmetry of the reflection function R(p’, ZJ, p’, p,). We note 
that, in writing the boundary condition at the ground as we have in Eq. (3b), we are considering 
that the reflection function describes the reflection of radiation from some direction defined by the 
variables (p’, v’), with ~1’ E (0, 11 and c@ E [0,2rr], to another direction defined by the variables 
(-p, p,), with p E (0, 11 and 9 E [O, 27~1. 

2. THE UNSCATTERED COMPONENT OF THE INTENSITY 

Since the incident beam for the considered problem is represented by deltafunctions, the resulting 
intensity will also have a component containing generalized functions, and so, in order to avoid the 
impossible task of trying to compute generalized functions, we use first a decomposition of the form 

Z(r, /J, 9) = Zo(r, /J, ‘7.‘) + Z* (T, cI> V) (4) 

where ZO(T, p, QI) denotes the solution of Eqs. (1) and (3) for the case w = 0 and where Z*(T, p, p) 
is the complementary component of the solution. We note that even if the reflection function at the 
ground has a component for specular reflection, the decomposition given by Eq. (4) is such that all 
of the generalized functions in the solution Z(T, p, cp) will be contained in ZO(T, V, p). 

Solving Eqs. (1) and (3) for the case m = 0, we find 

Zo(T, /J, V) = r-r6(p - Fo)6(V - v0k+@ @a) 

and 

ZO(T, -p, p) = rr~oR(~o, p, PO. ~)e-To’flOe-(TO-T)‘~ 

for p E (0, 11 and Q, E [O, 2n]. 

(5b) 

3. THE COMPLEMENTARY COMPONENT OF THE INTENSITY 

We can now substitute Eq. (4) into Eqs. (1) and (3) and deduce, after noting Eqs. (5), that the 
complementary component Z* (T, p, cp,) is defined by 

a 
/J&&AQ’) +&(T,/J,Q)) = z 1, 

ss 
: p(COS@)z,(T, P’, q’)d&dp’ + F(r, /.f, v), (6) 

for T E (0, TO), 1-1 E [ - 1, I] and Q, E [0,27-r], and the boundary conditions 

I*(@ /J, V) = 0 (7a) 

and 
2Tr 1 

z*(To, -P> Q.‘) = o J J W’, /A v’, ~11, (To. cl’> d)dWWf (74 o 

for ~1 E (0, 11 and QJ E [O, 27-r]. Here, the known inhomogeneous term is 

F(T,P,Q)) = z ‘, JJ 
2Tr 

o p(COS@)~o(T, P’, v’)Wd$. (8) 
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Before attempting a Fourier decomposition of the complementary component of the intensity, we 
make use of the addition theorem3 for the Legendre polynomials and express the scattering law as 

P(COS@) = &+ (2 - 60,m) i B;“p;“(P’)p;n(P) cosMq7’ - p,)l (9) 
m=O I==tn 

where 

V(p) = (1 - /IV’2 -$/(/J) (10) 

denotes an associated Legendre function, and where 

fly= (1 aI%. (11) 

Using Eqs. (5) and (9), we rewrite Eq. (6) as 

L L 

P~I,(T.WP) +&(T,/JaQ)) = g x(2-60,,) 1 fi;np;n(P) 

m=O I=m 
1 

X 
IS 
_, ~nq(P.)z*(T,~'rP)')COS[m(0)' - v)ldv’W +F(T,P,Q)) (12) 

where now we write the inhomogeneous term as 

F(r,P,QJ) =fi(r,/J,Q)) +&(r,UV) (13) 

with 

and 

fl(r,CI,Q)) = 7 i (2 - 60,~~) i B~p;“(p~)~Q.d cosbdg, - qO)le-T’bo (144 
m=O I=m 

&(r, fl, 9) = ~PO i (2 - bo,m) 2 /?;tp;l(P)(- l)J-me-Tn’Po 
m=O I=m 

I 2lT 
X 

Is 
(14b) 

0 0 
P;“(p’)R(po. J, ~0, Q-I’) cos[m(@ - cp)]e-(Q-r)‘p’d&dfl’. 

In order to simplify Eq. (14b), we first let q, denote a reference direction, and then we expand 
the reflection function in a Fourier series of the form 

+ i EM, I.4 d) swdcp - Q&)1, (15) 
n-l 

where, of course, 

R;W,P,V') = ; 
I 
; RW,~,,',~)cosbdq,- w)ldv> n zz 0, (164 

and 

%(/.I’, P, P’) = ; 
I 
:” NJ’, cr, v’, v) sin[n(v - v,)]dcp. n 2 1. (16b) 

Since later in this work we will use a double Fourier series representation of the reflection function, 
we also write here 

RC,(p’, ~lt P’) = t T (2 - bo,m)R&(P’, P) cos[m(P’ - W)l 
m-0 

+ f R~mbL~)s~[m(~' - WI (1W 
m-l 
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and 

&(/J’, LA 9’) = ; 2 (2 - 6o,,)R&&.J’,~) cos[m(Cp’ - Cp,,)] 
Wl=O 

with 

(17b) 

&(/J’, M P’) cos[m(p’ - v,)ld#, n 2 0, m 20, (184 

R&,W, II) = 4 I,‘” Rf;W. IA v’) sin[m(q’ - p,)ldqf, n z 0, m r 1, 

and 

R&&f’, jl) = 1 
I 

27r 

no 
Rib’, K p’) cos[m(d - v,)ld@, TI r 1, m 2 0, 

&(P’, NJ = ; I,’ Rib’, I.& $1 sin[m(p’ - q.+)ldp’, n L 1, m 1 1. 

Substituting Eq. (15) into Eq. (14b), we tid 

FZ(T, V, 0) = i $ (2 - Go,,AF$n(-r, fi) cosIm(cp - @,,)I + i F&n(-f, p) sin[mfp - fp,,)] 
tn=O fn=l 

where 
L 

~,n(~,P) = ~/JO 1 &“p;l (p) (- 1 )‘-‘ne-Tn’vn ji p;” (p’ ) Ri (po, p', po)e-(“-T)““dp’ 
I=m 

and 
L 

&CT. I-r) = yfl0 1 ~Y;p;“(~)(-l)‘-‘“e-fO~~O 
I=m I 

d p;“(p’)Rh(vo, p’, q@e-(To-T)‘ddp’. 

By defining 

f. 

and 

f&(T, PI = y 5 B$y(po)P;n(p) sin[m(po - vr)le-T’H,, 
f=,?I 

W-W 

(18~) 

WV 

(19) 

(204 

(2W 

(214 

@lb) 

we can rewrite Eq. (14a) as 

fi(T, Cc, Cp) = ’ 2 i (2 - 6o,,Z&CT, McosMcp - p,,)l + i Q(7, p) sinImfq> - q.+)l. (22) 
m=O &I=1 

Now, with 

and 

(23a) 

(23b) 

we can write the inhomogeneous term in Eq. (12) as 

F(T, U P,) = i i (2 - Go,,dFj.(r, j-4) cos[m(cp - p,)l + i F$(7-, p) sin[m(rp - tp,)]. 
WI-0 ttl=I 

(24) 
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Considering the use of Fourier series again, we Substitute 

&(T, PI @‘I = ; i (2 - bo,m)&,(T, P) COSbZ(Q3 - Qb)] + i z&(T, /A) SiIl[m(CJJ - QI,,)] 
m=O ,n=l 

(25) 

into Eq. (12) and note Eq. (24) to find, for m = 0, I,. . _ L, 

L 

I1$I:,,n(T, cl) + &,,(T> P) = y 2 fi;np;n(P) j-;, p;“WZ;,,n(~, Lt’)d/J + &(T, p) 
I=,n 

Wa) 

and,form= 1,2 ,... L, 

~~Zh(W) +Zi,,(Td = 7 $ /?;np;n(/I) II,~(I~')I:,,~(T,~')~~~' +Fi(-f,/J). 
I=ttI 

In addition, we find, for m = L + 1, L + 2,. . . , 

P$:,,n(W) + &,(T, cl) = 0 

(26b) 

(274 

and 

&,n(T. /-d + f;,,n(T, /_I) = 0. (27b) 

Finally we substitute Eqs. (15), (17) and (25) into Eqs. (7) and deduce the required boundary 
conditions on the Fourier components of Z* (T, Jo, q). We find from Eq. (7a) 

Z&,(O,p) =o, m=0,1,2 ,...) CW 

and 

Z;t,,n(O, fl) = 0, m = 1,2,3,. . , 

for~E(O,l].FromEq.(7b)wefind,form=0,1,2 ,... andpE(O,ll, 

(28’4 

Z:,,,,(To, -P) = ; it2 - &I,,) J; R&(c1’, @Z:,,(To, P’)P’dP’ 
n=O 

f TT f 1’ Z$,,(d, P&,(To, v’b’dv’ 
n=l O 

(2%) 

and, for m = 1,2,3,. . and ~1 E (0, 11, 

&(TIJ, -/.I) = ; f (2 - 60,,) 1; &&(CI’, /J)z;,,(To, v’l~‘4.f 
n=O 

R&W, 1.4@,,, (To, F’M’W. (2%) 

Considering now the component problems for m > L, we can solve Eqs. (27) subject to the 
conditions of Eqs. (28) to find 

Z&&V> = 0 (30a) 

and 

Z;,,(T) /J) = 0 (30b) 

for /A E (0, 11. We also find 

I&, (7, -p) = I$,,,( TV, -p)e-(TD-T)‘fl (314 

and 

Z&,,(T, -jd = Z&(TO, -j.de-(T"-T)ip @lb) 

for /A E (0, 11. Here Z;,,(TO, -p) and J;,,(To, -p) are to be determined. 
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Noting Eqs. (30), we see that the summations in Eqs. (29) truncate, so we write the boundary 
conditions at T = TO as 

L 

$,,,(To> -II) = ; I(2 - 60~) j; R~,(~',Cl)l~,,(To,Cl')~'d~' 
n=O 

L I 

+c I n=l O 
R&b'. P)$,(To, v')ddd, (32a) 

formrOandflE(O,l],and 

Z&(To. -Cr) = ; i (2 - ho,,) J; R:,&‘. clVf,n(To, Cr’b’dv’ 
n=O 

+ 7~ i J’ E,,W N&,(-ro, db’dd, 
n=l O 

WW 

for m 2 1 and /.J E (0, 11. It follows that once we have solved our basic problems for m = 0, 1,2, . . . L, 
we can compute the functions required to complete the solutions given by Eqs. (30) and (31) from 
Eqs. (32) with m > L. 

4. SPECIAL CASES 

At this point we would like to show how the foregoing development reduces to simpler forms for 
three special cases. We consider first a mixture of specular and diffuse reflection. We thus write 

RM’, p, v’, p) = (P,/u)~(c~’ - /..G(Q+ - p,) + P~/TT (33) 

where ps and Ed are, respectively, the coefficients for specular and diffuse reflection. In this (classic) 
example of reflection, there clearly is no preferred direction on the ground, and so we are free to 
choose mr = ~0. Looking back to Eq. (5b), we find we can now write 

ZO(T, -p, p,) = [rrp,S(ti - cco)G(Q~ - ~0) + Ilgpdle-Tn’Cloe-(To-T)‘~ (34) 

for v E (0, 11. We next observe that for this special case all sine components of Z* (T, p, q) are zero. 
In addition, Eq. (21a) reduces to 

and Eq. (20a) becomes 

VW 

&$,(T, p) = yp$ i ~~P;“(~o)P;“(~)(-1)‘-‘“e-(2”n-T)’~~i 
I=tn 

+ mp~p&h,,~ i /3,P,(~)(-l)‘e-Tu’~o J 
I 

o P,(CI’)e-(Tn-T)‘r’dC1’. (3 W I=0 
It follows that, with Eqs. (35) and 

e;(T, fl1) = Z$n(T, p) + F&(T, /-& 

the inhomogeneous source term in Eq. (26a) is explicitly available. 
Eqs. (16a) and (18a) to find 

(34) 

We can now use Eq. (33) in 

R;;,W, 14 = :(I + 60,,)&,, [(P,~/I~~(P’ - u) + 2m6o,nl, m 2 0, n 2 0, (37) 

so that we can conclude, from Eqs. (28a) and (32a), that the boundary conditions subject to which 
we must solve Eq. (26a), for m = 0, 1,2,. . . L, are 

z;,,;.,,co, cc) = 0 Pa) 
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&,,(To, -P) = Ps&(To, P) + 2Pcifio,,n ; z&,(To> JM’di.i 
J (38b) 

for ~1 E (0, 11. For m > L, it is clear from Eqs. (3Oa), (31a), (32a) and (37) that Z;,,(T, /J) = 0. 
For a second special case, we consider a reflection function of the form 

R(P’, P, P’, ~1 = i bkPk(COS% 

k=O 
(39) 

where B is the angle between the vectors that define the incident and emergent directions of the 
radiation. In addition, the {bk} are coefficients that are assumed known. As we did with the phase 
function, we can use the addition theorem3 for the Legendre polynomials to rewrite Eq. (39) as 

where 

bj = (k-j)! 
k (k+j)!bk. (41) 

We note that if we choose Q-J, = (~0 then the complementary part of the intensity Z* (T, p, p) will 

not have any sine components. Here again Eq. (21a) reduces to 

t&(T,p) = y ,$qvy(&dPi"(p)e-T'~~~ (424 
/=,?I 

and Eq. (20a) becomes 

&,(T, /J) = a7Tpo i B;“P;“(~)(-l)‘-‘“e-Tn’~n 
I=m 

x : (-l)k-“b~P$(~o) J: PiR(~‘)p;:(~‘)e-(To-T)‘I1’dCI’. (42b) 
k=rn 

We find that, with Eqs. (42) and 

e;(T, Cr) = F,y&, fl) + Fi,& P), (43) 

the inhomogeneous source term in Eq. (26a) is again explicitly available. Upon using Eq. (40) in 
Eqs. (16a) and (18a), we find 

It now follows, from Eqs. (28a) and (32a), that the boundary conditions subject to which we must 
solve Eq. (26a), for m = 0, 1,2,. . . L, are 

Z&CO, P!) = 0 (45a) 

and 

Z&&To> -P) = J ; T~(CI',C~)~~,,~(TO,C(')~'~~' Wb) 
for P E (0,ll. Here 

Gl (P’, cr) 
k-m 

To complete the formulation for this special case, we note that Z;,,,,(T, /.J) = 0 for m > L. 

(46) 
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Our third (and last) special case is defined by the reflection function 

R(cI’, P, P’, V) = i ; (2 - bo,&&‘, p) coslk(q7’ - v,)l + : Md, /.d sin[k(v’ - ~11 (47) 
k-0 k=l 

where the coefficients {Uk (P’, P) 1 and {bk (P’, Z.J) } are assumed known. We note that Eq. (47) covers 
the cases studied by Godsalve’ and by Walthall et ak4 as well as the scalar problem obtained by 
neglecting polarization effects in the formulation of Deuzt et a1.5 

Here again the reflection function does not involve a preferred direction so we can set p, = ~0. 
With this choice of of,, Eqs. (21) become 

and 

In addition, after noting that Eqs. (16) yield, for this special case, 

%(ZJ’, u cp’) = ao(P’, /J), 

and 

Ri(/J’, /A V’) = a,,(P’, cc) cosln(V’ - o-%)1 + b&f’, cl) sin[n(q’ - V0)l 

%(c1’, cI, V’) = a,,(ZJ, P) sinln($ - ~0)l - b,,(lr’, N) cos[n(~ - PO)], 

for n 2 1, we write Eqs. (20) as 

&,,(T, Z.J) = yp0 i B;“P;“(Cc)(-l)‘-,ne-T”‘~‘” 
I-,,, I 

d P;“(p’)a,,,(p0, Z/)e-(TO-T)‘@‘dZ/, 

for m 10, and 

F&,(T, ~-4) = - P;"($)b,(po, ZJ)e-(Tn-T)‘~‘d~‘, 

WW 

(494 

VW 

(49c) 

(50a) 

(50b) 

for m 2 1. From Eqs. (50), it is clear that, for this case, we must solve both the sine and cosine 
component problems defined by Eqs. (26), with the corresponding inhomogeneous source terms 
given explicitly by Eqs. (23), (48) and (50). In regard to the boundary conditions at the ground, we 
can use the expressions 

R&(P’,P) = (1 + 60,,,)6,~,,a,M, P). m 2 0, n 2 0, @la) 

R&b', cl) = &d,W,Cr), m 2 0, n 2 1 @lb) 

R~~,oW,cc) = 0, m 2 1, (5lc) 

R&,(P’, P) = -&,,,,b,,(cl’,cc). m 2 1, n r 1, (51d) 

and 

R$,,,(Lf’, P) = b,,,,,,u,,(P’, II), m 2 1, n 2 1, (5le) 

obtained by substituting Eqs. (49) into Eqs. (18) to find that Eqs. (32) reduce to 

Z;,g(To, -P) = r-r ; ao(LJ’, P)Z;,o(To, ZU’d/J, 
I (52a) 

for P E (0, 11, 

Z;,,,,(To. -P) = n [Um(CI’, P)Z:,,,(To, Cc’) + b,,(cI’, P)Z:,,,(To, P’)]Cl’dP’ (52b) 
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and 

&h-ot -PI = -/T btd’, cl)&,(~o, P’) - b,n(d, iW&(To, p’)]/JdjJ, (52c) 

for m 2 1 and ~1 E (0, 1 I. Finally, we complete the formulation for this case by noting that 
&(T, j11 = 0 for m > L and that I&(T, p) = 0 for m > min{L, L&1. 

5. CONCLUDING REMARKS 

Having considered a fairly general reflection function, we find that the Fourier decomposition 
is considerably more complicated than what we are accustomed to seeing in radiative transfer 
calculations in plane geometry. In particular, we see that for the general case an infinite number of 
sine and cosine components of I* (T, p, q,) are required to establish the solution. We note also that 
the first L sine and the first L + 1 cosine components of 1, (T, fl, q,) are coupled by the boundary 
condition at the ground and that the solution for the remaining sine and cosine components of 
I* (T, p, cp,) can be expressed in terms of the solutions for those 2L + 1 components. Needless to 
say, some simplifying assumptions about the reflection function, as, for example, the ones we have 
made in Sec. 4, could make the formulation of the desired solution for the intensity a great deal 
more tractable. 
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